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On Establishing Buckling
Knockdowns for Imperfection-
Sensitive Shell Structures
This paper investigates issues that have arisen in recent efforts to revise long-standing
knockdown factors for elastic shell buckling, which are widely regarded as being overly
conservative for well-constructed shells. In particular, this paper focuses on cylindrical
shells under axial compression with emphasis on the role of local geometric dimple
imperfections and the use of lateral force probes as surrogate imperfections. Local and
global buckling loads are identified and related for the two kinds of imperfections. Buck-
ling loads are computed for four sets of relevant boundary conditions revealing a strong
dependence of the global buckling load on overall end-rotation constraint when local
buckling precedes global buckling. A reasonably complete picture emerges, which should
be useful for informing decisions on establishing knockdown factors. Experiments are
performed using a lateral probe to study the stability landscape for a cylindrical shell
with overall end rotation constrained in the first set of tests and then unconstrained in the
second set of tests. The nonlinear buckling behavior of spherical shells under external
pressure is also examined for both types of imperfections. The buckling behavior of
spherical shells is different in a number of important respects from that of the cylindrical
shells, particularly regarding the interplay between local and global buckling and the
post-buckling load-carrying capacity. These behavioral differences have bearing on
efforts to revise buckling design rules. The present study raises questions about the per-
spicacity of using probe force imperfections as surrogates for geometric dimple imperfec-
tions. [DOI: 10.1115/1.4040455]

Keywords: shell buckling, knockdown factors, minimum buckling loads, cylindrical
shells, spherical shells, dimple imperfections

1 Introduction

Design rules for buckling of highly imperfection-sensitive
structures like cylindrical shells under axial compression and
spherical shells under external pressure emerged in the 1950s and
1960s driven by the development of light weight shell structures
for space and aeronautics and for many other structural applica-
tions as well. Due to the large scatter observed in test data and the
difficulty of measuring imperfections and computing their degrad-
ing effects, the rules which emerged in the 1960s were heavily
based on test data and expressed in the form of conservative
empirical formulas. The rich history of shell buckling is the topic
of the book by Elishakoff [1], which provides a rather complete
background to the underlying technical issues addressed in this
paper. The most well-known example of the design formulas
which emerged five decades ago is the NASA formula [2] for elas-
tic buckling of cylindrical shells under axial compression. It
expresses the axial design load at buckling, F, in terms of the axial
buckling load of the perfect shell, the so-called classical buckling
load, FC, as F ¼ jFC, where the knockdown factor j depends on
the shell radius to thickness ratio, R=t, according to

j ¼ 1� 0:901 1� e�
1

16

ffiffi
R
t

p� �
(1)

This formula reflects the fact that typical thin shells may buckle at
loads as low as 50% to below 20% of their perfect counterpart
depending on R=t. A low knockdown factor, j � 0:20, has gener-
ally also been adopted for the elastic buckling of spherical shells
subject to external pressure because the data base for spherical
shells was smaller and the behavior was believed to be similar.

Five decades after these rules were put in place they are now in
the process of being revised in recognition of the widely held
view that the knockdown factors are overly conservative for most
well-constructed shells. Concomitantly, extraordinary advances
have occurred in the intervening years in both computation meth-
ods for buckling and in experimental techniques to measure
imperfections and to test and fabricate shells. Widely available
commercial computational codes are capable of accurately evalu-
ating the buckling load of a shell if its imperfections are correctly
incorporated into the computational model. The efforts to update
the design rules for shell buckling are worldwide, with computa-
tional and experimental work toward these goals underway in
Europe [3–8], the U.S. [9–11] and China [12,13]. Early work initi-
ated in the former Soviet Union has also been influential in the
recent efforts some of which is cited in Refs. [7] and [14].
Because of its structural importance and its canonical role as one
of the most imperfection-sensitive structure/loading combinations,
much of the basic work is centered on the elastic buckling of
cylindrical shells under axial compression.

This paper focuses on new developments that have emerged in
the recent literature noted above, first for elastic buckling of cylin-
drical shells under axial compression and then for spherical shells
under external pressure. Recent efforts to arrive at less conserva-
tive knockdown factors are premised on the notion that many of
the shells comprising the experimental data base assembled in the
1960s and 1970s were not manufactured to the standards possible
today. They are also based on the notion that most of the theoreti-
cal and numerical imperfection-sensitivity studies conducted in
those early years assumed geometric imperfections that were not
realistic leading to overly large buckling reductions. Shapes in the
form of the classical buckling mode itself, for which Koiter’s
theory [15,16] predicts the most dramatic load reductions, are
considered to be unrealistic in most instances. The new efforts
also recognize that detailed historical knowledge of shell
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imperfections, such as that cataloged by �Arbocz [17], is important
for providing general insights into representative imperfections.
However, cataloged imperfections are not likely to be directly
useful for establishing the buckling load of a newly designed shell
that has not yet been manufactured. It has also been recognized
that localized dimple-like imperfections are almost certainly more
representative of realistic imperfections than highly correlated
imperfection patterns spread over the entire shell which tend to
produce the largest knockdowns in buckling. With the exception
of an early study by Berry and Rotter [18] and a comprehensive
study in the 2006 Ph.D. thesis of Wullschleger [19], which will be
discussed in this paper, there appears to be little published work
employing modern computational methods to investigate the role
of localized geometric dimple imperfections on the buckling of
cylindrical shells in axial compression.

One recent approach makes use of a lateral probing force as a
surrogate imperfection intended to represent realistic local geo-
metric dimple-like imperfections and computes the buckling
behavior as a function of imperfection amplitude. Other work
[18,19], including that in the present paper, studies the effect of
geometric dimple imperfections themselves on the buckling
behavior. For cylindrical shells under axial compression with
either a geometric dimple imperfection or a probing force imper-
fection, the recent work has revealed the existence of two buck-
ling thresholds: an axial load at which local buckling occurs and a
higher load at which catastrophic global buckling takes place.
Moreover, in the imperfection range in which the two thresholds
exist, the global buckling load is nearly independent of the imper-
fection amplitude such that a minimum load for global buckling
can be identified. There may be some applications for which local
buckling of the shell can be tolerated, in which case the minimum
global buckling load might be used to establish the knockdown
factor. We will not adopt this view in the present study. Here, we
will seek a clear understanding of the relation of both local and
global buckling to the shell’s imperfection and loading end condi-
tions. We will regard the first buckling load encountered as the
buckling load. If local buckling happens to precede global buck-
ling then the gap between the two loads can be regarded as a
“safety cushion.” Finally, for both cylindrical shells under axial
compression and spherical shells under external pressure, we
critically examine whether probing force imperfections can be
employed effectively as surrogates for geometric dimple
imperfections.

In brief, Sec. 2 focuses on cylindrical shells under axial com-
pression with probing force imperfections. We reproduce some
earlier results and show that the load for global buckling of other-
wise fully clamped shells depends strongly on whether overall
rotation at the ends is allowed or suppressed. Four sets of clamped
boundary conditions are considered involving the two limits of
prescribed end shortening and prescribed axial load, in each case

with overall end rotation allowed or suppressed. In Sec. 3, experi-
ments are reported, which demonstrate this difference between
probing a clamped shell tested under prescribed end shortening
with no overall end rotation and the same shell tested with end
rotation allowed. In Sec. 4, for the same suite of boundary condi-
tions considered for the probing force imperfection, we study the
buckling behavior of the cylindrical shells with local geometric
dimple imperfections, characterizing both local and global buck-
ling behavior. Comparison with the behavior for the shells with
the probing force imperfections gives clear insight as to whether
one type of imperfection can indeed be the surrogate for the other.
In Sec. 5, we contrast the buckling behavior of spherical shells
under external pressure with that of cylindrical shells under axial
compression. In particular, it is shown that the nonlinear buckling
behavior of the two types of shells is qualitatively different in sev-
eral important respects and the protocol for assigning knockdown
factors to one may not apply to the other. Conclusions and recom-
mendations are given in Sec. 6.

2 The Influence of End Conditions on the Elastic

Buckling Behavior of Cylindrical Shells Under Axial

Compression With Probing Force Imperfections

We begin by replicating the computational results for a specific
cylindrical shell analyzed and tested by Kriegesmann et al. [11]
and Haynie et al. [10]. The shell, which had a probing force
imperfection, was loaded axially and subject to fully clamped
ends and prescribed end shortening with overall rotation of the
ends suppressed. This example will serve to introduce some of the
details of the buckling behavior which will be examined in this
paper and at the same time it will serve as the reference case for
examining other boundary conditions. The shell of Haynie et al.
[10], which was analyzed, manufactured, and tested by the
authors, has radius R ¼ 0:2286 m ð9 inÞ, thickness t ¼ 1:016 mm
ð0:04 inÞ, R=t ¼ 225 and length L ¼ 0:7874 m ð31 inÞ. The shell
was modeled as being elastic with Young’s modulus E ¼
73:08 GPa ð10:6� 106psiÞ and Poisson’s ratio � ¼ 0:3. The man-
ufactured test shell had a double joint of width 5:08 mm ð0:2 inÞ
at the seam with two strips the thickness of the shell, one bonded
on the inside and the other on the outside. This joint is included in
our computational model as it was in the models of Refs. [10] and
[11]. Otherwise, the geometry of the shell is taken to be that of a
perfect cylinder. The boundary conditions for the reference case
will be referred to here as case A, and as already noted, these
assume each end of the shell is “welded” to a rigid end-plate
which forces both the displacements and rotation of the shell to
follow the rigid plate along the weld-line. The lower end plate is
fixed and the upper end plate is subject to prescribed axial dis-
placement toward lower plate with no overall rotation for case A.

The axial compressive force that develops as the end shortening
increases is denoted by F and the lateral probing force imperfec-
tion, P, acts in the radial direction pointing inward, as seen in
Fig. 1(a). In the simulations, the probing force is applied at the
midpoint of the shell directly opposite to the joint. In carrying out
the simulations, the probing force is first applied reaching the
value P and then is not changed as the shell is loaded axially. Sim-
ulations for various levels of P are carried out, as will be
described. Earlier probing force calculations [11] have shown that
the loads for local and global buckling are fairly insensitive to the
location of the probe force as long as it is not near the ends or
near the joint, and thus the present work will only consider a
probe located at the midpoint opposite to the joint.

Our simulations were carried out using Abaqus Standard [20]
and quasi-static analysis. The modeling technique followed the
one presented in Ref. [10]. The mesh for the models was created
by user-written codes and using S4R elements with an element
size of 7:112 mm (0.28 in), about 0:5

ffiffiffiffiffi
Rt
p

, in both axial and cir-
cumferential directions. The double joint is included in the model
with the elements in that area having a thickness three times the

Fig. 1 (a) Geometry and conventions for a lateral probe force
imperfection. (b) Dimensionless relation between the probing
force, P , and the inward radial deflection at the probe, d, with no
end shortening for case A. The values of P chosen for the simu-
lations of Haynie et al. [10] are denoted by solid dots on the
curve.

091010-2 / Vol. 85, SEPTEMBER 2018 Transactions of the ASME

Downloaded From: http://appliedmechanics.asmedigitalcollection.asme.org/ on 08/30/2018 Terms of Use: http://www.asme.org/about-asme/terms-of-use



thickness of the rest of the cylinder. The boundary conditions at
the end of the cylinder were applied using the same procedure as
in Ref. [10] with rigid links, which connect the central node to the
nodes at the end of the cylinder. Geometrically, nonlinear static
analysis with automatic stabilization was used, as in Ref. [10],
selecting the “specify damping factor option” and a value of
0.0002 for the factor. The adaptive stabilization technique with
maximum ratio of stabilization to strain energy was not used.
Selected simulations repeated over a range of damping factors
(2� 10�4, 2� 10�5, 2� 10�6, 2� 10�7, and 2� 10�8) revealed
essentially no dependence on the damping factor of the results for
the local and global buckling loads reported below. For one case
reported later, Riks’ arc length algorithm was used to compare the
results from the automatic stabilization technique to the full equi-
librium solution and this comparison also verified the validity of
the local and global buckling loads obtained using the quasi-static
automatic stabilization technique. For the cases with the probing
forces imperfection, each analysis consists of two steps. The first
step increases the lateral probing load to the prescribed value with
no axial load applied. The second step applies the end shortening
(or the axial load) with the probe force held constant.

The relation between the probing force and the inward radial
deflection at the probe when the end shortening is zero is plotted
in dimensionless form in Fig. 1(b) for the shell defined above
for case A. The bending stiffness of the shell is D ¼ Et3=
½12ð1� �2Þ�. The specific probing force values used in Ref. [10]
in performing their buckling calculations are indicated on the
curve. To demonstrate concurrence in the two sets of computa-
tions, our calculations use the same values plus many additional
values. The main features of the simulations are presented in
Figs. 2 and 3. To recap, these simulations are performed assuming
clamped end conditions with prescribed end-shortening D and
overall rotation of the ends suppressed. The classical buckling
load and associated end shortening for the perfect shell (with
P ¼ 0) are

FC ¼
2pEt2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1� �2ð Þ
p and DC ¼

tLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� �2ð Þ

p
R

(2)

For the reference shell, these give FC ¼ 286:9� 103N ð64:49�
103 lbsÞ and DC ¼ 2:12 mm ð0:0834 inÞ. The end conditions
together with the joint modeled in the present simulations produce
some differences for the buckling values of the perfect shell from
these classical formulas. However, to avoid any ambiguities, the

normalizations F=FC and D=DC make use of Eq. (2) for the values
FC and DC in all the figures to follow. Both P and d ¼ w0, the
associated normal deflection at the probe due to P prior to applica-
tion of axial loading, will be used as measures of the amplitude of
the probing force imperfection.

As noted in the Introduction, four sets of boundary conditions
will be considered in this paper. In all four cases both ends of the
shell are welded to a rigid end-plate. The lower end-plate is held
fixed in all cases. The four conditions on the upper end plate are
as follows with the reference case being case A. To our knowl-
edge, all the recent published studies on probing force imperfec-
tions have employed case A, which can be regarded as the stiffest
of the four. In fact, the papers cited in the Introduction aimed at
developing a new approach to knockdown factors for cylindrical
shells have all adopted case A. While case A is certainly an
important set of end conditions, there are important applications
where the overall end rotation is not constrained. In fact, each of
the four conditions below can be encountered in applications.
Case A is the stiffest loading condition of the four while case D is
the most compliant.

Case A : prescribed D with no overall end rotation

Case B : prescribed D with no constraint on

overall upper end rotation

Case C : prescribed F with no overall end rotation

Case D : prescribed F with no constraint on

overall upper end rotation

9>>>>>>>>>=
>>>>>>>>>;

(3)

The results of simulations for the reference shell subject to case A
conditions are displayed in Figs. 2 and 3. As previously noted,
first the probing force P is applied resulting in the normal probe
displacement d. Then, with P unchanged, the end shortening is
increased producing changes in axial load F. Our numerical simu-
lations are in excellent agreement with those of Haynie et al. [10],
which have been included in Fig. 2. Figure 3, which also closely
reproduces a similar plot in Ref. [10], presents details of the load
versus end-shortening behavior and the associated development of
the probe-induced dimple buckle as a function of end shortening
for selected amplitudes of the probing force imperfection. The
results for the reference case in Figs. 2 and 3 provide the basis for
discussing the behavior associated with probing force imperfec-
tions that has emerged in the earlier publications (e.g., see Refs.
[5–7], [10], and [11]).

Fig. 2 Local and global buckling loads as a function of the amplitude of the probing force
imperfection for the reference shell subject to loading case A. The lower branch of the curves
is the local buckling load and the upper branch is the global buckling load. The plots include
the results of Haynie et al. [10]. (a) The results as F /FC versus PR/2pD. (b) The same results
as F /FC versus d/t . The local and global buckling behaviors defining the three zones are dis-
cussed in the text.
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For relatively small imperfection amplitudes (e.g., PR=ð2pDÞ
< 0:35 and d=t < 0:5), in the region denoted as zone 1, the shell
buckles globally when the axial load reaches the buckling load
plotted in Fig. 1. More precisely, the shell buckles dynamically
starting locally in the vicinity of the probe and then spreads
around the shell circumference leading to global buckling—in
effect, local and global buckling occur simultaneous. Global buck-
ling is accompanied by a large drop in load carrying capacity, as
seen in Fig. 3(a). The important point is that global buckling in
zone 1 is not preceded by stable local buckling. For somewhat
larger imperfection amplitudes in Fig. 2, in the region denoted by
zone 2, as the end shortening is increased, the first buckling event
is local buckling: the shell snaps dynamically to form a stable
local dimple with a relatively small drop in axial force, c.f.,
Fig. 3. Then, with further increases in end shortening, the axial
load increases to a load above the local buckling load where
global buckling occurs accompanied by a large load drop. The
overall axial stiffness of the shell in the range between the local
and global buckling events is only slightly reduced from the pre-
buckling stiffness. Zone 3 characterizes behavior for the larger
probing force imperfections. The only difference from the behav-
ior in zone 3 from that in zone 2 is that there is no dynamic local
buckling event. As seen in Fig. 3(b), the dimple at the probe grows
monotonically with no dynamic snapping in zone 3 but is other-
wise similar in its development to that in zone 2. Moreover, the
transition between the global buckling loads in the two zones is
smooth. In our view, the important distinction is between zone 1
and the other two zones; practically speaking, zones 2 and 3 can
be merged. The ambiguity in the precise boundary between zones
2 and 3 in Fig. 2 is reflected by the fact that the present calcula-
tions predict that zone 2 is more extensive than that identified in
Ref. [10] due to the larger number of imperfection values eval-
uated in the present study.

Local buckling in zones 2 and 3 involves significant buckling
deflections—5 to 20 times the shell thickness as seen in
Fig. 3(b)—and the accompanying stresses and strains associated
with the local mode must be taken into account if the shell is
expected to carry loads above the local buckling load. As has been
noted in a number of the earlier studies cited in the Introduction,
the global buckling load in zones 2 and 3 is nearly independent of
the probing force imperfection amplitude. There have been sug-
gestions that the minimum global buckling load may be the natu-
ral choice on which to base the knockdown factor, assuming local
buckling can be tolerated. Further insights will emerge when
results for the geometric dimple imperfection are presented.

The influence of the end conditions is seen in Fig. 4 where
results for the reference shell for each of the four cases in Eq. (3)

are plotted against the imperfection amplitude, PR=2pD, in
Fig. 4(a) and against the associated amplitude measure, d=t, in
Fig. 4(b). There is essentially no difference between case A and
case C. In other words, when the overall end rotation is suppressed
the loads corresponding to local and global buckling are essen-
tially the same for these two cases. This conclusion is not unex-
pected because the shell can still support increasing axial load
above the local buckling load as the end shortening is increased
and thus, prior to global buckling, prescribed axial force and pre-
scribed end-shortening coincide. Figure 4 shows that cases B and
D, with no constraint on overall upper end rotation, also have
essentially identical local and global buckling loads (for similar
reasons). However, while the local buckling load is only slightly
reduced from that of cases A and C in zones 2 and 3, the global
buckling load is significantly lower (by more than 20%) than the
corresponding load for cases A and C. Insight into the reason for
the differing effect of end rotation on local and global buckling is
provided by Fig. 3(b). In zone 1, when local and global buckling
are simultaneous, the normal deflection is only on the order of one
shell thickness at buckling. This is also true for the onset of local
buckling in zones 2 and 3. By contrast, in zones 2 and 3, the dim-
ple deflection can be as much as 20 times the shell thickness when
global buckling occurs. End rotation, if allowed, is much more
likely to influence behavior at the larger shell deflections than at
the smaller ones.

What is not evident in Fig. 4 is that in cases A and B
(prescribed end shortening), the shell snaps into a stable buckling
pattern encompassing the entire circumference at the global buck-
ling load, while in cases C and D (prescribed axial load), the shell
undergoes complete collapse at the global buckling load. In sum-
mary, the conclusion to be drawn from the four cases for the refer-
ence shell in Fig. 4 is that the effect of overall end rotation on
buckling behavior in zone 1 is relatively small (less than 10%)
and, similarly, it has a relatively small effect on local buckling
behavior in zones 2 and 3. However, allowing overall end rotation
significantly reduces the global buckling load in zones 2 and 3
(20% or more).

The effect of the shell length is illustrated in Fig. 5 where
results for the stiffest end conditions (case A) are presented in
Fig. 5(a) and for the most compliant conditions (case D) in Fig.
5(b). Other than the end conditions, the only difference among the
shells is L where the reference shell analyzed above has
L=R ¼ 3:44, the shortest shell has L=R ¼ 1:5 and the longest shell
has L=R ¼ 5. The shortest shell has the highest buckling loads,
but these results suggest that for shells with the length of the refer-
ence shell or somewhat longer, there is relatively little dependence
on length. A more extensive study of the effect of L=R for case A

Fig. 3 Further details of the behavior of the reference shell subject to case A conditions.
Representative curves of axial load versus end shortening are plotted for several levels of
probing force imperfection in (a). The associated curves of radial displacement at the probe
location versus end shortening are shown in (b). The behavior in the three zones is dis-
cussed in the text.
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has been given in Ref. [6] suggesting for even longer shells there
may be larger buckling load reductions.

2.1 The Quasi-Static Equilibrium Trajectory, Including
the Unstable Portions, and an Inconclusive Analysis of
Dynamic Snapping. The numerical method employed to obtain
the results described above used a form of artificial damping
(called automatic stabilization in ABAQUS) to pass through regions
of instability in which the shell undergoes dynamic snapping from
one stable equilibrium state to another. Alternatively, in a region
of instability, one can make use of the numerical method of Riks
[21] in ABAQUS, which identifies a variable that increases monot-
onically and interchanges its role with the actual load parameter
to generate the entire quasi-static equilibrium solution. An illus-
tration of this alternative calculation is presented in Fig. 6 where
it is compared to the results obtained using automatic stabiliza-
tion. The entire equilibrium trajectory generated using the Riks
method is more complicated involving excursions with end-
shortening reversals, but the important point for present purposes
seen in Fig. 6 is that the automatic stabilization procedure cor-
rectly captures the drop in load from one state to another associ-
ated with the unstable buckling event under prescribed end
shortening.

Another question that should be asked is whether the snapping
event that occurs at a point of instability might lead to dynamic
“overshoot” such that the local buckling event departs signifi-
cantly from the equilibrium curve obtained by the quasi-static
method and even triggers global buckling. If this were to occur, it
would seem most likely to take place under a prescribed axial
load. An investigation of this question requires a dynamic simula-
tion accounting for shell inertia. We have used ABAQUS Explicit to
preform selected calculations for end conditions case A and case
D assuming the shell material has the density of aluminum. The
rigid end-plates were considered to be massless and the prescribed
end shortening, or prescribed axial force, were increased linearly
at a slow rate such that prebuckling dynamic effects are very
small. The results of our simulations for the global buckling loads
for the reference shell were inconclusive and we recommend that
further dynamic simulations be carried out. Specifically, our
dynamic simulations have been unable to validate with any confi-
dence the quasi-static prediction of a regime where local snap
buckling leads to a stable dimple buckle followed by global buck-
ling at a higher axial load. The possibility that the dynamic local
buckling event triggers global buckling without an additional
increase of axial load has not yet been ruled out. It should be
noted however that the shells fabricated and tested by Haynie

Fig. 4 The roles of the four sets of boundary conditions on local (lower curves) and global
(upper curves) buckling of the reference shell. (a) Local and global buckling loads as a func-
tion of the probing force imperfection amplitude PR/2pD. (b) Local and global buckling loads
as a function of the probing force imperfection amplitude d/t . Cases A and C for which overall
upper end rotation is suppressed are essentially identical. Cases B and D for which overall
upper end rotation is unconstrained are also essentially identical. Overall end-rotation con-
straint has relatively little effect on local buckling but significantly effects global buckling in
zones 2 and 3.

Fig. 5 The influence of the shell length for the case of probing force imperfections for case
A in (a) and case D in (b). The parameters characterizing the three shells are the same as for
the reference shell except for their length L. The reference shell has L/R 5 3:44.
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et al. [10] behaved in accord with their finite element analyses
especially when a small amount of overall end rotation was taken
into account.

3 Experimental Study Probing an Axially Compressed

Cylinder With or Without End-Rotation Constraint

Here, we study experimentally the probing response of a
clamped shell tested under prescribed end shortening with no end
rotation (case A), and the same shell tested with end rotation
allowed (case B). The lateral probe employed in these experi-
ments is a nondestructive experimental device used to reveal the
landscape relevant to buckling [22]. The three shells tested in the
experimental programs had moderately large geometric imperfec-
tions acquired in the manufacturing process such that each
buckled at loads around 30% of the classical buckling load.

3.1 Experimental Setup. The experiments were conducted
with commercial aluminum cylindrical shells (empty coke
cans) of radius R¼ 28.6 mm, thickness t¼ 0.104 mm (radius-to-
thickness ratio R/t¼ 274) and a total height L¼ 107 mm. We use
a custom-made biaxial machine (ADMET Inc., Norwood, MA) to
accurately compress each shell and simultaneously probe them in
the midplane, as shown in Fig. 7(a). The vertical axis has a resolu-
tion of 20 lm in displacement and 0.1 N force with a maximum
force of 2200 N. A blunt probe is installed in the horizontal axis,
which also has a 20 lm displacement resolution. The probe tip is
a steel marble of diameter 4.7 mm. The probe force is measured
by an S-beam load cell with 5 mN resolution and a maximal load
of 100 N. The axes of the machine are analog-controlled with an
acquisition card NI DAQ USB-6001.

Two sets of boundary conditions in the experiments closely
approximate two of those considered in Sec. 2: case A, prescribed
end shortening with no overall end rotation; and case B, the same
shell tested with overall end rotation allowed. The difference
between case B and case A is the addition of a pair of 2 mm thick
steel plates at the top end of the shell, with a steel marble of diam-
eter 4.8 mm between the plates, as shown in Fig. 7(c). Small, shal-
low excavations at the center of each of the plates keep the marble
centered and allow the top end of the can to undergo overall rota-
tion. Three cans were tested with similar results to those described
below for one of the cans.

3.2 Probing of the Landscape of Stability of the Shell With
or Without End-Rotation Constraint. The shell is incrementally
compressed by steps of 10–20 lm in the axial direction. At each
step, the end shortening is held fixed and the horizontal probe is
advanced toward the shell at a constant speed 6 mm/min, as in
Fig. 7(a). The probing displacement d ranges from 0 to 1.5 mm.
For axial loads larger than 600 N, the probing is interrupted once a
maximum of the probing force–displacement curve is detected.
This prevents buckling events or plasticity triggered by the prob-
ing and thereby permits repeated probing of the shell [22]. For
similar reasons, axial loads larger than 1000 N were not imposed.

The range of axial load F covered by the procedure is approxi-
mately 400–1000 N, while the range of the measured probing
force P is almost three orders of magnitude smaller. The probing
technique reveals a landscape of stability, as shown in Fig. 8. Fol-
lowing [22], we call “ridge” and “valley” the trajectory of the
maxima and minima of probing force, respectively. The ridge and
the valley are, respectively, denoted by squares and circles in
Fig. 8. We also indicate the trajectory of the projection of the

Fig. 6 Full equilibrium solution generated using the Riks method compared to the results
using automatic stabilization. (a) Load versus end shortening and (b) normalized inward dis-
placement to the shell, wP /t , at the probe force location versus end shortening. Reference
shell with case A boundary conditions and PR/2pD 5 0:570.

Fig. 7 (a) Schematics of the experimental setup. (b) Prescribed end shortening with no end
rotation (case A). (c) Prescribed end shortening with end rotation allowed (case B). The rota-
tion is enabled by two steel plates with a steel marble located at the center of the top end of
the shell, as shown in the schematic on the right.
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ridge on the other face of the valley: in a load-controlled probing
experiment, the probe would jump suddenly from the ridge
(squares) to the projection of the ridge (triangles). This is of fun-
damental importance to understand the difference between local
and global buckling. As noted above, probing beyond the ridge
for axial loads of above about 600 N in Fig. 8 was not conducted
for fear of triggering buckling deflections so large that the shells
would be irreversible damaged.

In order to facilitate the interpretation of the probing data, the
two landscapes of Fig. 8 are projected onto the plane ðd=t;FÞ in
Figs. 9(a) and 9(b) and onto the plane ðF;PÞ in Figs. 9(c) and
9(d). As the probe displacement is changed from d=t ¼ 0 to d=t ¼
�20 in Fig. 9(a), the probe either crosses the valley of the land-
scape (456 N < F < 693 N: values are estimated by linear extrap-
olation), or do not reach any valley (F < 456 N or F > 693 N).
The three ranges (prevalley, valley, and postvalley) are marked in
Figs. 9(a) and 9(b) by vertical straight lines. A load-controlled

probe crossing the valley would jump from buckling deflections
in the range d=t ¼ 2� 10 to a value in the range d=t ¼ 10� 16,
depending on the precise value of F, consistent with the magni-
tude of the buckling jumps predicted in Fig. 3(b).

By comparing Figs. 9(a) and 9(b), one sees that the valley for
the shell with no constraint on upper end rotation is shifted to
lower values of axial loads by about 15%, from (456–693 N) to
(351–596 N). A similar drop in the axial loads associated with the
landscape ridge occurs. When the axial force (now on the vertical
axis) is plotted as a function of probing force in Figs. 9(c) and
9(d), the three regimes of the axial loads in the landscape (preval-
ley, valley, postvalley) dictate the types of buckling that can occur
analogous to those discussed in Fig. 4. The valley regime gives
rise to “local buckling” mapped in Figs. 9(c) and 9(d), with a dim-
ple buckle developing beyond the ridge as the shell is probed. At
axial loads below the valley regime, buckling due to probing does
not occur. At axial loads above the valley regime, global buckling

Fig. 8 (a) Landscape of stability of the shell without end rotation (case A). (b) Landscape of
the same shell with overall end rotation allowed (case B). The squares, circles and triangles
are, respectively, the ridge, valley, and projection of the ridge on the opposite face of the val-
ley. The gray area indicates the range of axial loads where a valley is found in the landscape
(values estimated by linear extrapolation).

Fig. 9 (a) Projection of the landscape of stability in the plane containing the probing dis-
placement with the axial force as the horizontal axis, case A. (b) The same for case B. (c) Pro-
jection in the plane containing the probing force with the axial force as the vertical axis, case
A. (d) The same for case B.
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will occur at some probe displacement beyond the ridge. The lines
demarking the three regimes and three zones in Fig. 9 are not nec-
essarily straight lines as has been sketched in the figure.

In summary, the experiments on this shell, which are represen-
tative of those of the other two shells tested, reveal that relaxing
the constraint on overall end rotation reduces the axial loads asso-
ciated with the ridge and valley of the buckling landscape by
roughly 15%, roughly consistent with what one would expect
from the results in Sec. 2. While it has not yet been possible to
measure the global axial buckling loads for the two cases by prob-
ing, we expect these reductions in axial load will be representative
of the buckling load reductions.

4 Elastic Buckling Behavior of Cylindrical Shells

Under Axial Compression in the Presence of Local

Geometric Dimple Imperfections

Given the apparent widespread agreement in the buckling com-
munity that highly correlated imperfection patterns covering the
entire shell are not realistic for cylindrical shells under axial com-
pression, there has been surprisingly little published work on
more realistic localized geometric dimple imperfections. An
important exception is the contribution of Wullschleger [19] in
Chap. 6 of his Ph.D. thesis, which is not otherwise published.
Wullschleger primarily considered the stiffest set of boundary
conditions, case A, but he also considered an alternative set of
conditions which will be mentioned later. The form of the geomet-
ric, stress-free dimple imperfection assumed in Ref. [19] has for
the initial normal inward deflection (in our notation)

wI x; yð Þ ¼
d
4

1þ cos
p x� x0ð Þ

‘x

� �� �
1þ cos

p y� y0ð Þ
‘y

� �� �
(4)

for jx� x0j � ‘x and jy� y0j � ‘y with wI ¼ 0 otherwise. The
coordinates ðx; yÞ run in the circumferential and axial directions,
respectively, with the imperfection centered at ðx0; y0Þ. The ampli-
tude of the dimple imperfection is d.

We begin by discussing results for the limit of an axisymmetric
dimple given by Eq. (4) with ‘x !1, i.e.,

wI x; yð Þ ¼
d
2

1þ cos
p y� y0ð Þ

‘y

� �� �
for jy� y0j � ‘y (5)

and wI ¼ 0 otherwise. Results for the axial buckling load for the
axisymmetric geometric dimple imperfection (5) have been pre-
sented in Ref. [19] and in 1971 by Hutchinson et al. [23] for
boundary conditions corresponding to case A with the imperfec-
tion located at the center of the shell. The two sets of predictions
are in close agreement. The 1971 paper compares the numerical
predictions with experiments on photoelastic epoxy spun-cast
cylindrical shells containing precisely machined dimple imperfec-
tions of the form (5). Two figures from the earlier paper are pre-
sented here in Fig. 10.

In Fig. 10(a), the axial half-wavelength of the machined dim-
ples and those in the simulations was taken to be ‘y ¼ 1:05‘C

where

‘C ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 1� �2ð Þ
p

s
(6)

is the half-wavelength of the classical axisymmetric buckling
mode of the cylindrical shell under axial compression. For an
imperfection amplitude fixed at d=t ¼ 0:363, Fig. 10(b) shows the
influence on the buckling load of the dimple half-wavelength, ‘y.
A dimple with ‘y ffi ‘C produces the near-minimum buckling load.
These figures include the prediction from an asymptotic formula
for this imperfection obtained by Amazigo and Budiansky [24].

Details of the calculations and the experiments are provided in
Ref. [23]. At the loads recorded in Fig. 10, the test shells buckled
globally with a significant drop in load carrying capacity, as
would be expected because the axisymmetric dimple triggers
buckles encircling the entire shell. For this imperfection, there is
no separation between global and local buckling.

The reader is referred to the thesis of Wullschleger [19] for his
thorough study of the buckling of cylindrical shells with the local-
ized dimple imperfection (4). That study examines the roles of the
two dimple wavelength parameters, ‘y and ‘x, and reveals the
existence of local buckling followed by global buckling at a
higher load similar to that which occurs for the probing force
imperfections. In what follows, we present the results of our own
study, which allows a direct comparison with results for the prob-
ing force imperfection in Sec. 2 and which emphasizes the role of
the four sets of boundary conditions (3). In the present work, a
slightly different dimple imperfection shape from that in Eq. (4) is
assumed

wIðx; yÞ ¼ d e�½ðx�x0Þ=‘̂x�2�½ðy�y0Þ=‘̂y�2 (7)

which is exponentially small well away from the imperfection

center at ðx0; y0Þ. For the axisymmetric imperfection (̂‘x !1),
this shape is approximately equivalent to that in Eq. (5) if

‘̂y ¼ 0:55‘y. In the simulations presented below, the same refer-
ence shell used for the probing force imperfection study will be
invoked, and the dimple imperfection center has been located at
the midpoint of the shell directly opposite the joint. Figure 11 pro-
vides a comparison of shapes of the dimple imperfection with that
of the probing force imperfection at the same value of imperfec-
tion amplitude d. Recall that for the probing force imperfection, d
is defined as the deflection due to the probe force prior to applica-
tion of the axial load.

Figure 12 presents a comparison of the buckling behavior of the
reference shell with the geometric dimple imperfection (4.4) (with

‘̂y ¼ 0:55‘C and ‘̂x=‘̂y ¼ 2) with the buckling behavior of the
same shell with the probing force imperfection. Comparisons for
each of the four end conditions have been determined, and a plot
using the normalized imperfection amplitude measure d=t is pre-
sented for both types of imperfections. There is a close parallel in
the behaviors for the two types of imperfections. Zone 1 exists for
both types in the regime of smaller imperfection amplitudes in
which local and global buckling occur simultaneously. Zone 2
exists in which local buckling precedes global buckling with an
appreciable gap in axial load between the two for cases A and C
end conditions. When overall end-rotation constraint is absent in
cases B and D, the axial load gap between local and global buck-
ling is smaller. A similar reduction in the spread between local
and global buckling was observed in Ref. [19] for boundary con-
ditions, referred to as CC3, which assumed a uniform axial result-
ant stress at the upper end of the shell, which also offers no
constraint on overall end rotation. Both imperfection types also
exhibit zone 3 behavior in which local snap buckling is replaced
by a more gradual growth of the nascent dimple buckle. An
important feature brought out by these comparisons is the near-
coincidence of the plateau load at which global buckling occurs
for the two types of imperfection—this near-coincidence holds for
each of the four end conditions. A geometric dimple imperfection
gives rise to the same drop in global buckling load due to the
relaxation in overall end-rotation constraint that occurs for the
probing force imperfection. Equally important is the fact that
the significant drop in global buckling load in zones 2 and 3 when
there is no constraint on overall end rotation occurs for both types
of imperfection. One also notes that local buckling is much less
affected by end-rotation constraint for both types of imperfec-
tions, including in zone 1 where the local and global buckling
loads are coincident.

There are, however, differences between the buckling predic-
tions for the two types of imperfection. The boundaries between
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zone 2 and zone 3 differ, but as discussed earlier, this is not likely
to be important. More significant is the fact that lower local buck-
ling loads are predicted for the probing force imperfections in the
range of “larger” imperfections with d=t > 0:5. Whether these

lower loads are realistic depends on whether probing force imper-
fections are representative of actual imperfections. In the range of
smaller imperfections, it is possible to define a correspondence
between the amplitudes of the two types of imperfections, but not
in the range of the larger imperfections. If the actual imperfection
is not due to a probing force but if, instead, a geometric dimple
imperfection is more realistic, then the prediction based on the
probing force imperfection will be significantly overly conserva-
tive when d=t > 0:5.

Figure 13 reveals further details of the correspondence in buck-
ling behavior for the two types of imperfections. This figure that
is plotted for case A end conditions can be compared with the ear-
lier plot for probing force imperfections in Fig. 3. The similarity
in nonlinear responses is striking, including the fact that for both
types of imperfections local buckling will generally involve lat-
eral deflections in the range from about 10–20 times the shell
thickness. If local buckling is to be tolerated, designs will neces-
sarily have to consider the stresses and strains associated with the
local buckles.

The effect of different axial widths of the dimple imperfection
on buckling is qualitatively similar to that seen in Fig. 10(b) for
the axisymmetric dimple imperfection. For a given ‘x the choice

Fig. 10 Comparison between buckling theory and experiments for cylindrical shells under
axial compression with an axisymmetric dimple imperfection (5) located at the shell midsec-
tion and subject to case A end conditions (adapted from Ref. [23]). (a) Global buckling load
as dependent on imperfection amplitude for ‘y 5 1:05‘C. (b) Global buckling load as depend-
ent on the dimple wavelength for a fixed imperfection amplitude, d/t 5 0:363. The calculations
were performed for a shell with R/t 5 200, L/R 5 2:8 and m 5 0:4, values very close to those
measured for the test specimens as discussed in the original paper.

Fig. 11 Shapes of the geometric dimple imperfection
(‘̂y 5 0:55‘C , ‘̂x /‘̂y 5 2) and the probing force imperfection at
the same imperfection amplitude d

Fig. 12 Local and global buckling for the reference cylindrical shell with the local dimple
imperfection (4.4) (‘̂y 5 0:55‘C and ‘̂x 5 2‘̂y ) compared with corresponding results from Sec.
2 for the probing force imperfections. Results for the four sets of end conditions (3) are pre-
sented: (a) Case A and C, which are nearly identical. (b) Case B and D, which are nearly
identical.
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‘̂y ¼ 0:55‘C gives the near-minimum local buckling load, and for
modest changes away from ‘̂y ¼ 0:55‘C there is very little change
in this buckling load. The global buckling load was also found to
be relatively insensitive to the shape and size for dimples
characterized by wavelengths not too different from ð‘̂x=‘̂y

¼ 2; ‘̂y ¼ 0:55‘CÞ . Additional studies on the influence of dimple
imperfection size and shape based on Eq. (4) are given in Ref.
[19].

The transition from the type of behavior seen in Figs. 12 and 13
to dimples whose circumferential length is sufficiently long that
the shells buckle at axial loads close to those for the axisymmetric
dimple imperfections is seen in Fig. 14. This figure reveals the
influence of the dimple imperfection aspect ratio ‘̂x=‘̂y on the
imperfection-sensitivity for imperfections with ‘̂y ¼ 0:55‘C for
the reference shell with case A end conditions. The curves record
the first buckling event as the end shortening is increased from
zero. For small imperfection amplitudes, there is very little
dependence on the aspect ratio of the dimple and the lowest buck-
ling load is nearly the same as that of the axisymmetric dimple
imperfection. However, as noted above, the dimples with the
smaller aspect ratio first undergo local buckling and then at a
higher load undergo global buckling. At larger imperfection

amplitudes, the aspect ratio of the imperfection has more influence
with the larger aspect ratios, e.g., ‘̂x=‘̂y > 4, giving rise to buck-
ling only slightly above the prediction for the axisymmetric dim-
ple imperfection. For the smaller aspect ratios, e.g., ‘̂x=‘̂y ¼ 2 and
3 in Fig. 14, the buckling load plateaus at a value of F=FC slightly
below 1/2 as the imperfections become large.

An early study by Berry and Rotter [18] investigated the transi-
tion from a local dimple imperfection to an axisymmetric dimple
imperfection for a shell with R=t ¼ 800 and found that the buck-
ling load of a shell with a dimple imperfection nearly coincided
with the axisymmetric limit when it reached a circumferential
extent of about 40 deg. The reference shell in Fig. 14 has
R=t ¼ 225. We have repeated the dimple imperfections calcula-
tions presented in Fig. 14 for two other shell thicknesses keeping
the radius unchanged, corresponding to shells with R=t ¼ 100 and
R=t ¼ 50, and scaling the dimple imperfection lengths consistent
with the thickness dependence of ‘C in Eq. (6). There is too little
difference between the dimple imperfection-sensitivity curves for
these two other R=t values from those in Fig. 14 to justify present-
ing them. The results in Fig. 14 are essentially independent of R=t,
to a good approximation. It should also be noted that the reference
shell on which the dimple results in Fig. 14 are based has the dou-
ble joint which raises the value of F=FC buckling load by a few
percent because the normalizing factor FC in Eq. (2) does not
account for the joint.

Koiter’s [16] imperfection-sensitivity curve for a sinusoidal
axisymmetric geometric imperfection covering the entire shell is
included in Fig. 14. (This shell has no joint.) The axial variation
of the radial displacement of the imperfection is
wIðyÞ ¼ d cosðpy=‘CÞ. Based on his general asymptotic theory,
Koiter [15] showed that this imperfection is the most degrading.
For amplitude d, the sinusoidal axisymmetric imperfection is gen-
erally regarded as the worst case imperfection. Koiter’s curve in
Fig. 14 is not an asymptotic analysis but instead is based on an
accurate solution for finite d. It is independent of R=t. Moreover,
Koiter’s load coincides with the onset of dynamic snap buckling
for values of F=FC greater than about 0.2 [25].

The imperfection-sensitivity curves in Fig. 14 appear to span
the range of buckling knockdowns envisioned in the current
efforts to revise the knockdown factors for unstiffened cylindrical
shells under axial compression. The knockdowns depend on the
imperfection amplitude, d, and on whether the imperfection is
local or wide-spread and highly correlated. The loads in Fig. 14
denote the first buckling event encountered as the axial load is
increased, whether it be local or global buckling. The ratio F=FC

for the first buckling event is essentially independent of R=t and
has very little dependence on L=R if the shell’s length is signifi-
cantly greater than the width of its two end boundary layers. As
has also been shown here, the first buckling event has a relatively
small dependence on which of the four end conditions considered

Fig. 13 Nonlinear buckling behavior for the reference cylindrical shell with the local dimple
imperfection (7) with ‘̂y 5 0:55‘C and ‘̂x 5 2‘̂y subject to case A end conditions

Fig. 14 Buckling imperfection-sensitivity curves for geometric
dimple imperfections compared to Koiter’s [16] worst case
imperfection, the axisymmetric sinusoidal imperfection with
m 5 0:3. The lowest buckling loads are plotted for localized dim-
ple imperfections (7) having aspect ratios ranging from
‘̂x /‘̂y 5 2 to ‘ (the axisymmetric limit). For all the dimple imper-
fections, ‘̂y 5 0:55‘C . The curves for the dimple imperfections
have been computed for the reference shell but they are essen-
tially independent of R/t. Koiter’s curve is independent of R/t .
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here apply—never more than about a 10% difference between the
stiffest end conditions, case A, and the most compliant, case D.
We return to the implications of Fig. 14 in the final discussion in
Sec. 6.

5 The Buckling of Spherical Shells Under External

Pressure in the Presence of Geometric Dimple

Imperfections or Probing Force Imperfections:

Comparison With the Behavior of Cylindrical Shells

Under Axial Compression

This section draws from recent work [26–28] on the imperfec-
tion sensitivity of spherical shells and reports results for the same
two types of imperfections considered for the cylindrical shells:
geometric dimple imperfections and probing force imperfections.
The results are for full spheres with either identical geometric
dimple imperfections at the upper and lower poles or with equal
and opposite probing forces applied at the poles. The shells are
assumed to deform axisymmetrically with symmetry about the
equator. Had the shells been taken to be hemispherical with
clamped conditions at the equator, essentially identical results to
those reported below would have been obtained because the inter-
action between the buckle at the pole and the equator is extremely
weak. It will be seen that the behavior of the spherical shells is
quite different from that reported for cylindrical shells under axial
compression in several important respects. The differences in the
behaviors serve notice that any protocol for establishing knock-
down factors will have to depend on the specific shell/loading
combination. Furthermore, further evidence will emerge suggest-
ing that a probing force may not be an effective surrogate
imperfection.

For the probing force imperfection, equal and opposite normal
pole forces, P, are first applied to the shell prior to application of
external pressure p. The response with p ¼ 0 is presented in
Fig. 15. In what follows, we will use PR=ð2pDÞ and
d=t � w0

pole=t, as convenient, for measures of the amplitude of
probe force imperfection where w0

pole is the inward deflection at
the pole due to P with p ¼ 0.

With the probing force P held constant, the external pressure p
is increased until the shell buckles. For spherical shells deforming
axisymmetrically, overall rotation is not an issue, but the distinc-
tion between prescribe volume change or prescribe pressure is
important, as will be seen. Prescribed volume change can be
achieved in the laboratory by filling the shell with a fluid that is
effectively incompressible and then withdrawing the fluid in a
controlled manner thereby inducing a net external pressure. Pre-
scribed volume change is also referred to as rigid pressure load-
ing. At the other extreme is the most compliant loading wherein
the loading system maintains a prescribed pressure independent of
the shell deformation. The two loading conditions are analogous,
but not fully comparable, to prescribed end shortening and pre-
scribed axial force for cylindrical shells. The nonlinear buckling
behavior of spherical shells for the two limiting cases of pre-
scribed pressure and prescribe volume change will be presented.
The numerical method employed for solving the nonlinear axi-
symmetric shell problem is the same as that used in Refs. [26–28].
For the probing force imperfections, the results have been com-
puted for geometrically perfect spherical shells.

For both prescribed pressure and prescribed volume change, the
inward pole deflection increases monotonically as the shell
deforms and buckles. The calculations were carried out by pre-
scribing increments of pole deflection and computing the corre-
sponding increments of p or volume change DV—effectively a
Riks method with pole deflection as the monotonically changing
“load parameter.” Curves of the pressure as a function of pole
deflection are plotted in Fig. 16(a) for various levels of probing
force imperfection for the case in which the shell volume is
unconstrained. The companion curves for the variation of the vol-
ume change are plotted in Fig. 16(b). In Fig. 16, Dwpole ¼

wpole � w0
pole is the additional inward pole deflection associated

with application of p. The classical buckling pressure and associ-
ated volume change for the full perfect sphere with P ¼ 0 are

pC ¼
2 t=Rð Þ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 1� �2ð Þ

p and DVC ¼
4p 1� �ð ÞR2tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1� �2ð Þ
p (8)

The behavior as predicted by the curves in Fig. 16 will first be dis-
cussed for prescribed pressure and then for prescribed volume
change.

For prescribed pressure, the loading system applies the pres-
sure in such a way that even if the shell buckles the pressure is
maintained constant. The volume of the shell is unconstrained and
changes according to Fig. 16(b). It is obvious from Fig. 16(a) that
under prescribed pressure, for any of the curves for the probing
force imperfections plotted, the shell undergoes complete collapse
when the pressure reaches the maximum pressure pmax. The spher-
ical shell collapses until the opposite poles make contact [26]—in
other words, when pmax is attained the shell snap buckles and is
“smashed.” The relation between the maximum pressure and the
probing force imperfection amplitude is plotted in Fig. 17(a). It is
important to the discussion later related to prescribed volume
change that it is understood that buckling under prescribed pres-
sure in Fig. 17 is associated with complete collapse of the shell.

Included in Fig. 17(a) is the curve for the normalized buckling
pressure, pmax=pC, associated with a geometric dimple imperfec-
tion at the poles whose initial, stress-free shape is given by the
inward radial deflection

wI ¼ de� b=bIð Þ2 with bI ¼ B

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t=Rffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

s
(9)

Here, d is the amplitude of the geometric dimple imperfection, b
is the angle measured from the pole and B is a value on the order
of unity for the most deleterious imperfections (see Refs. [26] and
[27] for details on the dependence on B and the fact that bI in Eq.
(9) ensures that pmax=pC is independent of R=t). The trends for the
geometric and probe force imperfections are qualitatively similar,

Fig. 15 Dimensionless relation between the pole probing
force, P , and the inward deflection at the pole, d 5 w0

pole, com-
puted with p 5 0 for R/t 5 200 and m 5 0:3. Over the range plotted
the curve would be essentially identical had it been computed
under a constraint of no volume change. These results are inde-
pendent of R/t but they do depend on m.
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although differences are evident in the range of larger imperfec-
tions. As for the probing force imperfection, under prescribed
pressure the shell with the geometric dimple imperfection under-
goes snap buckling and complete collapse when pmax is attained.
A comparison of the theoretical imperfection-sensitivity predic-
tion for the dimple imperfection minimized over B with experi-
ments on elastomeric hemi-spherical shells clamped at the equator
is presented in Fig. 17(b) taken from Ref. [27]. The shells in the
experiments had precisely manufactured dimple imperfections
represented by Eq. (9) with amplitude d. Further details of the
experimental and theoretical imperfection-sensitivity studies are
presented by Lee et al. [27].

Now, consider external pressure applied by prescribing the
reduction in volume of the spherical shell following the imposition
of the probing force imperfection P. In this case, DV in Fig. 16(b)
is increased until the first local peak, DVmax, is attained, assuming
a local peak exists. At this point the shell becomes unstable and
undergoes snap buckling, maintaining constant DV, to the stable
buckled state on the right hand side of the curve at DV ¼ DVmax

in Fig. 16(b). To an excellent approximation, the maximum

pressure and volume change for a given level of imperfection sat-
isfy DVmax=DVC ffi pmax=pC, whether the loading is prescribed
pressure or prescribed volume change, simply because these peak
values are attained at very small deflections, i.e., Dwpole=t � 1 in
Fig. 16. Thus, with one caveat mentioned shortly, there is very lit-
tle difference between the two limiting loading conditions, pre-
scribed pressure and prescribed volume change, on the maximum
pressure the shell can support prior to buckling. The results for the
buckling pressure for both geometric and probing force imperfec-
tions in Fig. 17 apply equally well to the two limiting loading con-
ditions except for larger imperfections, as will be discussed. The
near-simultaneity of the peak buckling pressure under the most
rigid and most compliant loading conditions has been known for
many decades.

There is, however, a dramatic difference in the post-buckling
behavior for the two loading cases [28]. As emphasized earlier,
under prescribed pressure, the shell collapses completely when
pmax is attained. By contrast, under prescribe volume change, the
shell snaps to a state with a stable dimple buckle. The pole deflec-
tion of the buckle lies in the range 10 < Dwpole=t < 20, depending

Fig. 16 Nonlinear response of the spherical shell with P held fixed with subsequent appli-
cation of external pressure p for six levels of surrogate probing force imperfections charac-
terized by (d/t ;PR/2pD). (a) p/pC versus pole deflection Dw0

pole/t . (b) normalized volume

change DV /DVC versus Dw0
pole/t . The results can be used to generate behavior for both pre-

scribed pressure and prescribed volume change, as will be discussed in the text. These
have been computed with R/t 5 200 and m 5 0:3, but the results in (a) are independent of R/t .
The results in (b) have some dependence on R/t .

Fig. 17 (a) Buckling imperfection-sensitivity for special shells under prescribed external
pressure for both probing force imperfections and geometric dimple imperfections with
B 5 1:5. These theoretical curves have been computed with R/t 5 200 and m 5 0:3 but they are
essentially independent of R/t . (b) Imperfection-sensitivity prediction for geometric dimple
imperfections minimized over B and comparison with the experiments on clamped hemi-
spherical shells with precisely manufactured dimple imperfections of Lee et al. [27].
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on the level of imperfection, as can be inferred from Fig. 17(b).
The pressure, pbuckled, in the stable buckling state at the corre-
sponding value of Dwpole=t can be read off Fig. 17(a). Plots of
pmax and pbuckled as a function of the probing force imperfection
amplitude are presented in Fig. 18 for the case of prescribed vol-
ume change. As already noted, the curve for pmax=pC versus d=t in
Fig. 18 is essentially identical to that in Fig. 17 for prescribed
pressure, except that for d=t greater than about 0.7–0.8, depending
on R=t, there is no pressure peak under prescribed volume change,
as illustrated for the largest imperfection in Fig. 16(b). For d=t
outside the range in which a peak pressure exists, DV increases
monotonically as buckling progresses. The limit of d=t at which a
peak pressure ceases to exist is indicated by the solid dot in
Fig. 18.

The behavior of the spherical shell with either a probe force
imperfection or a geometric imperfection revealed in Figs. 17 and
18 is very different from the corresponding behavior of the cylin-
drical shell under axial compression. For spherical shells subject
to prescribed pressure, there is no distinction between local and
global buckling—the shell undergoes complete collapse when the
first peak in the pressure is attained. By contrast, the cylindrical
shell under prescribed axial load with either type of imperfection
first buckles locally into a stable dimple buckle (zone 2) or gradu-
ally develops a local buckle (zone 3). Then at a higher load, the
shell undergoes global buckling load and complete collapse. As
seen in Fig. 17(a), the probing force imperfection mimics the geo-
metric dimple imperfection to some extent but, similar to what
was noted for the cylindrical shell under axial compression, it pro-
duces more severe buckling pressure reductions than those for the
dimple imperfection. For spherical shells with probing force
imperfections subject to prescribed volume change, the shell snap
buckles into a state with a stable dimple buckle when the peak
pressure is attained, but the pressure the shell can support is much
lower than the peak pressure, as seen in Fig. 18, and never recov-
ers. Even though the buckling is local, it coincides with the maxi-
mum pressure the shell can support. Similar behavior occurs for
the geometric dimple imperfection under prescribed volume

change. The behavior of the cylindrical shell wherein global buck-
ling follows local buckling at a higher load does not occur for the
spherical shell even under the most rigid loading conditions.
Thus, one conclusion to be drawn from this comparison is that
code revisions leading to less conservative knockdowns for cylin-
drical shells under axial compression will not necessarily carry
over to spherical shells under external pressure. A second conclu-
sion is that it appears the only way to achieve less conservative
knockdowns for unstiffened spherical shells under external pres-
sure is to reduce the level of imperfection. The 1969 recommenda-
tion in NASA SP-8032 [29] of a knockdown factor somewhat
below j ¼ 0:2 independent of R=t for pressure-loaded full spheri-
cal shells and hemi-spherical shells clamped at the equator is con-
sistent with the existence of dimple imperfections with amplitudes
on the order of a shell thickness or more, as seen in Fig. 17. If less
conservative knockdown factors are desired, the shells will have
to be manufactured with imperfection amplitudes below one shell
thickness.

6 Conclusions and Potential Lessons Related to

Establishing Knockdown Factors

The major findings from this study and their implications for
estimating buckling knockdowns of imperfection-sensitive shell
structures are enumerated below. The conclusions are based on
results obtained in the present paper and in the recent research of
others cited above, e.g., see Refs. [3] and [9], for cylindrical shells
under axial compression and spherical shells under external pres-
sure, but the insights are likely to be relevant to other shell/load-
ing combinations.

(i) The buckling behavior of a cylindrical shell under axial
compression with a probing force imperfection is similar
in many respects to the behavior of the shell with a geo-
metric dimple imperfection. For sufficiently small imper-
fections, local and global buckling occur simultaneously
and the roles of the two types of imperfections are similar.
For larger imperfections, local buckling occurs first as the
load is increased followed by global buckling at a higher
load. The global buckling load is relatively independent of
the imperfection amplitude and nearly the same for the
two types of imperfection. The local buckling load pre-
dicted for a probing force imperfection can be appreciably
lower than that for a geometric dimple imperfection rais-
ing doubts that the probing force can serve as a surrogate
imperfection for the geometric dimple imperfection.

(ii) The global buckling load of the cylindrical shell under axial
compression is sensitive to the end conditions. For shells
that are clamped to rigid end-plates, the global buckling
load is significantly lower if one end of the shell can
undergo overall rotation relative to the other as opposed to
conditions which constrain overall end rotation. Otherwise,
the global buckling loads for prescribed axial load and pre-
scribed end shortening are nearly the same, although the
global post-buckling behavior of the two cases can be dra-
matically different. The fact that end-rotation constraint has
a relatively small effect on local buckling but a large effect
on global buckling is due to the fact that the latter occurs at
significantly larger buckling deflections. Apart from the con-
sideration of overall end rotation, this paper has not exam-
ined the effect of weak boundary support on reducing
buckling loads, which has been addressed by Calladine [30].

(iii) Figure 14 provides the imperfection sensitivity of axial buck-
ling for cylindrical shells with dimple imperfections and
draws a comparison with Koiter’s worse case imperfection-
sensitivity result for an axisymmetric sinusoidal imperfection
covering the entire shell. We believe these results span the
range of knockdowns that can be expected for unstiffened
cylindrical shells as dependent on imperfection amplitude.
The results for the first buckling load encountered in the load-
ing history in Fig. 14 are nearly independent of R=t, L=R and

Fig. 18 The maximum pressure prior to buckling, pmax , and
the pressure in the stable dimple buckled state, pbuckled, as a
function of the probing force imperfection amplitude, d/t
( 5 w0

pole/t) for prescribed volume change. These results have
been computed with m 5 0:3. The curve for pmax is essentially
independent of R/t. Curves for three values of R/t are shown
for the pressure in the buckled state. The solid dot indicates the
largest value of the imperfection for which snap buckling
occurs under prescribed volume change for the specific value
of R/t.
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the four sets of end conditions considered in this paper. Given
their relevance, more effort is necessary to fully characterize
the effects of dimple imperfections and to gain better under-
standing of when interaction between dimple imperfections
becomes important.

(iv) The use of a probing force in an experimental setting to non-
destructively explore the stability of an imperfect cylindrical
shell under axial compression has been demonstrated. For
this purpose, the probe force is not regarded as an imperfec-
tion but rather as a tool to probe the shell’s stability land-
scape. A shell subject to prescribed end shortening was
evaluated first subject to no overall end rotation. Then, the
same shell was evaluated subject to unconstrained overall
end rotation, illustrating that unconstrained end rotation low-
ers the loads relevant to stability. More work is necessary to
develop the technique to the point where it can be used as a
nondestructive method to measure the buckling load.

(v) The nonlinear buckling behavior of spherical shells under
external pressure differs in several important respects from
that of cylindrical shells under axial compression—so
much so that the common practice of past decades in
which the knockdown factor for the cylindrical shell is
applied to the spherical shell will be difficult to justify if
less conservative factors emerge for the cylindrical shell.
Whether the imperfection is a probing force or a geometric
dimple, the spherical shell undergoes catastrophic collapse
at the first buckling pressure if loaded by prescribed pres-
sure. Under prescribed volume change, the spherical shell
snaps to a stable dimple buckle for both types of imperfec-
tions. The pressure the buckled shell can support is greatly
reduced and never recovers. For the spherical shell under
external pressure, the initial buckling pressure is the maxi-
mum pressure the shell can support. As in the case of the
cylindrical shell, the probing force imperfection gives rise
to lower buckling loads than the geometric dimple, and the
results in this paper undercut the idea that the probing
force imperfection can be taken as a surrogate for a geo-
metric dimple imperfection. As emphasized in Sec. 5, the
primary prospect for arriving at less conservative knock-
downs for unstiffened spherical shells under external pres-
sure is to ensure the level of imperfection is reduced.

We close this paper by reasserting a view held by many that the
type of imperfection invoked to compute buckling knockdowns of
imperfection-sensitive structures should be as close as possible to
the actual imperfection. This will often require measuring and
modeling imperfections associated with a particular manufactur-
ing process and, as many have pointed out, this task can be prob-
lematic for structures in the design stage. The computational
analysis required in this process may be extensive if less conserva-
tive knockdowns are sought, but for sophisticated shell structures
such as those employed in the aerospace industry the process is
certainly well worth undertaking. Industries where there is less
willingness to make the investment to characterize and limit
imperfections and to carry out more extensive computations will
most likely have to live with more conservative knockdowns.
Finally, we have to record that we are somewhat skeptical of the
argument that adopting a probing force imperfection as a surro-
gate imperfection significantly reduces the computational costs of
establishing buckling knockdowns, both because this type of
imperfection may not be sufficiently realistic, as has been noted,
and because analyzing more realistic types of imperfections may
not be as daunting a task as is sometimes portrayed.
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