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a b s t r a c t 

This paper presents an asymptotically rigorous one-dimensional analytical formulation ca- 

pable of accurately capturing the stress and strain distributions that develop within the 

evolving neck of bars and sheets of rate-dependent materials stretched in tension. The 

work is an extension of an earlier study by the authors on necking instabilities in rate- 

independent materials. The one-dimensional model accounts for the gradients of the stress 

and strain that develop as the necking instability grows. Material strain-rate dependence 

has a significant influence on the strain that can be imposed on a bar or sheet before 

necking becomes pronounced. The formulation in this paper enables a quantitative assess- 

ment of the interplay in necking retardation due to rate-dependence and that due to the 

development of hydrostatic tension in the neck. The connection with a much simpler long- 

wavelength approximation which does not account for curvature induced hydrostatic ten- 

sion in the neck is also emphasized and extended. 

© 2018 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

The ability to analyze necking instabilities is central to a number of technologies. To extract stress-strain data from a

tensile test of a round bar beyond the onset of necking, one must account for the non-uniform stress distribution that de-

velops in the neck. In the shape forming of ductile sheet metals, the sheet must be stretched without incurring pronounced

necking. For sufficiently ductile materials for which fracture does not precede necking, the forming limit diagrams for sheet

materials display the maximum allowable in-plane stretching strains such that necking localizations remain within accept-

able limits. Material strain-rate dependence is well known to play an important role in necking. For positive strain-rate

hardening, which will be the focus in this paper, the rate-dependence can significantly increase the strain achievable prior

to unacceptable necking localization. Raising the temperature of a metal can increase its rate-dependence and hot metal

forming is a well-known means of enhancing the allowable stretching limits of bars and sheets. An extreme example is

glass at elevated temperatures when its rate-dependence becomes nearly linearly viscous and a bar of the material can be

stretched almost indefinitely. Rate-dependence is also frequently introduced into elastic-plastic constitutive models in finite

element codes for computational reasons rather than physical fidelity and a quantitative knowledge of how this artificial

rate-dependence presence affects stability phenomena is essential. 
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Fig. 1. Analysis of a bar based on the long-wavelength approximation undeformed and deformed configurations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The role of a positive material strain-rate dependence on retarding necking is intuitive. As the deformation begins to lo-

calize in a neck the strain-rate increases relative to the strain-rate outside the neck and this produces an additional increase

of stress relative to that outside the neck. This relative local increase of stress slows the deformation in the neck relative to

that outside the neck. Strain-rate hardening not only retards the grow of the neck, it also tends to spread the non-uniformity

and counter localization. The strong effect of material strain-rate dependence on neck retardation will be apparent in this

paper. 

The effect of the non-uniform stress distribution in the neck on neck retardation is more subtle. Bridgman (1952) ana-

lyzed the stress distribution and showed that a substantial hydrostatic tension develops in the neck such that the average

tensile stress supporting the load at the neck is not uniaxial but is made up of an effective stress component tied to the

plastic deformation plus a contribution from hydrostatic tension. The effective Mises stress averaged across the cross-section

at the center of the neck, σ e , is reduced below the force per area at the neck, σ , thereby reducing the deformation below

what would be expected for a uniform bar of the same cross-sectional area. For a round bar undergoing tensile stretch-

ing, the one-dimensional model developed by Audoly and Hutchinson (2016) for rate-independent materials includes the

Bridgman effect via the ratio of the true effective stress averaged across the center of the neck to the true stress average as

σe 

σ
= 

1 

1 + 

r 
4 c 

(1.1) 

where r is the current radius of the neck at its center and c is the radius of curvature of the neck in the current state at the

same location given by 1 
c = 

d 2 r 
d x 2 

. 

The present paper extends the one-dimensional (1D) model developed by Audoly and Hutchinson (2016) to rate-

dependent materials, and applies the model to necking in round bars subject to tension and to necking in thin sheet

materials. The 1D model rigorously captures the lowest order influence of the non-uniformity that develops in otherwise

uniformly stretched bars and sheets of rate-dependent materials. As such, it includes both the influence of the material

rate-dependence and the Bridgman effect on necking localizations. Earlier work on necking in rate-dependent materials by

Marciniak et al. (1973) , Ghosh (1977) , Hutchinson and Neale (1977) , and Hutchinson et al. (1978a) has been based on a

long-wavelength approximation which does not account for the Bridgman effect. Section 2 introduces the long-wavelength

approximation and provides some earlier results based on this approximation as a background to the present study. The

analysis leading to the 1D gradient model is given in Appendix B and in Appendix D , but a brief synopsis of the formulation

for round bars and stretched sheets is given in Section 3 , followed in Section 4 by its application to neck development for a

class of rate-dependent materials. Section 5 presents a parallel treatment of necking in rate-dependent sheets. Conclusions

are summarized in Section 6 . 

2. Summary of the long-wavelength approximation and results for round bars in tension 

The long wavelength approximation for a round bar subject to tension assumes that the stress state at every cross-section

in the bar is uniaxial tension σ with no variation across the radius, accompanied by a strain-rate that is uniform across the

cross-section. The connection between the true stresses, σ A and σ B , and cross-sectional areas, A A and A B , in the current

state at any two cross-sections, A and B , is 

σA A A = σB A B = P (2.1) 

where P is the tensile force carried by the bar, see Fig. 1 . 

For rate-dependent materials necking only occurs if there is some initial non-uniformity. Departure from uniformity in

the form of a bifurcation can occur for rate-independent materials but not rate-dependent materials. For the case of an

initial variation of the cross-sectional area along the bar we will consistently identify A 

i 
B 

with the greatest initial area. With

X as the axial coordinate along the center of the bar identifying material points in the undeformed state, the variation of

the initial cross-sectional area is taken to be 

A 

i (X ) = A 

i 
B f (X ) . (2.2) 
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Fig. 2. Behavior as predicted by the long-wavelength approximation. (a) With A at the center of the neck and B at the thick end of the bar, the strain ratio, 

ε A / ε B , is plotted as a function of εB / N for N = 0 . 1 and several strain-rate indices m , including the rate-independent limit m = 0 . The initial imperfection 

is (2.3) with η = 0 . 005 . (b) The normalized necking retardation, 
(
ε c 

B 
(m ) − ε c 

B 
(0) 

)
/ 
√ 

N , at the necking limit due to material rate-dependence. Derived from 

figures in Hutchinson and Neale (1977) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A specific initial imperfection taken for some of the numerical examples is 

f (X ) = 1 − η
1 + cos πX 

L 

2 

, (2.3)

where η > 0 is the imperfection amplitude measuring the fractional reduction in initial cross-sectional area at the minimum

section and L is the initial half-length of the bar. The maximum cross-sectional area, A 

i 
B 
, is at X = ±L and the minimum, A 

i 
A 
,

is at X = 0 with A 

i 
A 

= A 

i 
B 
(1 − η) . For this choice, the bar is symmetric with initial length 2 L . The neck will develop at the

center of the bar at X = 0 . 

The uniaxial rate-dependent constitutive law employed in this study will be 

σ = σR ε 
N ( ̇ ε / ̇ ε R ) 

m 

, or σ = Kε N ˙ ε m with K = σR / ˙ ε R 
m 

. (2.4)

where σ is the true stress, ε is the logarithmic strain and ˙ ε its time rate. The strain hardening index is N , the strain-rate

hardening index is m with σ R and ˙ ε R as the reference stress and strain-rate, respectively. The material is assumed to be

incompressible and elastic strains are neglected. 

Under the assumptions stated above for the long wavelength approximation and under the assumption of incompress-

ibility, the cross-sectional area at any section is related to the current strain ε at that section by A = A 

i e −ε . Consequently,

the long wavelength approximation governing the strain-rate distribution for round bars of the material (2.4) can be written

in terms of the strain-rate at section B as 

e −ε/m ε N/m ˙ ε = f (X ) −1 /m e −ε B /m ε B 
N/m ˙ ε B , (2.5)

where ε and ˙ ε denote the strain and strain-rate at a generic cross-section having coordinate X . The lack of any dependence

of this governing equation on K or the reference stress and reference strain-rate is a consequence of the homogeneous

dependence of the constitutive model (2.4) on the strain and strain-rate. While the necking strains depend strongly on the

material index of rate-dependence m , they are independent of the reference strain-rate ˙ ε R , the reference stress σ R and the

overall rate of straining of the specimen. With L def as the half-length of the deformed bar, the elongation of the bar in the

long wavelength approximation is 

L def − L 

L 
= 

1 

L 

∫ L 

0 

(e −ε(X ) − 1)d X. (2.6)

For reference it is useful to begin by presenting results from Hutchinson and Neale (1977) for the long wavelength ap-

proximation in the limit of rate-independent power-law materials m → 0 for which (2.5) becomes e −ε/N ε = f (X ) −1 /N e −ε B /N ε B .
Denote the strain at the center of the incipient neck at X = 0 by εA . As illustrated in Fig. 2 a for the curve with m = 0 , the ra-

tio ε A / ε B attains a vertical slope such that d ε A / d ε B = ˙ ε A / ̇ ε B = ∞ . With this condition identified as the critical necking event,

denote the associated strain at B by ε c 
B 

. This strain is representative of the strain attainable outside the neck. It satisfies (
ε c 

B 

N 

− 1 

)
ln 

ε c 
B 

N 

= − 1 

N 

ln (1 − η) . (2.7)

For sufficiently small imperfections ε c 
B 

is given by the asymptotic formula 

ε c 
B 

N 

≈ 1 −
√ 

2 η

N 

(2.8)
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Fig. 3. Neck retardation due to material rate-dependence predicted using the long wavelength approximation for two tensile constitutive models, 

(2.4) and (2.13) . The results for model (2.4) are independent of the imposed strain-rate, whereas those for model (2.13) have the relatively weak de- 

pendence on the imposed rate shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

which agrees with the well-known result attributed to Considère in the limit of initially uniform bars, η = 0 and ε c 
B 

= N.

The square-root in the right-hand side reflects the strong imperfection-sensitivity of necking. 

For the rate-dependent material, the relation between ε c 
A 

and ε c 
B 

from (2.5) is ∫ ε A 

0 

e −ε/m ε N/m d ε = (1 − η) −1 /m 

∫ ε B 

0 

e −ε/m ε N/m d ε. (2.9) 

As seen in Fig. 2 a, ε A /ε B → ∞ at a finite εB if m > 0. Denoting this value by ε c 
B 
(m ) , Hutchinson and Neale (1977) have

presented both numerical results and asymptotic formulas for the strain at necking. The large necking retardation due to

material rate-dependence is captured by the difference, ε c 
B 
(m ) − ε c 

B 
(0) , between the necking strain with m > 0 and that

with m = 0 , which is plotted for a wide range of the relevant parameters in Fig. 2 b. These results for N = 0 . 1 and 0.4 were

computed numerically using (2.9) . The normalization of the retardation by 
√ 

N in Fig. 2 b was suggested by the asymptotic

formula valid for very small m : 

ε c 
B 
(m ) − ε c 

B 
(0) √ 

N 

≈ m 

2 

√ 

2 η
ln 

4 πη

m 

. (2.10) 

As is evident in Fig. 2 , neck retardation due to rate-dependence is substantial. Even for m as small as 0.001, neck retardation

is non-negligible. 

It is worth recording that for N = 0 the strain and stretch at B associated with ˙ ε A / ̇ ε B → ∞ according to the long wave-

length approximation can be obtained analytically as 

ε c B (m ) = −m ln (1 − (1 − η) 1 /m ) and λc 
B (m ) = e ε 

c 
B = (1 − (1 − η) 1 /m ) −m (2.11)

Furthermore, the associated distribution and average stretch at necking are 

λc (X ) = 

(
1 −

(
f (0) 
f (X ) 

)1 /m 

)−m 

λc 
ave = 

∫ 1 
0 

(
1 −

(
1 −η

1 − η
2 (1+ cos πz) 

)1 /m 

)−m 

d z 
(2.12) 

where the average stretch at necking according to this model with imperfection shape (2.3) is seen to be independent of L . 

Another tensile constitutive model considered by Ghosh (1977) for rate-dependent materials is 

σ = σR ×
(

ε N + m ln 

˙ ε 

˙ ε R 

)
(2.13) 

This relation is not homogeneous in the strain-rate and, thus, the ratio of the imposed strain rate to the reference strain-

rate ˙ ε R does play a role. The equation governing the long wavelength approximation for this relation is given by Hutchinson

and Neale (1977) and their numerical analysis of neck retardation produced the comparison for the two constitutive models

shown in Fig. 3 . For relatively small changes in the imposed strain-rate, i.e., ˙ ε B / ̇ ε R increasing from 1 to 4 in Fig. 3 , the change

in necking strain is relatively small and the predictions are similar to those from the pure-power constitutive model. 

The homogeneous nature of the constitutive model (2.4) and the consequent independence of the relevant predictions

for necking strains and elongation on the imposed strain-rate make the pure-power law model attractive for the present

study, and henceforth we will employ (2.4) . It can be mentioned in passing that the widely used tensile constitutive model

by Johnson and Cook (1985) for behavior in the range of high strain-rates incorporates the same functional dependence on

the strain-rate as that in (2.13) . That law is often applied to dynamic problems in which very large strain-rates occur. The

present necking study does not take into account inertial effects or nor does it address material models applicable at very

high strain-rates, although we believe further extension of the 1D reduction has promise for such applications. 
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3. Quick presentation of the one-dimensional model 

In this section, we present a summary of the 1D model governing necking of a bar ( Section 3.2 ) or a sheet ( Section 3.3 )

of a rate-dependent material, as derived by dimension reduction in Appendix B and Appendix D . 

3.1. Three-dimensional visco-plastic model (flow theory) 

The starting point of the dimension reduction for a bar or a sheet is a 3D visco-plastic model, which is formulated as

follows. In terms of the Eulerian strain rate ˙ ε , the equivalent (viscoplastic) strain rate reads 

˙ ε e = 

√ 

2 
3 
‖ ̇ ε ‖ , (3.1)

where ‖ d ‖ = 

√ 

d : d denotes the Euclidean norm of a tensor d , and double underlines denote tensors. The cumulated equiv-

alent strain is obtained by time integration as 

ε e = 

∫ t 

0 

˙ ε e d t ′ . (3.2)

The material is assumed to be incompressible, and so 

tr ˙ ε = 0 . (3.3)

The visco-plastic constitutive law is introduced by means of a potential depending on the cumulated equivalent strain εe

and on the strain rate ˙ ε as 

�ε e ( ̇ ε ) = 

∫ ∫ ∫ 
W ε e ( ̇ ε e ) d x d y d z, (3.4)

where d x d y d z is the volume element. In most application examples, we will consider the power-law potential 

W ε e ( ̇ ε e ) = K ε e 
N ˙ ε m +1 

e 

m + 1 

, (3.5)

where K is a modulus, see (2.4) . 

In all our examples, the visco-plastic flow is caused by some displacement imposed at the boundary, and there is no

applied force. At any given time, the instantaneous velocity v can be found by the following variational principle: ( i ) v is

isochoric and compatible with the imposed displacements, and ( ii ) with ˙ ε = ( ∇ v + ( ∇ v ) T ) / 2 , v makes the potential �ε e ( ̇ ε )
stationary with respect to arbitrary, divergenceless velocity perturbations ˆ v subject to the constraint ˆ v = 0 wherever the

displacement is imposed. 

As shown in Appendix A , this variational formulation is equivalent to the local constitutive law 

s = 

2 
3 

σe 

˙ ε e 
˙ ε 

σe = 

∂W ε e 

∂ ̇ ε e 
( ̇ ε e ) 

, (3.6)

where s = σ − I tr σ/ 3 is the deviatoric part of the Cauchy stress σ , I denotes the 3 × 3 identity matrix, and σ e is

called the equivalent strain. In an incompressible material, the Cauchy stress is defined up to a hydrostatic pressure.

Note that with the help of (3.1) we have ‖ s ‖ = 

√ 

2 
3 σe : this is consistent with loading in simple tension, whereby s =( 

2 / 3 

−1 / 3 

−1 / 3 

) 

σe . Also, note that the incompressibility (3.3) and the constitutive law (3.6) warrant tr s = 0 . 

For the particular dissipation potential in (3.5) for example, the equivalent stress reads 

σe = K ε e 
N ˙ ε e 

m 

. (3.7)

When the long-wavelength approximation is applicable, the quantities σ e , εe and ˙ ε e can be identified with those denoted

earlier as σ , ε and ˙ ε , and Eq. (2.4) is recovered. 

3.2. One-dimensional model for a visco-plastic cylinder 

Consider a cylinder with length 2 L , and let X denote the axial coordinate in reference configuration, −L ≤ X ≤ L . Small

initial imperfections are considered: the largest initial radius R is attained at the terminal cross-sections, X = ±L . In the

interior of the bar, the initial radius is denoted by R i (X ) = R 
√ 

f (X ) , where f ( X ) is the initial areal imperfection factor. 

The visco-plastic cylinder is deformed by the application of a time-dependent displacement at the terminal cross-

sections. We use a Lagrangian representation and seek the coordinate 	( X , t ) at time t of the cross-section initially located

at position X , see Fig. 4 a. The cross-sections do not remain planar upon deformation, and 	( X , t ) is more accurately defined

as the coordinate of the center of mass of the deformed cross-section whose initial coordinate was X . 
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Fig. 4. One-dimensional model for (a) a cylinder and (b) and sheet necking in plane-strain. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The detailed dimensional reduction is carried out in Appendix B and Appendix D . It proceeds by assuming that the scales

are separated, R � L , and that 	( X , t ) is a slow function of X , i.e., that its gradient ∂ 	/ ∂ X is of order 	/ L , which is much

smaller that 	/ R . Based on this assumption, the visco-plastic problem is solved order by order with respect to the small

parameter R / L . In particular the full three-dimensional displacement can be determined, and it is found that the curvature

of the cross-sections must be taken into account. As a result, the axial stretch averaged over a cross-section, which we refer

to as the effective stretch and denote as λe ( X ), is different from the gradient λ(X ) = 

∂	
∂X 

of the mean axial displacement; the

difference is a small correction, of relative importance ( R / L ) 2 , but it plays an important role. The detailed calculation for a

cylinder is given in Appendix B , and yields the effective stretch as 

λe (X, t) = λ(X, t) + R 

2 f (X ) 
λ′ 2 (X, t) 

16 λ4 (X, t) 
, (3.8) 

when higher-order corrections, of order ( R / L ) 4 , are neglected, see Eq. (B.14) . The dominant contribution, denoted by λ (with-

out any subscript) is the gradient of the mean displacement, 

λ(X, t) = 

∂	

∂X 

(X, t) . (3.9) 

The correction proportional to R 2 in (3.8) captures the stretching of material filaments initially parallel to the axis, due to

the axial gradient of transverse displacement arising from the non-uniform contraction of cross-sections, by Poisson’s effect.

This correction introduces a dependence on the second gradient of the displacement λ′ (X ) = 

∂λ
∂X 

, and tends to spread out

the localized neck and to delay necking, as explained in the introduction. This important term is retained in the dimension

reduction. 

The cross-sectional average of the equivalent strain rate ˙ ε e is simply denoted by ˙ ε e (X, t) . The dimension reduction yields

a simple expression for ˙ ε e in terms of the effective stretch λe , namely 

˙ ε e (X, t) = 

1 

λe (X, t) 

∂λe 

∂t 
(X, t) . (3.10) 

The cross-sectional average of the cumulated equivalent strain follows by time integration as 

ε e (X, t) = ln λe (X, t) . (3.11) 

Finally, the dimensional reduction shows that the evolution of the one-dimensional model is governed by the effective one-

dimensional visco-plastic potential 

�λ( ̇ λ) = 

∫ L 

0 

π R 

2 f (X ) W ε e ( ̇ ε e ) d X. (3.12) 

In the integrand, the prefactor πR 2 f (X ) = π
(
R i (X ) 

)2 
is the area of the undeformed cross-section, so that πR 2 f d X is the

elementary volume (which is identical in the reference and current configurations, due to incompressibility). In (3.12) , the

right-hand side is a function of λ, ˙ λ and their spatial gradients through the quantities εe ( X , t ) and ˙ ε e (X, t) , see Eqs. (3.8) –

(3.11) . 

3.3. One-dimensional model for a visco-plastic sheet in plane strain 

The case of a sheet subject to a time-dependent, uniform stretch a ( t ) in the transverse direction is shown in Fig. 4 b. The

imperfection is introduced by taking the initial local thickness of the plate to be H 

i (X ) = H f (X ) where H is the maximum

thickness, far from the imperfection, and f ( X ) ≈ 1 defines the imperfection profile. 
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The detailed analysis in the appendix yields the expressions of the effective stretch as 

λe (X, t) = λ(X , t) + H 

2 f 2 (X ) 
λ′ 2 (X , t) 

24 a 2 (t) λ5 (X, t) 
, (3.13)

and of the average of the effective strain-rate over a cross-section as 

˙ ε e (X, t) = 

( 

4 

3 

[ (
˙ λe 

λe 

)2 

+ 

˙ λe 

λe 

˙ a 

a 
+ 

(
˙ a 

a 

)2 
] ) 1 / 2 

, (3.14)

see Eqs. (D.2) and (D.3) in the Appendix. In this geometry, the determination of the cumulated elastic strain requires a time

integration from (3.2) , which cannot be done analytically, 

ε e (X, t) = 

∫ t 

0 

˙ ε e (X, t ′ )d t ′ . 

The one-dimensional dissipation potential reads, as earlier, 

�λ( ̇ λ) = 

∫ L 

0 

HD f (X ) W ε e ( ̇ ε e ) d X, (3.15)

where D is the initial width of the plate, and the coefficient [ HDf ( X )] is the unformed area of a cross-section of the sheet. 

4. Neck retardation in bars under tension based on the 1D gradient model 

Bars with circular cross-section with initial radius distribution R i ( X ) are considered where the initial imperfection has the

form described in Section 2 , such that the initial area distribution is (2.2) , i.e., 

(
R i (X ) 

R 

)2 

= f (X ) , with the minimum radius

at X = 0 and the maximum radius, R = R i (L ) at X = L, such that f (L ) = 1 . As has been seen in the examples in the previous

section f ( X ) is slowly varying and its minimum value f (0) is only slightly less than 1. From this point on in this section, the

dimensionless coordinate X / R will be denoted by X and the dimensionless half-length L / R denoted by L in the equations. The

ratios of the dimensional quantities will be retained in the figures. 

The effective stretch and effective logarithmic strain in the 1D model for the round bar are, from (3.8) , 

λe = λ + 

f (X ) 

16 

λ′ 2 
λ4 

and ε e = ln λe , (4.1)

with λ′ = 

d λ
d X 

. It can be noted that f ( X ) in (4.1) can be replaced by 1 with virtually no effect on any of the results generated

in this paper, but continuing with (4.1) as it stands creates no difficulty for our solution method, so we will continue with

this form. The effective stretch-rate and strain rate are 

˙ λe = 

(
1 − f (X ) 

4 

λ′ 2 
λ5 

)
˙ λ + 

f (X ) 

8 

λ′ ˙ λ′ 
λ4 

and ˙ ε e = 

˙ λe 

λe 
. (4.2)

In the current state with λ( X ) known, increments of elongation are prescribed by imposing the average stretch rate ˙ λave

where 

˙ λave = 

1 

L 

∫ L 

0 

˙ λ(X ) d X. (4.3)

The dimensional stress potential is denoted by σR ˙ ε R W 

(
λe , ˙ λe 

)
such that 

σ = σR ˙ ε R 
∂W 

∂ ˙ ε e 
= σR ˙ ε R λe 

∂W 

∂ ̇ λe 

. (4.4)

The dimensionless functional whose first variation generates the solution for the rate problem is 

�( ̇ λ) = 

∫ L 

0 

f (X ) W 

(
λe , ˙ λe 

)
d X − ζ

[
1 

L 

∫ L 

0 

˙ λ(X )d X − ˙ λave 

]
, (4.5)

where ζ is a Lagrangian multiplier. The stretch-rates have ˙ λ′ = 0 at X = 0 , L for the imperfection (2.3) . If the gradient terms

in λe and 

˙ λe are deleted, this variational principle delivers the long wavelength approximation. 

As previously noted in (3.5) , the tensile constitutive law (2.4) is represented by the potential 

W = 

1 

m + 1 

ε e 
N 

(
˙ ε e 
˙ ε R 

)m +1 

(4.6)

while the imperfection profile is chosen as f (X ) = 1 − η
2 

(
1 + cos πX 

L 

)
. The numerical method based on (4.5) is discussed in

Appendix E . 
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Fig. 5. Necking of a bar based on the 1D gradient model and comparison to the long wavelength approximations. (a) Deformed shapes predicted by the 

1D gradient model for L/R = 3 . The evolution of the strain ratio, ε A / ε B , is plotted in (b) and the strain-rate ratio, ˙ ε A / ̇ ε B , is plotted in (c) as a function of 

εB / N . 

Fig. 6. Neck retardation due to material strain-rate dependence as predicted by the 1D model for L/R = 2 in part (a) and for L/R = 4 in part (b). The 

necking condition is taken to be ˙ ε A / ̇ ε B = 5 . These plots can be compared with the corresponding plot based on the long wavelength approximation in 

Fig. 2 b which does not depend on L / R . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5 presents representative results for the evolution of the ratios, ε A / ε B and ˙ ε A / ̇ ε B , of the strain and strain-rate at the

center of the neck to the corresponding values at the end of the bar where it is the thickest. These have been computed

using the 1D gradient model with N = 0 . 1 , m = 0 . 01 and η = 0 . 005 for three values of L ( e.g., L / R in terms of dimensional

quantities). Included in the plots are the predictions based on the long wavelength approximation introduced earlier which

does not depend on L . The horizontal axis is εB / N which would attain a maximum value of unity with no strain-rate depen-

dence, m = 0 , and no imperfection, η = 0 . The shape of the bar is also shown for the case L = 3 at three values of εB / N . As

discussed in the Introduction, the Bridgman effect, whereby the effective stress is reduced in the neck due to the developing

hydrostatic tension, contributes to neck retardation. This effect is more pronounced the higher the gradients, i.e., the smaller

is L in Fig. 5 . Bars having imperfections with L = 4 or larger are well represented by the long-wavelength approximation. 

For the gradient model, which is solved numerically, we take the necking condition to be ˙ ε A / ̇ ε B = 5 which, as seen in

Fig. 5 , means the associated strain ε c 
B 

will be slightly less than that associated with ˙ ε A / ̇ ε B → ∞ . Recall that ˙ ε A / ̇ ε B → ∞ was

adopted as the necking criterion in computing the results in Figs. 2 and 3 based on the long wavelength approximation.

The difference between the strain outside the neck for the two choices defining necking, which is the primary quantity of

interest, is only a couple of percent. Plots of the neck retardation due to the material strain-rate behavior as predicted by

the gradient model are shown in Fig. 6 a and b for L = 2 and 4. These plots can be compared with the corresponding results
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Fig. 7. Percentage elongation at necking as dependent on material strain-rate dependence. (a) Data from Woodford (1969) for a collection of metals. 

(b) Predictions from the 1D gradient model for three values of N for η = 0 . 005 with L/R = 3 and from the long wavelength model, both based on the 

assumption that necking coincides with the attainment of ˙ ε A / ̇ ε B = 5 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

for the long wavelength model in Fig. 2 b which do not depend on L . It is clear from Figs. 5 and 6 , and those to follow,

that the material rate-dependence as characterized by m plays the dominant role in retarding necking. The Bridgman effect

further retards necking but only as a secondary effect. The material rate-dependence slows the localization of an initially

broad imperfection thereby delaying the development of the Bridgman effect. An important implication of this observation

is that the long-wavelength approximation is reasonably accurate for materials with significant positive rate-dependence. 

Woodford (1969) has collected the elongation data for the a large set of metals having a wide range of strain-rate de-

pendence and plotted the percentage elongation as it depends on m . Woodford’s plot is reproduced in Fig. 7 a. Predictions

from the long wavelength model which for the imperfection shape (2.3) are independent of L and from 1D gradient model

with L = 3 are presented in Fig. 7 b for three values of N . 

We proceed to analyze initial imperfections having a short wavelength: they enhance the gradient effects as we show

now. Initial imperfections with widths on the order of the diameter of the round bar can be expected under certain circum-

stances. While it might seem that such wavelengths push the limits of validity of the asymptotic 1D reduction, earlier work

on rate-independent necking by Audoly and Hutchinson (2016) has shown that the reduction retains accuracy to such short

wavelengths as long as the necking amplitude is moderate. For this purpose ‘localized’ imperfections are considered of the

form 

A 

i (X ) = πR 

2 

(
1 − η

e −(X/� ) 2 − e −(L/� ) 2 

1 − e −(L/� ) 2 

)
≡ πR 

2 f (X ) (4.7)

with � on the order of R . As earlier, the maximum area is A 

i 
B 

≡ A 

i (L ) = πR 2 . For long bars having L / �  1, f (X ) = 1 −
ηe −(X/� ) 2 . 

Denote the deficit in cross-sectional area at the center of the neck relative to that well outside the neck normal-

ized by the area well outside the neck by [ ( A B ) def − ( A A ) def ] / ( A B ) def with ( A A ) def and ( A B ) def as the respective areas in

the deformed state. Noting that this normalized deficit is the imperfection amplitude η in the initial state, the measure

[ ( A B ) def − ( A A ) def ] / [ η( A B ) def ] provides the growth of the neck in multiples of the initial imperfection amplitude. Fig. 8

presents plots of εB / N versus this measure for two values of imperfection wavelength computed using the 1D reduction

for an intermediate value of the strain-rate hardening index m = 0 . 1 , N = 0 . 2 and η = 0 . 005 . Measured in multiples of the

imperfection amplitude, the trends are only weakly dependent on the amplitude itself, as will be seen later when thin

sheet necking is discussed. The role of gradient effects via the dimensionless imperfection width parameter � / R is also re-

vealed. Included in Fig. 8 are predictions based on a modification of the long-wavelength approximation that includes the

lowest order influence of the stretch gradient. This modification is derived from the 1D reduction in Appendix F . With

λ(X ) = λB + η�λ(X ) as the stretch, the resulting equation for the stretch-rate in the modification of the long-wavelength

approximation for the round bar is 

� ˙ λ = 

1 

η

{ (
1 + 

η�λ

λB 

)[ 

1 

f (X ) 

(
1 + η

�λ

λB 

)(
ε B e 

ε e 

)N (
1 + 

η�λ′′ 

8 λB 
4 

)1 /m 

− 1 

] } 

˙ λB . (4.8)

This result reduces precisely to the long-wavelength approximation if the term involving �λ′ ′ is deleted. In Fig. 8 it can

be noted that this simple extension captures the gradient effects on necking retardation fairly accurately to values of the

normalized area deficit of thirty times the initial imperfection amplitude. Further discussion of implementing the extension

is given in Appendix F . 
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Fig. 8. Normalized strain attainable outside the neck as dependent on the thickness deficit at the center of the neck relative to the thickness outside the 

neck expressed in multiples of the initial deficit, η, for the local imperfection (4.7) . Plotted for η = 0 . 005 based on both the long-wavelength approximation 

and the gradient model for two values of the imperfection width parameter � / R . The corresponding curves based on the simple approximation in Eq. 

(4.8) accounting for the lowest order influence of the gradient are also shown. The choice of L / R is large enough such that it has no influence on the 

results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

If instead of initial geometric imperfections in the form of (2.3) or (4.7) one considered a geometrically perfect round

bar which had a slightly non-uniform variation in the reference yield stress according to σR (X ) = σ B 
R 

f (X ) , then the problem

for the evolving strain distribution would again be governed by the incremental boundary value problem derived from (4.5) ,

the only exception being that f ( X ) must be replaced by unity in Eqs. (4.1) and (4.2) . For the small imperfections considered

in this paper ( i.e., η ≤ 0.01) this replacement has a negligible influence on the predictions, as has been verified by direct

numerical simulations. Thus, all the results in Sections 2 and 4 apply to both initial geometric imperfections and reference

stress imperfections with the same distribution f ( X ). 

5. Neck retardation in sheets based on the 1D gradient model 

A forming limit diagram provides the limits to which a metal sheet can undergo in-plane biaxial stretch without devel-

oping noticeable necking or failure due to fracture. The M.-K. model of Marciniak et al. (1973) for predicting forming limit

diagrams is a long-wavelength model which tracks the growth of strain in an initial imperfection band of slightly reduced

thickness relative to the strain in the sheet outside the band. Uniform biaxial stretching is imposed on the sheet outside

the band. Here, we focus on deformation, not material fracture, and extend the M.-K. model by applying the 1D gradient

model to study neck development in sheets of rate-dependent materials stretched under conditions of in-plane plane strain.

We will also digress briefly to discuss challenges that remain to be overcome with regard to fundamental plasticity theory

developments before the gradient model can be extended to reliably predict sheet necking under general biaxial stretching.

5.1. Geometry of the sheet 

The initial imperfection is a slight thickness reduction of the sheet taken in the form of a straight band oriented perpen-

dicular to the direction of maximum principal strain ε1 , see Fig. 4 b. We will focus on the case where the sheet is constrained

such that the strain parallel to the band is zero, i.e., ε 2 = 0 , corresponding to plane strain: the reason for this is exposed in

Section 5.2 below. 

With H as the initial thickness of the sheet at the edges at X 1 = ±L, the initial thickness variation in the sheet is taken

to be 

H 

i (X 1 ) = H 

(
1 − η

e −(X/� ) 2 − e −(L/� ) 2 

1 − e −(L/� ) 2 

)
≡ H f (X 1 ) , (5.1) 

where X 1 is the Lagrangian coordinate in the direction of the maximum principal strain, η is the initial fractional thickness

reduction at the center of the band at X 1 = 0 relative to that at X 1 = ±L, and � characterizes the half-width of the imperfec-

tion. Our primary interest will be in relatively narrow bands which are not only much smaller than the initial half-width of

the sheet L , but on the order of the sheet thickness, i.e., � ≤ H . The question of interest is how the non-uniformity develops

as the sheet is stretched due to the influence of rate-dependence and the gradient effects accounted for in the 1D model.

The sheet is infinite in extent in the X 2 direction, and solutions depending only on X 1 are sought. As already noted, the

sheet is constrained parallel to the band such that ε = 0 . 
2 
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Fig. 9. Examples of forming limit diagrams predicted for the two multiaxial constitutive models (5.2) and (5.3) taken from Hutchinson et al. (1978a) . The 

curves are based on the long-wavelength approximation for the maximum strains attained outside the neck under biaxial stretching imposed on the sheet 

outside the neck with ε B 2 = ρε B 1 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2. Uncertainties on the constitutive model suggest limiting attention to plane-strain 

In uniaxial tension, the material is assumed to obey the same constitutive relation used in the round bar analysis, i.e.,

(2.4) . Neck development and localization under biaxial stretching brings in fundamental constitutive issues that are not

present for the round bar, as discussed in some detail by Stören and Rice (1975) and Hutchinson et al. (1978a,b) . Here

we digress briefly to review these issues as they relate to the present study. To highlight the issues we begin by list-

ing two isotropic multi-axial constitutive models each of which reduces to (2.4) in uniaxial tension. The equations are ex-

pressed using the principal components of the true stress σ i , the deviator stress s i , and the logarithmic strain εi . In accord

with Section 3.1 , the equivalent stress is σe = 

√ 

3 
2 

s i s i = 
√ 

3 
2 ‖ s ‖ and the material is taken to be incompressible such that

ε 1 + ε 2 + ε 3 = 0 ; elastic strains are neglected. The generalization of (2.4) referred to as ‘flow theory’ has been presented in

Section 3.1 and reads {
s i = 

2 
3 

K ε e N ˙ ε e 
m ˙ ε i 

˙ ε e 

˙ ε e = 

√ 

2 
3 

˙ ε i ˙ ε i ε e = 

∫ 
˙ ε e d t. 

(5.2)

The generalization of (2.4) referred to as ‘deformation theory’ is {
s i = 

2 
3 

K ε e N ˙ ε e 
m ε i 

ε e 

ε e = 

√ 

2 
3 
ε i ε i ˙ ε e = 

d ε e 
d t 

. 
(5.3)

with K = σR / ̇ ε R in each case. Note that the definition of the equivalent strain, εe , is different in the two cases, and the two

definitions only coincide if the strain components are increased proportionally, i.e., when the strains are increased such that

their ratios remain fixed. It is readily verified that both versions reduce to (2.4) in uniaxial tension and that the two versions

are identical for proportional straining. 

The two relations (5.2) and (5.3) can readily be implemented within the long-wavelength approximation ( i.e. , the M.-K.

model) to predict necking limits for biaxial sheet stretching. With ε B 
1 

and ε B 
2 

denoting the strains outside the band and

stretching imposed such that ε B 
2 

= ρε B 
1 

with ρ held fixed (the assumption ρ = 0 is relaxed temporarily and will be restored

in the next section, one computes the maximum strains that can be imposed on the sheet outside the band, analogous to

the necking strains computed using the long-wavelength approximation for the bar in tension. Examples of the resulting

forming limit diagrams as predicted for the two constitutive models taken from Hutchinson et al. (1978a) are presented

in Fig. 9 for the limit of a rate-independent material ( m = 0 ) and a rate-dependent material ( m = 0 . 05 ), for the same level

of initial imperfection η = 0 . 01 in each case. The trend seen for the flow theory material with sharply increasing necking

strains for conditions approaching equi-biaxial stretching ( ρ ≈ 1) is not in accord with experimental trends. The limitations of

J 2 flow theory as applied to instability phenomena which involve strongly non-proportional straining such as sheet necking

and some plastic buckling problems for plates and shells are now well known. The flow theory is based on the Mises yield

surface and it is overly stiff for increments of flow that have a significant incremental strain component that is not normal

to the yield surface. The classical visco-plastic flow theory (5.2) is incapable of giving physically realistic predictions for this

type of plastic instability. 

For rate-independent materials, Stören and Rice (1975) employed the deformation theory version, (5.3) , with m = 0 in

their bifurcation analysis of sheet necking. Their result for the strain in the uniform sheet at the onset of necking (necking
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bifurcation) is 

ε 1 = 

3 ρ2 + N(2 + ρ) 2 

2(2 + ρ)(1 + ρ + ρ2 ) 
and ε 2 = ρε 1 (for m = 0 and η = 0 ) . (5.4) 

This result assumes that the incipient neck forms perpendicular to the direction of maximum in-plane strain which restricts

application to 0 ≤ρ ≤ 1. The Stören-Rice result for N = 0 . 22 (not shown in the figure) lies above the deformation theory

curve in Fig. 9 for m = 0 because it does not account for the reduction due to the imperfection. 

The issues that stand in the way of conducting a study of biaxial stretching with ρ � = 0 based on the 1D gradient model

are, first, the inadequacy of the flow theory (5.2) and, second, the fact that the multi-axial deformation theory (5.3) does

not admit a strain-rate potential for the stresses. To our knowledge, there does not exist a rate-dependent visco-plastic the-

ory derived from a strain-rate potential that would relax the overly stiff incremental behavior associated with the flow

theory (5.2) for non-proportional strain increments, analogous, for example, to the corner theory of Christoffersen and

Hutchinson (1979) for rate-independent materials. It is likely that a weak formulation of the governing equations of the

1D gradient model employing the deformation theory (5.3) could be used to predict behavior under general biaxial stretch-

ing, but we will not pursue that option here. Another compromise would be to employ a kinematic hardening version of

visco-plastic flow theory. The higher curvature of the yield surface as compared to J 2 flow theory brings the forming limit

prediction more in line with the experimental observations and with the deformation theory predictions, but still with a

noticeable discrepancy for realistic initial imperfections. Instead, in this paper we will limit consideration to sheet necking

under conditions of in-plane plane strain with ρ = 0 . For this case, straining is proportional throughout the sheet within the

framework of the model, the two constitutive models coincide and, consequently, the necking predictions for the two con-

stitutive models are the same, as seen for the long-wavelength approximation used in Fig. 9 : in this figure, the predictions

of deformation theory (solid curve) and flow theory (dashed curve) coincide along the vertical axis, ρ = 0 . 

5.3. Analysis of necking in sheets deforming in plane-strain 

Dimensionless quantities are introduced in the equations which follow with X = X 1 /H, � / H → � , L / H → L and H 

i (X ) /H →
H 

i (X ) = f (X ) . The transverse constraint requires ε 2 = 0 such that ε 3 = −ε 1 . The stretch along the mid-plane of the sheet in

the 1-direction is λ(X ) = e ε 1 (X ) and ε B 1 = ln λB is the strain at X = ±L . The effective strain averaged across the cross-section

at X , εe , from the 1D gradient model is defined in (3.13) and (3.14) as: 

ε e (X ) = 

2 √ 

3 

ln λe with λe (X ) = λ(X ) + 

f 2 (X ) λ′ 2 (X ) 

24 λ5 (X ) 
(5.5) 

where λ′ = 

d λ
d X 

. In the general expressions of the 1D model (3.13) and (3.14) , we have set the transverse macroscopic stretch

as a (t) = 1 and ˙ a = 0 , consistent with the assumption ρ = 0 , and have dropped the thickness factor H whose value is H = 1

in our rescalings. As in the case of the round bar, f 2 in the second term in λe above can be replaced by 1 for the small initial

imperfections considered in the present study, as the other factor f appearing in the integrand of the potential in (3.15) has

a much stronger effect. 

The material strain-rate potential W used in the calculations for sheet necking is again given by (4.6) such that for pre-

scribed average stretch increments, ˙ λave , the dimensionless variational principle governing the rate boundary value problem

takes precisely the same form as that for the round bar in (4.5) . Apart from the differences in the definitions of the ef-

fective stretch in the two problems, compare (4.1) and (5.5) , the formulation for plane strain sheet necking is identical to

that for necking of the round bar in tension. The same numerical method is used for generating both sets of predictions.

Also, an imperfection in the form of variation of the reference stress according to σR (X ) = σ B 
R 

f (X ) is equivalent to the initial

thickness variation H 

i (X ) = H f (X ) if one replaces f 2 by 1 in the definition of λe . 

Figs. 10 and 11 present the deformation at the center of the neck, X = 0 , as a function of the normalized strain well

outside the neck, ε B 1 /N, for a sheet with material parameters, N = 0 . 2 and m = 0 . 1 , and an initial imperfection amplitude

η = 0 . 005 . The half-length of the sheet in the 1-direction is chosen to be large enough such that these curves are inde-

pendent of the aspect-ratio L / H and such that well outside the necking region the strain is essentially uniform and equal

to ε B 1 . The evolving ratio of the thickness of the sheet at the center of the neck, ( H A ) def , to the thickness well outside the

neck, ( H B ) def , is plotted in Figs. 10 a and 11 a. The ratio of the corresponding strain-rates is plotted in Figs. 10 b and 11 b. In

Fig. 10 , results are presented for different values of the rate-dependence index m , while in Fig. 11 , results are presented for

both the long-wavelength approximation, which is independent of the imperfection wavelength parameter, � , and for the

1D gradient model for three values of � / H . For �/H = 1 the gradient model predicts that the growth of the neck is only

slightly more retarded than the prediction of the long-wavelength model. Moreover, for this value of the rate-dependence

index, m = 0 . 1 , material strain-rate effects have the dominant influence on necking retardation allowing strains outside the

neck ε B 1 to attain 2 to 3 times the strain hardening index N , depending on the depth of neck that can be accepted. For

imperfections with a width parameter in the range � / H ≤ 0.5, the Bridgman effect captured by the gradient model does fur-

ther retard neck development but this appears to be a secondary contribution when the material strain-rate dependence is

appreciable. 

Further insight is obtained by presenting the growth of the neck in the manner used for the round bar wherein the

deficit in the thickness at the neck is employed. The normalized strain outside the neck, ε B /N, is plotted in Fig. 12 as

1 
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Fig. 10. Gradient model prediction of necking in a sheet. (a) Evolution of the thickness ratio of the section at the center of the neck to sections well outside 

the neck, ( H A ) def /( H B ) def , as a function of the normalized strain well outside the neck, ε B 1 /N, for three values of the strain-rate index. (b) Evolution of the 

ratio of the strain-rate in the center of the neck to that well outside the neck for the same values of the strain-rate index. These have been computed with 

N = 0 . 2 , η = 0 . 005 , �/H = 0 . 5 with L / H large enough such that it has no influence on the results. 

Fig. 11. Gradient model prediction of necking in a sheet. (a) Prediction of the evolution of the thickness ratio of the section at the center of the neck to 

sections well outside the neck, ( H A ) def /( H B ) def , as a function of the normalized strain well outside the neck, ε B 1 /N, for the long-wavelength approximation 

and three values of the imperfection width as specified by � / H . (b) Companion plots of the evolution of the ratio of the strain-rate in the center of the 

neck to that well outside the neck. These have been computed with N = 0 . 2 , η = 0 . 005 , m = 0 . 1 with L / H large enough such that it has no influence on 

the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a function of the relative thickness deficit normalized by η for the same cases shown in Fig. 11 . The important fea-

ture revealed by this plot is that the strain that can be attained outside the neck is nearly independent of the im-

perfection amplitude when the relative thickness deficit is expressed as a multiple of the initial imperfection ampli-

tude. When material strain-rate dependence is significant, the strain attainable outside the neck for realistic initial im-

perfection amplitudes, i.e., 0.001 ≤η ≤ 0.01, depends mainly on the growth of the thickness deficit relative to the ini-

tial imperfect amplitude, that is, on 

( H A ) def −( H B ) def 
η( H B ) def 

. Fig. 12 also brings out the role of the imperfection width parame-

ter, � / H . Due to the Bridgman effect, narrower initial imperfections grow more slowly than broader ones and the ef-

fect is important if � / H < 0.5. Included in Fig. 12 are the curves computed using the extension of the long-wavelength

model accounting for the lowest order influence of the gradients which is given in Appendix F . As noted for the exam-

ple presented for the round bar, the simple extension of the long-wavelength model captures the gradient effect quite

accurately. 

The two parts of the final figure, Fig. 13 , display to the extent it is possible in a single figure a summary dependence

of the roles of the various dimensionless material and geometric parameters on the strain that can be imposed on the

sheet under conditions of plane strain stretching. For the simulations in Fig. 13 , the sheet is stretched until the difference

between the thickness inside the neck to that outside the neck, normalized by the thickness outside the neck, reaches 10

times the initial imperfection amplitude. In Fig. 13 a, the normalized strain ε B /N at which this thickness deficit is attained is

1 



162 B. Audoly, J.W. Hutchinson / Journal of the Mechanics and Physics of Solids 123 (2019) 149–171 

Fig. 12. Normalized strain attainable outside the neck in a sheet, as dependent on the thickness deficit at the center of the neck relative to the thickness 

outside the neck expressed in multiples of the initial deficit, η. Plotted for two values of η based on both the long-wavelength approximation and the 

gradient model for two values of the imperfection width parameter � / H . The lighter curve for each of the two values of � / H for η = 0 . 005 is the prediction 

of the simple approximation accounting for the lowest order influence of the gradient in Eq. (F.4) . The corresponding curves for η = 0 . 001 are similar lying 

just above those for η = 0 . 005 but are not shown to avoid overcrowding. The choice of L / H is large enough such that it has no influence on the results. 

Fig. 13. Strain attained outside the neck in a sheet, as a function of the material strain-rate index m plotted using the criterion that the relative thickness 

deficit in the neck is 10 times the initial defect, i.e., ( H A ) def −( H B ) def 

( H B ) def 
= 10 η. a) Normalized strain 

(
ε B 1 

)
c 
/N. b) Strain 

(
ε B 1 

)
c 
. Results are plotted for the long- 

wavelength and for the gradient model with two values of the initial imperfection width parameter. The calculation were made with η = 0 . 005 , but the 

dependence on η is weak as seen in Fig. 12 . The choice of L / H is large enough such that it has no influence on the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

plotted against the rate-hardening index m , while the same results are plotted as the un-normalized strain ε B 
1 

in Fig. 13 b,

in both cases for N = 0 . 1 and 0.2. The two parts of Fig. 13 reveal that the attainable strain scales with N for m < 0.05, but is

nevertheless significantly enhanced by the rate-dependence. For values of m greater than about 0.1, Fig. 13 b reveals that the

effect of N is relatively small. In this range the rate-dependence as determined by m dominates both the strain hardening N

and the gradient effect as reflected by the dependence on � / H . 

6. Conclusions 

The extension of the 1D gradient model to necking in bars and sheets has brought out the relative importance of strain-

rate hardening and the Bridgman effect in neck retardation. At low levels of material rate-dependence, i.e., m < 0.01, the ten-

dency for the neck to localize to a width comparable to the diameter of a bar or the thickness of the sheet remains strong

and both the rate-dependence and the Bridgman effect play important roles in localization and in retarding neck growth.

Rate-dependence on necking is non-negligible even for values of the strain-rate hardening index as low as m = 0 . 001 . This

observation has implications for visco-plastic constitutive models introduced as surrogates for rate-independent material 

models to facilitate computations in finite element codes. If the objective is to model the development of plastic instabili-

ties such as necks or shear bands, one must take care not to introduce material rate-dependence if it is not actually present,

or to include a realistic representation when it is present, even if the level is low. When material rate-dependence is strong,

e.g., m > 0.01, it tends to dominate neck development such that the Bridgman effect becomes of secondary importance. The

rate-dependence has two effects on neck growth. It retards the growth of the amplitude of the neck, and it also slows the

tendency of the neck width to localize to a dimension set by the bar diameter or the sheet thickness. When material rate-

dependence is significant, the relatively simple long-wavelength approximation provides a surprisingly accurate description 

of neck development especially if the imperfection widths are larger than the thickness of the specimen cross-section. Gra-
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dient effects become more prominent for imperfections with widths that are on the order of, or less than, the specimen

thickness. The simple extension of the long-wavelength approximation given in Appendix F that incorporates the lowest or-

der contribution of the stretch gradients accurately captures the influence on neck retardation of material rate-dependence

and the Bridgman effect. 

Results in this paper have been obtained using the relatively simple constitutive law σ = σR ε 
N ( ̇ ε / ̇ ε R ) 

m for which the

stress depends on the strain to a power and the strain-rate to another power. As a consequence of the homogeneous de-

pendence on the strain and strain-rate, the necking strains do not depend on the reference stress σ R or on the reference

strain-rate ˙ ε R , nor do they depend on the overall rate at which the bar or sheet is stretched. For this simple model, the

necking strains depend on the material parameters, N and m , and the geometric parameters specifying the imperfection,

namely its dimensionless amplitude η and its shape f ( X ) which in turn depended on a dimensionless wavelength parameter.

For both the long-wavelength approximation and the 1D gradient model, the necking results based on the geometric im-

perfection apply equally well to an initial variation of the reference stress with dimensionless amplitude η and shape f ( X ).

Other constitutive laws can be incorporated into the 1D gradient model, usually with some sacrifice in the simplicity of the

results in terms of the number of parameters on which the solutions depend. Finally, we mention again that the emphasis

in this paper has been on ‘slow’ straining, and that inertial effects and constitutive behavior associated with high strain

rates have not been considered. We hope that that the 1D model will be extended in future work to address high loading

rates. 

Appendix A. Variational derivation of the 3-d visco-plastic model 

In this Appendix, we justify the equivalence between the formulation of the visco-plastic model based on the potential

�ε e ( ̇ ε ) introduced in Eq. (3.4) , and that based on the constitutive law (3.6) , as announced in Section 3.1 . 

The same assumptions and notations are used as in Section 3.1 . We consider an incompressible visco-plastic material

in 3-d, and use an Eulerian description of motion. In terms of the strain rate ˙ ε , we define the equivalent (viscoplastic)

strain rate by ˙ ε e = 

√ 

2 
3 ‖ ̇ ε ‖ , see (3.1) in the main text, and the cumulated equivalent strain by ε e = 

∫ t 
0 ˙ ε e d t ′ , see (3.2) . The

incompressibility is expressed by tr ˙ ε = 0 , see (3.3) . 

The visco-plastic response is introduced by means of a potential depending on both the cumulated equivalent strain εe

and on equivalent strain rate ˙ ε e , �ε e ( ̇ ε e ) = 

∫ ∫ ∫ 
W ε e ( ̇ ε e ) d v , see (3.4) . 

The variational principle stated in Section 3.1 implies that, for any virtual velocity ˆ v which cancels on the terminal cross-

sections where the displacement is applied, 

0 = −
∫ ∫ ∫ 

∂W ε e 

∂ ˙ ε e 
̂ ˙ ε e d x d y d z + 

∫ ∫ ∫ 
p tr ̂  ˙ ε d x d y d z, 

where the first term is the variation of the potential �ε e ( ̇ ε e ) , the second term is the Lagrange multiplier associated with the

incompressibility constraint. In the first integral, we denote the partial derivative as σe = 

∂W ε e 
∂ ̇ ε e 

, in accord with (3.6) and the

variation of the equivalent strain rate can be expressed ̂

 ˙ ε e = 
√ 

2 
3 

˙ ε : ̂ ˙ ε 

‖ ̇ ε ‖ = 
(

2 
3 

˙ ε 

˙ ε e 

)
: ̂ ˙ ε . Therefore, we can rewrite the previous equations

as 

0 = −
∫ ∫ ∫ (

2 

3 

σe 

˙ ε e 
˙ ε − p I 

)
: ̂  ˙ ε d x d y d z 

Identifying this expression with the principle of virtual work for a generic incompressible continuum, 

0 = −
∫ ∫ ∫ 

σ : ̂  ˙ ε d x d y d z + 

∫ ∫ ∫ 
p tr ̂  ˙ ε d x d y d z = −

∫ ∫ ∫ 
( σ − p I ) : ̂  ˙ ε d x d y d z, 

we arrive at the expression of the Cauchy stress announced earlier in (3.6) , namely σ − p I = s = 

2 
3 

σe 
˙ ε e 

˙ ε . 

Appendix B. Dimension reduction for a cylinder 

In Appendix B through Appendix D , we use different notation than in the main text. This should not bring any confusion,

since the only overlap between these appendices and the main text are the formulas defining the 1D model: these equations

are derived in the appendices and also rewritten using the notations relevant to the main text in Section 3 . 

B1. Kinematic analysis of a cylinder 

We consider a visco-plastic cylinder. In undeformed configuration, the cylinder radius is denoted as ρ . Let ( R , �, X )

denote the cylindrical coordinates of a material points in reference configuration, and ( e R ( �), e �( �), e X ) the cylindrical

basis. The coordinate X is along the axis, and is used to label material cross-sections, 0 ≤ X ≤ L where L is the undeformed

length of the bar. The radial coordinate R satisfies 0 ≤ R ≤ρ: the axis is R = 0 and ( R , �) are polar coordinates in the plane

of the cross-section ( Fig. B.14 ). 
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Fig. B.14. Necking of a bar: notation used in the Appendix. 

 

 

 

 

 

 

 

 

We use a Lagrangian description of motion, and denote by x ( R , �, X ) the position of a material point in deformed con-

figuration. The dependence on time is ignored for the moment, but it will be restored later on. The cylindrical coordinates

of x are denoted by ( r , θ , x ). We assume that cylindrical invariance is preserved upon deformation, 

r = r(R, X ) (B.1) 

θ = � (B.2) 

x = x (R, X ) . (B.3) 

We seek the transformations r ( R , X ) and x ( R , X ) that are solutions of the visco-plastic problem stated in Section 3.1 , in

the limit of slender bar, ρ � L . In a given cross-section, the variable X is fixed, and we assume the functions r and x can be

both expanded with respect to R and ρ , 

r(R, X ) = 

∑ 

i, j≥0 

r [ i, j] (X ) ρ i R 

j 

x (R, X ) = 

∑ 

i, j≥0 

x [ i, j] (X ) ρ i R 

j 

For the solution to be axisymmetric and smooth along the axis, r ( R , X ) has to be an odd function of R and x ( R , X ) an

even function of R . As a result, r [ i, j] (X ) = 0 if i is even, and x [ i, j] (X ) = 0 whenever j is odd. 

In the limit of a slender bar, ρ → 0, and considering that R is of the same order as ρ , we can group terms in the

expansions order by order in ρ , 

r(R, X ) = ρr [0 , 1] (X ) ̄R + ρ3 
(

r [2 , 1] (X ) ̄R 

+ r [0 , 3] (X ) ̄R 

3 
)

+ · · ·
x (R, X ) = x [0 , 0] (X ) + ρ2 (x [2 , 0] (X ) + x [0 , 2] (X ) ̄R 

2 ) + . . . 

where the dots denote higher-order terms, and R̄ denotes the dimensionless radial coordinate, 

R̄ = 

R 

ρ
. (B.4) 

We define 	( X ) as the x -coordinate of the average position of the material cross-section with initial coordinate X , 

	(X ) = 〈 x 〉 (X ) , (B.5) 

where 〈 q 〉 (X ) = 

1 
π ρ2 

∫ ρ
0 

q (X, R ) 2 π R d R denotes the cross-sectional average of a quantity q ( X , R ). 

The function 	( X ) provides a one-dimensional version of the mapping from the reference to the current configuration. It

will be the main kinematical quantity of the one-dimensional model. 

Inserting the expansion of x ( R , X ) into the right-hand side of (B.5) , and identifying order by order with the left-hand side,

we have 

x [0 , 0] (X ) = 	(X ) 

and 〈 x [2 , 0] (X ) + x [0 , 2] (X ) R̄ 2 〉 = 0 . Using the geometric identity 〈 ̄R 2 〉 = 1 / 2 valid for circular cross-sections, this yields 

x [2 , 0] (X ) = −x [0 , 2] (X ) 

2 

. (B.6) 

In cylindrical coordinates, the expression of the transformation gradient F = ∇ x is 

F = e R �
(

∂r(X,R ) 
∂R 

e R + 

∂r(X,R ) 
∂X 

e X 
)

+ 

r(X,R ) 
R 

e � � e �
. . . + e X �

(
∂x (X,R ) 

∂R 
e R + 

∂x (X,R ) 
∂X 

e X 
)
. 

(B.7) 
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At order ρ0 = 1 , F = r [1 , 0] (X ) ( e R � e R + e � � e �) + 

d	
d X 

(X ) e X � e X is diagonal. Therefore, the incompressibility condition

det F = 1 yields the transverse contraction (Poisson’s effect) as 

r [1 , 0] (X ) = 

1 √ 

λ(X ) 
, 

where λ( X ) is the macroscopic stretch, defined as 

λ(X ) = 

d	

d X 

(X ) . (B.8)

Note that the macroscopic stretch λ = d 〈 x 〉 / d X = 〈 d x/ d X〉 = 〈 F xX 〉 is also the cross-sectional average of the axial deformation

gradient. It is not the average of the principal microscopic stretch, however, as we will show. 

At this point, the transformation has been rewritten as 

r(R, X ) = 0 + ρ R̄ √ 

λ(X ) 
+ 0 + . . . 

x (R, X ) = 	(X ) + 0 + ρ2 x [0 , 2] (X ) 
(
R̄ 

2 − 1 
2 

)
+ . . . , 

The corresponding Green-St-Venant strain tensor e = 

F T ·F −1 

2 can then be expanded in series as e (R, X ) = e 
[0] 

(R, X ) +
ρ e [1] (R, X ) + · · · where e [0] is diagonal and e [1] involves shear in the ( x , r ) plane, 

e 
[0] 

(R, X ) = 

λ2 (X ) − 1 

2 

e X � e X + 

λ−1 (X ) − 1 

2 

( e R � e R + e � � e �) 

e 
[1] 

(R, X ) = R̄ 

[
λ(X ) x [0 , 2] (X ) − λ′ (X ) 

4 λ2 (X ) 

]
( e R � e X + e X � e R ) 

The first-order contribution e 1 is the dominant contribution to shear. Note that the square bracket in e [1] is a function of X

only. 

Both for a visco-plastic and an elastic material, the shear strain perpendicular to the lateral surface has to cancel by the

traction-free boundary condition. This implies that e 
[1] 

= 0 whenever R̄ = 1 . Since e [1] depend linearly on R̄ , this implies that

the square bracket in the equation above vanishes: this yields x [0, 2] ( X ) as 

x [0 , 2] (X ) = 

λ′ (X ) 

4 λ3 (X ) 
(B.9)

As a result, the shear strain is zero in the entire bulk to first order in ρ , and not just at the lateral boundary, 

e 
[1] 

(R, X ) = 0 . (B.10)

The quantity x [0 , 2] (X ) = 

∂ 2 x 
∂R 2 

+ O(ρ2 ) measures the curvature of the deformed cross-sections. By Eq. (B.9) , this curvature is

adjusted so as to preserve orthogonality between the filaments that were initially radial and those that were parallel to the

axis: when λ′ is non-zero, there is a axial gradient in the transverse contraction of the cross-sections by Poisson’s effect,

and the material filaments initially perpendicular to the axis become convergent or divergent; as a result, the cross-sections

bend out of their initial plane to preserve orthogonality with these material filaments. We have derived the same expression

of the curvature of the cross-sections in the case of elastic necking ( Audoly and Hutchinson, 2016 ). 

At this point, we have completely determined the expansion of r ( R , X ) and x ( R , X ) in terms of the macroscopic stretch

	( X ) up to order ρ2 included. The third-order coefficients r [2, 1] ( X ) and r [0, 3] ( X ) can then be found from the incompressibility

condition det F = 1 at order ρ2 . This calculation is tedious but straightforward and the details are omitted. The final result

is 

r(R, X ) = 

R √ 

λ(X ) 
+ 

(−3 ρ2 + 2 R 

2 ) Rλ′ 2 (X ) + (ρ2 − R 

2 ) Rλ(X ) λ′′ (X ) 

16 λ11 / 2 (X ) 
+ · · ·

x (R, X ) = 	(X ) + 

λ′ (X ) 

4 λ3 (X ) 

(
R 

2 − ρ2 

2 

)
+ · · · (B.11)

This explicit 3D transformation depends only on the macroscopic stretch 	( X ) and on its derivatives λ(X ) = 	′ (X ) and

λ′ (X ) = 	′′ (X ) . It is again straightforward but somewhat tedious to calculate the corresponding Green-St-Venant strain ten-

sor to second order in ρ , which turns out to be diagonal at this order, 

e = 

λ2 
R (R, X ) − 1 

2 

e R � e R + 

λ2 
�(R, X ) − 1 

2 

e � � e � + 

λ2 
X (R, X ) − 1 

2 

e X � e X + O(ρ3 ) . (B.12)

The vectors of the cylindrical basis ( e R , e �, e X ) are therefore the principal stretch directions (at least, at this order): this key

remark will considerably simplify the dimensional reduction. 

The corresponding principal stretches read 
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λR (R, X ) = 

1 √ 

λe (X ) 
+ ρ2 λ�(X ) + 

(
R 

2 − ρ2 

2 

)
δR (X ) + O(ρ3 ) 

λ�(R, X ) = 

1 √ 

λe (X ) 
− ρ2 λ�(X ) + 

(
R 

2 − ρ2 

2 

)
δ�(X ) + O(ρ3 ) 

λX (R, X ) = λe (X ) + 

(
R 

2 − ρ2 

2 

)
δX (X ) + O(ρ3 ) 

(B.13) 

where we have introduced auxiliary functions, namely ( i ) the effective stretch 

λe (X ) = λ(X ) + ρ2 λ′ 2 (X ) 

16 λ4 (X ) 
, (B.14) 

and ( ii ) the differential stretch λ�( X ), and ( iii ) the residual stretches δR ( X ), δ�( X ) and δX ( X ), 

λ�(X ) = 

3 λ′ 2 (X ) − λ(X ) λ′′ (X ) 

32 λ11 / 2 (X ) 

δR (X ) = 

8 λ′ 2 (X ) − 3 λ(X ) λ′′ (X ) 

16 λ11 / 2 (X ) 

δ�(X ) = 

2 λ′ 2 (X ) − λ(X ) λ′′ (X ) 

16 λ11 / 2 (X ) 

δX (X ) = 

−5 λ′ 2 (X ) + 2 λ(X ) λ′′ (X ) 

8 λ4 (X ) 
. 

These expressions of λ�( X ), δR ( X ), δ�( X ) and δX ( X ) are given for the sake of completeness but do not enter into the 1D

visco-plastic model at dominant order, as we will show. 

Note that the terms 

(
R 2 − ρ2 

2 

)
appearing in the principal stretches in (B.13) are all zero on average on any cross-section

since 〈 R 2 〉 = ρ2 / 2 in a disk of radius ρ . In particular, the last equation in (B.13) shows that the effective stretch λe is the

cross-sectional average of the microscopic principal stretch λX measured along the material direction initially aligned with

the axis. Eq. (B.14) however shows that this effective stretch λe is different from the quantity λ( X ), defined earlier as the

derivative of the average cross-sectional axial coordinate 	( X ): they differ by the gradient term ρ2 λ′ 2 / (16 λ2 ) accounting

for the axial gradient of radial displacement. 

The only assumption we have made so far is that the constitutive law and the equilibrium of the boundary force the

shear-strain to cancel on the lateral boundary. In the following section, we focus to the case of a visco-plastic material. 

B2. Application to the visco-plastic bar 

For time-dependent problems, the kinematic analysis of the previous section is applicable at any time t . For the appli-

cation to a visco-plastic bar, we need to restore the time parameter t in all previous expressions: the macroscopic variables

	( X , t ), λ( X , t ) and λe ( X , t ) are now functions of both the Lagrangian coordinate X and of t . We use primes for spatial

derivatives (with respect to X ) as earlier, and dots for time derivatives. 

The visco-plastic model in Appendix A uses an Eulerian description of the motion, while the kinematic analysis of the

cylinder in Section B.1 uses a Lagrangian description of motion. To connect them, we use the expression of the Eulerian

strain rate ˙ ε in terms of in terms of rate of change of the Lagrangian strain measure ˙ e and of the deformation gradient F as

˙ ε = F −T · ˙ e · F −1 . Based on this, the equivalent strain rate (3.1) reads 

˙ ε e (R, X, t) = 

(
2 

3 

tr ( C −1 · ˙ e · C −1 · ˙ e ) 
)1 / 2 

= 

( 

2 

3 

[ (
˙ λR 

λR 

)2 

+ 

(
˙ λ�

λ�

)2 

+ 

(
˙ λX 

λX 

)2 
] ) 1 / 2 

+ O(ρ3 ) , (B.15) 

where C = F T · F is the Green deformation tensor. To derive the second equality, we have used the important result that the

matrices C = 2 e + I and ˙ e are both diagonal is the same frame ( e R , e �, e X ), as the eigenvectors of e have a fixed direction

relative to the cylindrical basis, see (B.12) . 

Inserting the expansion (B.13) of the principal stretches into this expression, expanding to second order in ρ , and aver-

aging over the cross-section, we arrive at a very simple expression of the cross-sectional average of the effective strain rate:

〈 ̇ ε e 〉 (X, t) = 

| ̇ λe (X, t) | 
λe (X, t) 

+ O(ρ3 ) = 

∣∣∣∣∂ ln λe (X, t) 

∂t 

∣∣∣∣ + O(ρ3 ) . (B.16) 

This formula plays a key role in the reduction to a one-dimensional model. It is remarkably simple thanks to the special

form of the principal stretches in (B.13) : all terms depending explicitly on R cancel out as they are proportional to R 2 − ρ2 / 2 ,
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the average of which is zero on a cross-section; the two terms depending on λ� come with alternating signs and cancel

each other as well. 

By Eq. (3.2) , the cross-sectional average of the cumulated elastic strain reads 

〈 ε e 〉 (X, t) = 

∫ t 

0 

∣∣∣∣∂ ln λe (X, t ′ ) 
∂t ′ 

∣∣∣∣ d t ′ . (B.17)

If the effective stretch increases monotonously with time, i.e., if ˙ λe (X, t) is always and everywhere positive, then the above

relation can be integrated in time as 

〈 ε e 〉 (X, t) = ln λe (X, t) (monotonous stretching λe ) . (B.18)

This equation highlights the key role played by the effective strain in the visco-plastic bar model. 

In addition, the previous analysis show that the difference between either ˙ ε e or εe and their cross-sectional average can

be written as 

˙ ε e (R, X, t) = 〈 ̇ ε e 〉 (X, t) + 

(
R 

2 − ρ2 

2 

)
g(X, t) + O(ρ4 ) 

ε e (R, X, t) = 〈 ε e 〉 (X, t) + 

(
R 

2 − ρ2 

2 

)
h (X, t) + O(ρ4 ) 

for some residual functions g and h which we do not need to calculate. In view of this and of (3.4) , the visco-plastic potential

can be expressed in terms of the quantities of the one-dimensional model as 

�ε e ( ̇ ε e ) = 

∫ ∫ ∫ 
W ε e ( ̇ ε e ) d x d y d z 

= 

∫ 
π ρ2 〈 W ε e ( ̇ ε e ) 〉 d X 

= 

∫ 
π ρ2 

(〈 
W 〈 ε e 〉 ( 〈 ̇ ε e 〉 ) + 

∂W ε e 

∂ε e 
( ε e − 〈 ε e 〉 ) + 

∂W ε e 

∂ ̇ ε e 
( ̇ ε e − 〈 ̇ ε e 〉 ) 

〉 )
d X + O(ρ4 ) 

= 

∫ 
π ρ2 

(
W 〈 ε e 〉 ( 〈 ̇ ε e 〉 ) + 

∂W ε e 

∂ε e 
〈 ε e − 〈 ε e 〉 〉 + 

∂W ε e 

∂ ̇ ε e 
〈 ̇ ε e − 〈 ̇ ε e 〉 〉 

)
d X + O(ρ4 ) 

= 

∫ 
π ρ2 

⎛ ⎜ ⎜ ⎝ 

W 〈 ε e 〉 ( 〈 ̇ ε e 〉 ) + 

∂W ε e 

∂ε e 

〈
R − ρ2 

2 

〉
︸ ︷︷ ︸ 

0 

h (X, t) + 

∂W ε e 

∂ ̇ ε e 

〈
R − ρ2 

2 

〉
︸ ︷︷ ︸ 

0 

g(X, t) 

⎞ ⎟ ⎟ ⎠ 

d X + O(ρ4 ) 

= 

∫ 
π ρ2 W 〈 ε e 〉 ( 〈 ̇ ε e 〉 ) d X + O(ρ4 ) 

(B.19)

To derive the second equality above, we have used the incompressibility d x d y d z = π ρ2 d X . 

In view of the equation above, we can simply substitute the cross-sectional averages of the cumulated elastic strain and of

the equivalent strain rate into the 3-d visco-plastic potential, to obtain an effective visco-plastic potential �λ( ̇ λ) governing

the one-dimensional problem, 

�λ( ̇ λ) = 

∫ 
π ρ2 W 〈 ε e 〉 ( 〈 ̇ ε e 〉 ) d X. 

For the 3-d visco-plastic model defined in (3.5) for instance, the one-dimensional potential takes the form 

�λ( ̇ λ) = 

∫ L 

0 

π ρ2 K 〈 ε e 〉 N 〈 ̇ ε e 〉 m +1 

m + 1 

d X. 

All the results of this section are summarized in Section 3.2 , with two small changes: the square brackets for the cross-

sectional averages 〈 . . . 〉 ar e dr opped out for the sake of r eadability, and an imperfection factor f ( X ) is introduced, i.e., the

undeformed cross-sectional area πρ2 is replaced with πρ2 f . 

Appendix C. Recovering the 1D rate-independent model from previous work 

In our previous work, we have used an asymptotic method to derive a one-dimensional model for the analysis of neck-

ing in a rate-independent cylinder ( Audoly and Hutchinson, 2016 ). This one-dimensional model retains both the dominant

contribution to the strain energy arising from the stretch λ( X ), and the sub-dominant contribution arising from the stretch

gradient λ′ . The latter is important for the analysis of localization. 

Here, we show that this one-dimensional model for a non-linear elastic bar can be derived easily from the expression of

the effective stretch λe which we have established in (B.14) . 

For the sake of simplicity, we limit attention to a prismatic bar having a circular cross-section with radius ρ , made of a

homogeneous and isotropic material. Consider the solution for simple traction (uniaxial stress parallel to the axis) with an

axial stretch λ. Let W h ( λ) denote the strain energy of this homogeneous solution per unit volume of the bar. 

In the presence of stretch gradients, a calculation similar to that presented in (B.19) shows that the strain energy in the

bar can be approximated by the integral of the homogeneous strain energy W h , in which the homogeneous stretch λ has

been substituted with the effective stretch λe , 

�(λ) = 

∫ L 

W h ( λe ) d X. (C.1)

0 
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The effective stretch λe is given by (B.14) as λe (X ) = λ(X ) + ρ2 λ′ 2 (X ) 

16 λ4 (X ) 
. In the equation above, the expression of the in-

tegrand W h ( λe ) can be justified using the two following arguments. The microscopic strain remains uniaxial and aligned

with the axial material up to order ( ρ/ R ) 2 included, which explains why the strain energy can be expressed in terms of the

energy of homogeneous solutions W h . In addition, λe is the cross-sectional average of the stretch along the filaments that

were initially parallel to the axis of the bar, as noted earlier, which is why the argument of W h is λe . 

To show the equivalence of the strain energy (C.1) with that derived in our earlier work, we simply expand the former

with respect to the small parameter ρ2 , 

�(λ) = 

∫ L 

0 

[
W h (λ) + 

(2 ρ) 2 

2 

W 

′ 
h (λ) 

λ′ 2 (X ) 

32 λ4 (X ) 

]
d X 

up to terms of order ρ4 or higher. When W 

′ 
h 
(λ) is identified with the axial force needed to achieve a homogeneous, axial

stretch λ, the strain energy � above is seen to be equivalent to equation [1.4] of our previous paper ( Audoly and Hutchinson,

2016 ). 

Appendix D. Dimension reduction for a sheet in generalized plane-strain 

D1. Kinematic analysis for a sheet 

The dimension reduction done in Appendix B for a cylinder can be adapted to the case of a sheet undergoing generalized

plane strain as follows. 

Let ( X , Y , Z ) denote the Cartesian coordinates in undeformed configuration, with 2 ρ denoting the initial thickness of the

sheet. Let x = (x (X, Y ) , y (X, Y ) , z(Z)) denote a point in deformed configuration. According to the generalized plane strain

assumption, a uniform stretch is imposed in the transverse direction, 

z(Z) = aZ 

where a is the stretch along the neck. While the stretch will ultimately be a function of time a ( t ), we start by a kinematic

analysis of the sheet at fixed time t and ignore any dependence on t for the moment ( Fig. D.15 ). 

The solution of the 3D visco-plastic flow is sought as an expansion in terms of the small thickness ρ as earlier, taking

the top-down symmetry into consideration, 

x (X, Y ) = x [0 , 0] (X ) + ρ2 (x [2 , 0] (X ) + x [0 , 2] (X ) ̄Y 2 ) + . . . 

y (X, Y ) = ρy [0 , 1] (X ) ̄Y + ρ3 
(

y [2 , 1] (X ) ̄Y + r [0 , 3] (X ) ̄Y 3 
)

+ · · ·
where Ȳ denotes the scaled transverse coordinate, 

Ȳ = 

Y 

ρ
. 

As earlier, we denote by 	( X ) the average x -coordinate of the cross-section labelled by X , and by λ(X ) = 

d	
d X 

(X ) the

stretch. Denoting by 〈 · 〉 the cross-sectional average, the identity 	(X ) = 〈 x (X, Y ) 〉 yields, at orders ρ0 and ρ2 respectively, 

x [0 , 0] (X ) = 	(X ) 

x [0 , 2] (X ) = −x [0 , 2] (X ) 

3 

The incompressibility condition at order ρ0 yields 

y [0 , 1] (X ) = 

1 

aλ(X ) 
, 
Fig. D.15. Necking of a sheet in generalized plain strain: notation used in the Appendix. 
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where λ( X ) is the apparent macroscopic stretch defined earlier in (B.8) . 

The Green-St-Venant strain tensor e = 

F T ·F −1 

2 has to cancel at order ρ1 by the same argument as earlier. This yields 

x [0 , 2] (X ) = 

λ′ (X ) 

2 a 2 λ4 (X ) 
, 

which sets the curvature of the cross-sections in deformed configuration. 

Finally, the incompressibility condition at order ρ2 set the coefficients x [2,1] ( X ) and x [0,3] ( X ) and we find the deformed

configuration as 

x (R, X ) = 	(X ) − λ′ (X ) 

6 a 2 λ4 (X ) 
(ρ2 − 3 Y 2 ) + · · ·

r(R, X ) = 

Y 

aλ(X ) 
+ 

(−4 ρ2 + 2 Y 2 ) Y λ′ 2 (X ) + (ρ2 − Y 2 ) Y λ(X ) λ′′ (X ) 

6 a 3 λ7 (X ) 
+ · · ·

We find again that the Green-St-Venant strain tensor is diagonal in the Cartesian coordinate basis up to order ρ2 in-

cluded, and we calculate the corresponding principal stretches as 

λX (X, Y ) = λe (X ) + (ρ2 − 3 Y 2 ) δX (X ) + O(ρ3 ) 

λY (X, Y ) = 

1 
aλe (X ) 

+ (ρ2 − 3 Y 2 ) δY (X ) + O(ρ3 ) 

λZ (X, Y ) = a + 0 + O(ρ3 ) 

(D.1)

where we have introduced auxiliary functions, namely ( i ) the effective stretch 

λe (X ) = λ(X ) + ρ2 λ′ 2 (X ) 

6 a 2 λ5 (X ) 
, (D.2)

and ( ii ) the residual stretches δX ( X ), δY ( X ), 

δX (X ) = 

3 λ′ 2 (X ) − λ(X ) λ′′ (X ) 

6 a 2 λ5 (X ) 

δY (X ) = 

−3 λ′ 2 (X ) + λ(X ) λ′′ (X ) 

6 a 3 λ7 (X ) 
. 

In Eq. (D.1) , the dependence on the transverse coordinate Y takes place through the factors (ρ2 − 3 Y 2 ) which cancel when

averaged over the sheet thickness. This warrants that the residual stretches δX ( X ), δY ( X ) disappear from the macroscopic

quantities that we calculate next, as with the axisymmetric bar. 

Restoring the dependence on time t which has been omitted so far, we can calculate the cross-section average of the

equivalent strain rate ˙ ε e using (B.15) as 

〈 ̇ ε e 〉 (X, t) = 

(
2 
3 

[(
˙ λX 

λX 

)2 

+ 

(
˙ λY 

λY 

)2 

+ 

(
˙ λZ 

λZ 

)2 
])1 / 2 

= 

(
2 
3 

[(
˙ λe 

λe 

)2 

+ 

(
˙ λe 

λe 
+ 

˙ a 
a 

)2 

+ 

(
˙ a 

a 

)2 

])1 / 2 

= 

(
4 
3 

[(
˙ λe 

λe 

)2 

+ 

˙ λe 

λe 

˙ a 
a 

+ 

(
˙ a 

a 

)2 

])1 / 2 

(D.3)

Note that the equivalent elastic strain is now history-dependent, and must be calculated by integrating over time, 

〈 ε e 〉 (X, t) = 

∫ t 

0 

〈 ̇ ε e 〉 (X, t ′ ) d t ′ . (D.4)

D2. Application to the visco-plastic sheet 

By the same argument as earlier in Appendix B.2 , the visco-plastic sheet is governed by a one-dimensional potential 

�λ( ̇ λ) = 

∫ L 

0 
( 2 ρ) D 

K 〈 ε e 〉 N 〈 ̇ ε e 〉 m +1 

m + 1 

d X. (D.5)

In this expression, one should insert the expressions of 〈 ̇ ε e 〉 , 〈 εe 〉 and λe derived in the previous section, as summarized

in Section 3.3 . In the main text, we use these expressions in the particular case of a plane-strain sheet, a = 1 and ˙ a = 0 . 
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Appendix E. Numerical method for solving the rate problem using splines 

The non-dimensional quantities introduced in Sections 4 and 5 are used here. Divide the interval (0, L ) into n s − 1 equally

spaced intervals with nodes X i ( i = 1 , . . . , n s ) and employ n s splines S i ( X ) each defined on (0, L ) to represent the stretch

distribution as 

λ(X ) = 

n s ∑ 

i =1 

a i S i (X ) (E.1) 

where a i = λ(X i ) . Conditions at the bar ends require S ′ 
i 
(0) = 0 for i = 1 , . . . , n s . The amplitudes a i are regarded as functions

of time such that the stretch-rate is ˙ λ(X ) = 

∑ n s 
i =1 

˙ a i S i (X ) . The prescribed average stretch-rate, ˙ λave , requires 

n s ∑ 

i =1 

˙ a i (S i ) ave = 

˙ λave with (S i ) ave = 

1 

L 

∫ L 

0 

S i (X )d X (E.2) 

Denote the value of the first term of stretch-rate functional � in (4.5) by F ( ̇ a ∼) when evaluated using the spline representa-

tion, with the dependence on the current stretch amplitudes, a ∼, and the other parameters left implicit. Thus, (4.5) becomes

�( ̇ a ) = F ( ̇ a ) − ζ

( 

n s ∑ 

i =1 

˙ a i (S i ) ave − ˙ λave 

) 

(E.3) 

Stationarity of � with respect to the ˙ a i requires 

∂F 

∂ ˙ a i 
= −ζ (S i ) ave for i = 1 , . . . , n s (E.4) 

Enforcing (E.2) gives 

∂F 

∂ ˙ a i 
− (S i ) ave 

˙ λave 

n s ∑ 

j=1 

˙ a j 
∂F 

∂ ˙ a j 
= 0 for i = 1 , . . . , n s (E.5) 

Newton’s iterative method is used to solve (E.5) for ˙ a ∼ at each step of the overall loading. With ˙ a ∼ denoting an estimate of

the solution in the current iteration and ˙ a ∼ + δ ˙ a ∼ denoting the estimate in the next iteration, δ ˙ a is given by 

n s ∑ 

j=1 

M i j δ ˙ a j = − ∂F 

∂ ˙ a i 
+ 

(S i ) ave 

˙ λave 

n s ∑ 

j=1 

˙ a j 
∂F 

∂ ˙ a j 
= 0 for i = 1 , . . . , n s (E.6) 

with 

M i j = 

∂ 2 F 

∂ ˙ a i ∂ ˙ a j 
− (S i ) ave 

˙ λave 

( 

∂F 

∂ ˙ a j 
+ 

n s ∑ 

k =1 

˙ a k 
∂ 2 F 

∂ ˙ a j ∂ ˙ a k 

) 

(E.7) 

The converged solution ˙ a ∼ is used to increment the stretch for the next step according to a ∼ + ˙ a ∼ → a ∼. 

In each iteration, F and its partial derivatives are evaluated numerically in a straightforward manner exploiting the spline

representation. The estimate of ˙ a ∼ in the first iteration of any step of loading is taken to be the converged solution in the

prior step, scaled accordingly if the prescribed overall stretch increment changes. The only exception in this incremental

procedure is for the first step starting from the unstressed bar. For this starting step, the long-wavelength solution is used

to generate the solution at λave = 1 + �λave where �λave is small compared to the stretch at necking. We have established

the accuracy of this starting step by repeating the necking calculations with various choices of �λave and showing that the

necking prediction is insensitive to the choice. 

Appendix F. Simplified analysis of the gradient effect 

In this Appendix, we propose a simplified analysis of neck growth for sheets necking in-plane strain (or in a long round

bar with a ‘local’ imperfection) that brings in the lower order effects of the gradients. 

We will consider a sheet (or round bar) with imperfection wavelength sufficiently small, i.e., � / L � 1, such that well out-

side the necking region the straining is uniform. In the notation used in the body of the paper, the dimensionless thickness

imperfection (or dimensionless area imperfection for the bar) is taken to be f (X ) = 1 − ηe −
(

X 
� 

)2 

. The sheet or bar is again

symmetric with respect to X = 0 and we denote quantities evaluated at X = L by a subscript or superscript ‘B’. The strain-

rate potential is W = ε e N ˙ ε e 
m +1 

/ (m + 1) . Taking f 2 = 1 in the gradient stretch contribution ( f = 1 for the bar), one has 

ε e = c 1 ln λe λe = λ + c 2 λ
′ 2 /λs ˙ ε e = c 1 ̇ λe /λe 

˙ λe = (sc 2 λ
′ 2 + λs +1 ) ̇ λ + 2 c 2 λ

′ ˙ λ′ /λs . 
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where 
(
c 1 = 2 / 

√ 

3 , c 2 = 1 / 24 , s = 5 
)

for the sheet and (c 1 = 1 , c 2 = 1 / 16 , s = 4) for the round bar. The nonlinear o.d.e. asso-

ciated with δ� = 0 , assuming L is sufficiently large such that the solution has attained uniform straining at X = L, 

−
(

2 c 2 fτλ′ 
λs 

)′ 
+ fτ

(
1 − sc 2 + λ′ 2 

λs +1 

)
= τB with λ′ = 0 at X = 0 , L (F.1)

and where τ = ∂ W/∂ ̇ λe = c 1 ε e 
N ˙ ε e 

m +1 
/λe . 

We will regard the loading parameter to be the uniform stretch-rate at X = L, ˙ λB , with the notation: ε B e = c 1 ln λB , ˙ ε B e =
c 1 ̇ λB /λB , f B = 1 , τB = c 1 

(
ε B e 

)N (
˙ ε B e 

)m 

/λB , etc. In what follows, we take 

f = 1 − η� f (X ) λ = λB + η�λ(X ) and 

˙ λ = 

˙ λB + η� ˙ λ(X ) . (F.2)

Neglecting terms of order η2 , the first term in (F.1) can be replaced by −2 ηc 2 τB �λ′′ / λB 
s 

and the second term becomes f τ ,

such that the approximation to (F.1) is 

fτ = τB + ητB 

2 c 2 �λ′′ 

λB 
s . (F.3)

As it stands, (F.3) is the un-approximated long-wavelength equation with the stretch given by λ = λB + η�λ(X ) if the term

involving �λ′ ′ is omitted. This equation can be solved for the strain-rate distribution giving 

˙ ε e = 

[ 

1 

f 

λe 

λB 

(
ε B e 

ε e 

)N (
1 + η

2 c 2 �λ′′ 

λB 
s 

)] 1 /m 

˙ ε B e . 

The final step is to use ˙ ε e = c 1 
(

˙ λB + η� ˙ λ
)
/ ( λB + η�λ) to solve for the equation governing � ˙ λ

� ˙ λ = 

1 

η

⎧ ⎨ ⎩ 

(
1 + 

η�λ

λB 

)[ 

1 

f 

(
1 + η

�λ

λB 

)(
ε B e 

ε e 

)N (
1 + 

2 ηc 2 �λ′′ 

λB 
s 

)] 1 /m 

− 1 

⎫ ⎬ ⎭ 

˙ λB (F.4)

where λe has been replaced by λB + η�λ neglecting terms of order η2 �λ′ 2 and smaller. 

With �λ′ ′ set to zero, (F.4) is precisely the long-wavelength approximation with λ = λB + η�λ as the stretch. In other

words, (F.4) brings in the lowest order correction of the long-wavelength approximation due to stretch gradients. This recipe

is an explicit formula for expressing the increments of stretch distribution in terms of ˙ λB and the current distributions of

�λ and �λ′ ′ , which are both zero when λB = 1 . It can be implemented in a straightforward manner incrementally step by

step for increasing λB . Some care must be exercised to ensure that the calculation of �λ′ ′ does not destabilize the numerical

solution. At each step, we have used a cubic spline representation of �λ at equally spaced points on the interval 0 ≤ X ≤ L

and computed �λ′ ′ from that representation. Predictions using this simple approximation are included in Fig. 12 for plane

strain sheet necking where it is seen that it retains good accuracy for growth of the neck to more than thirty times the

initial deficit. It is equally effective for the round bar when the width of the initial imperfection is on the order of the

diameter of the bar, as seen in Fig. 8 . 
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