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Abstract: Clamped-clamped compressed wide metal columns with length to thickness ratios 

such that they undergo plastic buckling are considered. Further, the thickness of the columns is 

assumed to be in the range of microns to tens of microns, typical of elements comprising some of 

the small-scale lattice materials currently being produced. The strengthening effects associated 

with plastic strain gradients are expected to influence buckling behavior, and the columns are 

analyzed using several versions of the available strain gradient plasticity theories. The primary 

focus is the onset of plastic buckling as predicted by bifurcation from the state of uniform 

compression. However, a numerical post-buckling study is carried out for one class of strain 

gradient theories for columns with initial imperfections to ascertain if the buckling predictions 

stemming from this class of theory are realistic. 

1. Introduction

Recent advances in metal processing techniques such as 3D printing have made it 

possible to manufacture small-scale metal structures and lattice materials with column and plate 

elements whose thicknesses are in the micron range. This paper explores the increase in plastic 

buckling resistance expected due to the phenomenon of plastic strain gradient hardening when 

micron-scale beams and plates are compressed into the plastic range. This paper is contributed to 

a special issue of the International Journal of Solids and Structures to celebrate the 70th birthday 

of one of the major contributors to the plastic buckling of structures, Stelios Kyriakides. The 

two-volume research monograph, Kyriakides and Corona (2007) and Kyriakides and Lee (2020), 

deals with large structures, primarily off-shore structures with chapters covering aspects pf 

plastic buckling in all its richness. While the present paper makes contact with plastic buckling in 

the large-scale range, the primary emphasis is on the increase in plastic buckling strength that is 

expected to occur for columns and plates whose thicknesses are in the range from microns to tens 

of microns. Buckling, whether it be in columns, plates, or shells, usually involves an abrupt 

change from a relatively uniform compressive state to deformations involving significant 
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bending. If buckling occurs in the plastic range and if the thickness of the structural element is on 

the order of microns, one can expect that plastic strain gradients driven by the bending will give 

rise to an increase in buckling resistance. It is this increase in buckling resistance which is 

investigated in this paper for compressed wide columns, that is, plates bending in only one 

direction. The wide columns will be taken to be clamped at both ends and compressed uniformly 

prior to buckling. Buckling associated with bifurcation from the perfectly straight configuration 

will be analyzed by employing both an exact 2D plane strain formulation and a simpler 1D 

‘beam’ analysis based on Euler-Bernoulli kinematics. Several of the available versions of strain 

gradient plasticity will be used to expose the sensitivity of the strengthening prediction to the 

details of the constitutive theory. 

The mechanics of column buckling under compression in the plastic range took decades 

to unfold. Engesser’s (1889) tangent modulus load was superseded by von Karman’s (1910) 

reduced modulus load governing stability. Years passed until the importance of the reduced 

modulus load was overturned by Shanley’s (1947) observation that the lowest load for the onset 

of plastic buckling occurs under increasing load such that the tangent modulus load is indeed the 

primary critical load of interest for buckling. Shortly thereafter, Hill (1958) placed plastic 

buckling on a firm mathematical footing within a general continuum mechanics framework, 

accounting for the fact that bifurcation in the plastic range can occur as a loss of uniqueness 

without a loss of stability of the uniform state.  Additional issues were discovered and addressed 

in the 1950’s and 60’s related to the constraint the shape of the yield surface has on plastic 

buckling predictions for plates and shells. These considerations are not of primary concern to 

wide column buckling because both the pre-buckling and post-buckling stress states are 

dominantly plane strain compression. 

 

2. Elevation of the incremental bending stiffness due to the plastic strain gradient  

 The key to understanding the increase in plastic buckling resistance of a column or plate 

in the micron range is the increase in incremental bending stiffness predicted by strain gradient 

plasticity. We begin by presenting the incremental bending stiffness for a wide column, or plate, 

that has been compressed uniformly into the plastic range and then subject to increments of 

additional uniform compressive strain and uniform curvature, all under conditions of plane 

strain. The increments of compression and curvature are constrained such that continued plastic 



straining occurs across the entire cross-section of the column, consistent with Shanley’s 

condition discussed later in the paper. With the geometry and coordinates defined as specified in 

Fig. 1, the current strain component parallel to the column is 11 0ε ε= −  and the imposed 

increment of strain is 11 0 2xε ε κ= − −ɺ ɺ ɺ  with 0 0ε >  in compression and κ  as the curvature of the 

centerline. The condition of continuing compressive plastic strain across the entire thickness 

requires places a constraint on 0εɺ  and κɺ  which will be presented below. With P  as the 

horizontal compressive force/depth (depth is out-of-the-plane) and M  as the moment/depth 

about the 3-direction, the incremental relations from the uniform compressive state for the 

constitutive models being considered are 
0P Sε=ɺ ɺ  and M Dκ=ɺ ɺ  with S  and D  as the 

incremental stretching and bending stiffnesses per unit depth.  

 Throughout this paper, plane strain conditions are assumed such that the out-of-plane 

strains vanish, i.e., 13 23 33 0ε ε ε= = = . In addition, except for the FEM simulations in Section 6, 

attention will be restricted to materials that are elastically and plastically incompressible. Let E  

be the elastic Young’s modulus, 
Y

σ  the initial yield stress in uniaxial tension (with 
Y

σ−  as the 

yield stress in uniaxial compression). The plane strain elastic modulus for the incompressible 

material is 4 / 3psE E= , and the stress component 11σ  at initial yield in plane strain compression 

is 11 112 / 3 Y

Yσ σ σ= − ≡  for all the material models considered here. Denote the incremental 

‘tangent’ modulus for plane strain tension/compression increments by 
t

E  such that 11 11t
Eσ ε= ɺɺ . 

For all the constitutive models considered in this paper, the incremental plane strain stretching 

stiffness per unit depth from the state of uniform compression is unaffected by strain gradient 

effects; it is given by 

 2
t

S E h=           (2.1) 

For all but the non-incremental strain gradient theory introduced later, the incremental bending 

stiffness per depth following uniform compression for the theories considered here can be 

written as (the derivation is given in Section 5.1) 
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Strain gradient effects enter through α  which for the three incremental SGP theories considered 

here has the form 
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where 2a  depends on the specific SGP model and is a dimensionless function of the effective 

plastic strain, 
P

ε , in the uniform state prior to application of the bending increment. The length 

scaling the gradients in the SGP models is ℓ . In the absence of a gradient effect with 0→ℓ , the 

incremental bending stiffness per depth reduces to the prediction of conventional plasticity, 

32 / 3tD E h= , which, in the absence of plasticity, reduces to the elastic bending stiffness/depth, 

3
2 / 3elastic psD E h= . 

 

Fig. 1 Cross-sectional geometry for the 2D analysis and uniaxial tension stress-strain curves. 

 

 For all the numerical results presented in this paper, the following true stress-log strain 

curve in uniaxial tension will be used 
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such that beyond yield 
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Here, 2 / 3P P

P ij ij
ε ε ε=  is the plastic strain invariant such that the total strain in the uniaxial 

tensile direction is /
P

Eε σ ε= + , N  is the strain hardening exponent, and k  is a dimensionless 

coefficient. In uniaxial compression, (2.4) applies with σ  and ε  changing sign. The curve is 

plotted in Fig. 1, revealing the smooth transition to plastic flow at the yield stress. The SGP 

constitutive models will be detailed in Section 4, but here, illustrating how gradient hardening 

affects bending stiffness, we list the input, 2a , from the three incremental models: 

 ( )

( )

2

1 10
2

10
2

Model A

3 ( ) 3
Model B

3( ( ) ) 3
Model C

A

NP Y
P P

P

NP Y Y
P

P

a C

a k
E E

a k
E E

σ ε σ
ε ε

ε

σ ε σ σ
ε

ε

− −

−




= 


= = + 

−

= = 


     (2.6)  

Model A, which assumes a quadratic contribution of the strain gradients to the energy density, 

was first proposed by Mulhaus and Aifantis (1991). Model B is in the general form suggested by 

Fleck et al. (2014, 2015), and Model C is a modification of Model B introduced in this paper. 

Arguments in favor of and antagonistic to these three versions will be presented in Section 4, 

where their details will be introduced. 

 The incremental plane strain bending stiffness normalized by the elastic bending 

stiffness, /
elastic

D D , is plotted in Fig. 2 as a function of the compressive strain for each of the 

three SGP models in (2.6) for conventional plasticity, / 0h =ℓ , and for three nonzero values of 

/ hℓ . The compressive strain ( 11 0ε ε= − ) is normalized by the compressive strain at initial yield 

in plane strain, 11 3 / 2Y

Yε ε= − . While the qualitative trends of the three models displaying the 

role of strain gradient hardening in elevating the incremental bending stiffness are similar, the 

quantitative differences are significant. The differences cannot simply be resolved by calibration 

of the respective models to the strain gradient behavior of a specific material, i.e., by choosing a 

different value of ℓ  for each model for a given material. At this point, the main conclusion to be 

drawn is that strain gradient hardening has the potential to substantially increase incremental 

bending stiffness when / hℓ  is not small. Thus, this effect may significantly increase plastic 

buckling resistance, but there is sensitivity of the predictions to the choice of the SGP model. 



 

 

Fig. 2 Incremental bending stiffness normalized by elastic bending stiffness, /
elastic

D D , versus 

compressive uniform strain normalized by compressive strain at initial yield, 
11 11/ Yε ε , for the 

three incremental SGP constitutive models identified in the text for three values of normalized 

material length scale, / hℓ , plus the conventional plasticity theory limit, / 0h =ℓ . In these plots, 

11 3 / 2Y

Y Eε σ= − , / 0.003
Y

Eσ = , 0.2N =  and 1k = . For Model A, 2
A

C = . 

 

 Non-incremental SGP theories unrealistically predict that the incremental bending 

stiffness is the elastic bending stiffness following uniform compression into the plastic range, as 

shown by Fleck et al. (2014). A discussion of the buckling behavior predicted by the non-

incremental SGP models will be presented in Sections 4 and 6.  

 

3. The 1D beam analysis of plastic buckling employing the incremental bending stiffness 

The results of the one-dimensional (1D) buckling analysis governed by Euler-Bernoulli 

beam theory will be easily assessable to anyone familiar with buckling. The classical 1D 

buckling analysis of a uniform wide column (or, infinitely wide plate) of thickness 2h  and 

length 2L , clamped at its two ends, and compressed in the lengthwise 1x -direction, is governed 

by the eigenvalue problem 

4 2
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where 
11

2P hσ= −  is the compressive force/depth, 
1

( )W x  is the deflection of the beam centerline 

in the 
2

x -direction, and D  is the bending stiffness/depth. The buckling stress and deflection 

eigenmode at the onset of buckling are 
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with (0)W  as the eigenmodal amplitude. As already remarked, in the plastic range the 

incremental bending stiffness/depth, D , must be computed in the sense of Shanley (1947) as the 

stiffness associated with continuing plastic loading throughout the column. For the column in 

Section 2 compressed in plane strain the elastic bending stiffness/depth is 
3

2 / 3elastic psD E h=  and 

the incremental bending stiffness/depth in the plastic range is given by (2.2). The minimum 

length to thickness ratio for elastic buckling of this column in plane strain compression is 

11/ / (3 )YL h Eπ σ=  corresponding to 
11 11

C Yσ σ= − .  

Curves of the critical stress and strain at buckling computed using (3.2) are plotted in 

Figs. 3 and 4 for conventional plasticity, / 0h =ℓ , and for three non-zero values of the material 

gradient parameter, / 0.2, 0.4, 0.6h =ℓ .  (The simplest way to create these plots is to express 

/L h  in terms of 
P

ε  and then evaluate and plot /L h , 
11 11/C Yσ σ  and 

11 11/C Yε ε  for values of 
P

ε ). A 

substantial enhancement of the buckling resistance is predicted for each of the SGP models, but 

the differences in the predictions between the models are even more notable than that seen for 

the bending stiffness itself. The results of the exact 2D bifurcation analysis in Section 5 will 

attest to the accuracy of the simple 1D results in the range of /L h  plotted in Figs. 3 and 4. 

 



Fig. 3 The results of the 1D plastic buckling analysis of a wide column of thickness 2h and 

length 2L , which is clamped at both ends and subject to plane strain compression for the three 

models identified in the text. The incremental bending stiffness/depth D  entering (3.2) is 

presented in (2.2) and Fig. 2. The compressive strain at the onset of buckling 
11

Cε  is normalized 

by the compressive strain at initial yield in plane strain, 
11

Yε , and plotted for three values of the 

gradient length parameter / hℓ . The curve for / 0h =ℓ  coincides with the limit predicted by 

Shanley’s tangent modulus load of classical plasticity. In these plots, 11 3 / 2Y

Y Eε σ= − , 

11 2 / 3Y

Yσ σ= − , / 0.003
Y

Eσ = , 0.2N =  and 1k = . For Model A, 2
A

C = . Elastic buckling 

occurs for / 35.6L h > . 

 

 

Fig. 4 The normalized stress, 
11 11/C Yσ σ , at buckling as predicted by the 1D theory for the 

examples considered in Fig. 3. 

 

For plastic buckling, the bifurcation mode at the onset of buckling is the sum of a 

uniform compression increment determined by the end-shortening increment, 
0Lε∆ =ɺ ɺ , and the 

eigenmode contribution with amplitude (0)W  in (3.2). For the 1D model, plastic loading 

throughout the column requires 0 (1 tanh(1/ ))hε κ α α≥ −ɺ ɺ (see Section 5.2) along the entire 

length of the column, which, in turn, requires 
2 2

0 (0) (1 tanh(1/ )) / (2 )W h Lε π α α≥ −ɺ , or 
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2
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At the point where uniqueness of the state of uniform compression is lost, bifurcation takes place 

under increasing compressive load (Shanley, 1947; Hill, 1958; Sewel, 1963).  Post-bifurcation 

considerations require that elastic loading begins at some point along the column at the onset 

buckling (Hutchinson,1974), and thus the equality holds in each expression in (3.3). 

 

4. The strain gradient constitutive models 

 The SGP models will be presented in a curtailed form with minimal background because 

the details exist in the extensive literature on SGP. Two types of models will be considered, 

designated incremental and non-incremental. The models considered here in the bifurcation 

studies are rate-independent and can be regarded as isotropic hardening models. The finite 

element studies of slightly imperfect columns based on the non-incremental SGP include a small 

level of visco-plasticity. All the models reduce to their conventional 2J  plasticity counterparts 

when the material parameter ℓ  is set to zero. The elasticity in the models is isotropic; it is 

incompressible in the bifurcation studies and compressible with a Poisson’s ratio, 0.3ν = , in the 

finite element studies. The notation common to all the models is introduced first. The reader is 

referred to the papers by Fleck et al. (2014, 2015) for more complete details on the formulation 

of the models, including the distinctions between incremental and non-incremental theories, and 

the notation. 

 A small strain formulation is first introduced and later generalize to large strains. As 

already introduced, the uniaxial tension stress-strain curve following initial yield at 
Y

σ  is 

denoted by 0 ( )
P

σ ε  for 0
P

ε ≥  with 0 (0)
Y

σ σ= , where 0 ( )
P

σ ε  increases monotonically with 

increasing 
P

ε . For the uniaxial curve, denote the hardening due to plastic strain by 

0 0( ) ( )
P P Y

σ ε σ ε σ∆ = − . Let 
P

ijεɺ  be the plastic strain increment, and P P

ij ij
ε ε=  ɺ  as the plastic 

strain. The total strain is 
ijε  and the elastic strain is 

e P

ij ij ijε ε ε= − . It is essential to distinguish 

between two effective plastic strain measures. The recoverable effective plastic strain is 

designated as 2 / 3P P

p ij ij
ε ε ε=  which can increase or decrease. The accumulated effective plastic 

strain used in classical 2J  flow theory is denoted by 
p p

e e=  ɺ , where 2 / 3P P

p ij ij
e ε ε= ɺ ɺɺ ; this 

measure can never decrease and will be referred to as the unrecoverable effective plastic strain. 



Under monotonic proportional straining, 
P

ε  and 
pe  coincide but they generally differ under non-

monotonic and/or non-proportional straining. The two corresponding measures of the plastic 

strain gradients are *

, ,2 / 3P P

P ij k ij k
ε ε ε=  and * *

P P
e e=  ɺ  with *

, ,
2 / 3P P

P ij k ij k
e ε ε= ɺ ɺɺ , with the first called 

recoverable and the latter unrecoverable. 

Two generalized effective plastic strain quantities are also used which bring in the 

material length parameter, ℓ . The recoverable measure is 
2 2 * 2

P P Pε ε= + ℓЄ  and the 

accumulated, or unrecoverable measure, is 
P P

E E=  ɺ  with 
2 2 * 2

P P PE e e= +ɺ ɺ ɺℓ . The two sets of 

measures coincide when the straining is monotonic and proportional i.e., 
0 0

, ,( , ) ( , )
P P

ij ij k ij ij kε ε λ ε ε= ɺɺ ɺ

with 
0 0

,( , )ij ij kε ε independent of λ , and λ  increasing monotonically from zero.  

The SGP constitutive relations considered in this paper satisfy the fundamental 

thermodynamic restrictions on non-negative plastic dissipation proposed by Gudmundson 

(2004); Gurtin and Anand (2005). The three incremental models are constructed such that the 

strain gradient contributions are incorporated as part of the recoverable free energy. For the non-

incremental constitutive relation considered here, the plastic strain gradients are dissipative and 

not part of the free energy. The principle of virtual work for all the formulations is 

{ } ( ),

e P P P

ij ij ij ij ijk ij k i i ij ij
V S

q dV T u t dSσ δε δε τ δε δ δε+ + = +       (4.1) 

with volume of the solid, V , surface, S , displacements, 
i

u , total strains 
, ,( ) / 2ij i j j iu uε = + , 

plastic strains 
P

ijε  ( 0P

kkε = ), and elastic strains 
e P

ij ij ijε ε ε= − . The symmetric Cauchy stress is 
ijσ  

and the stress quantities work conjugate to increments of 
P

ijε  and ,

P

ij kε  are 
ijq  (

ij jiq q= , 0
kk

q = ) 

and 
ijkτ  (

ijk jikτ τ= , 0jjkτ = ), respectively. The surface tractions are 
i ij jT nσ=  and 

ij ijk kt nτ=  with 

i
n  as the outward unit normal to S . The equilibrium equations are  

 
, ,0, 0ij j ij ij ijk ks qσ τ= − + − =         (4.2) 

with / 3ij ij kk ijs σ σ δ= − . The effective Cauchy stress is 3 / 2
e ij ij

s sσ = . With this background 

and notation in hand, the incremental SGP models will be introduced first.  

 

4.1 Three incremental SGP models 

For the three incremental models considered here, plastic loading requires that the stress, 

ijσ , is on the current yield surface defined by 
0
( )

e P
eσ σ=  and that the plastic strain increment is 



normal to this yield surface, i.e., 
P

ij P ije mε =ɺ ɺ  with 0
P

e ≥ɺ  where 3 / 2ij ij em s σ= , just as in 
2

J  flow 

theory. Note that 
P

εɺ  is only equal to 
P

eɺ  under monotonic proportional straining or when 0
P

e =ɺ . 

In general, (2 / 3 )
P

P ij ij P Pm eε ε ε=ɺ ɺ . The gradients of the plastic strain increments are 

, , ,

P

ij k P k ij P ij ke m e mε = +ɺ ɺ ɺ . Define two work-like quantities of the recoverable plastic strain  

0
0

( ) ( )
P

p p pU d
ε

ε σ ε ε=   and 0
0

( ) ( ) ( )
p

p p p p Y pU d U
ε

ε σ ε ε ε σ ε∆ = ∆ = −   (4.3) 

such that for the stress-strain curve (2.4) used to generate results in this paper, 
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+
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 Let 
1

2

e e e

e ijkl ij klLψ ε ε=  be the elastic energy density and ( , )P P Pψ ε ε ∗  be the recoverable 

contribution of the plastic strains and plastic strain gradients to the recoverable energy density of 

the material, 
e pψ ψ ψ= + . The recoverable plastic energy density contributions for three 

incremental models are 

 

1 * 2

2
( ) Model A
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      (4.5) 

For each model, the recoverable plastic contribution vanishes if the plastic strain gradients are 

zero and is always non-negative. In Model A, the contribution from the plastic strain gradients is 

decoupled from the plastic strains, while in Models A and B coupling occurs through the 

generalized effective plastic strain 
P
Є . The recoverable stress quantities are given by 

 
,

, ,
e R Re P P

ij ijkl kl ij ijke P P

ij ij ij k

L q
ψ ψ ψ

σ ε τ
ε ε ε

∂ ∂ ∂
= = = =
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      (4.6) 

 For each of the three incremental SGP models under consideration, the plastic strain 

gradients make no contribution to the unrecoverable, or dissipated, energy. To date, to our 

knowledge, no thermodynamically acceptable incremental SGP theory has been proposed with 

plastic strain gradient contributions to the dissipative energy. The non-negative plastic 

dissipation increment in the three incremental models considered here is 0 ( )P

ij ij P pd e eσ ε σ= =ɺ ɺ ɺ , 

and the accumulated plastic dissipation is 0
0

( )
Pe

p P
d e deσ=  . Thus, for these three models, the 



unrecoverable contributions to the stress quantities are 
UR

ij ij
q s=  and 0

UR

ijk
τ =  such that 

R

ij ij ij
q s q= +  and 

R

ijk ijk
τ τ= . In an increment of deformation, the increment of work of the stresses 

equals the increments of recoverable and unrecoverable energy densities, 

 ,

e P P

ij ij ij ij ijk ij kq dσ ε ε τ ε ψ+ + = + ɺɺ ɺ ɺ ɺ ,        (4.7) 

In all three models, ( )
e e e P
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L Lσ ε ε ε= = − . In addition:  
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All three of the incremental models are phenomenological but with varying degrees of 

physics underpinning their construction. Model A is almost certainly the simplest strain gradient 

plasticity law. It is mathematically attractive because of the quadratic contribution of the plastic 

strain gradient contributions to the recoverable energy and because this contribution is uncoupled 

from the contributions of plastic strains. The strain and strain gradient contributions are coupled 

and on a more equal footing in Models B and C than in Model A in the sense that they make 

comparable contributions to the hardening and energy when they are of comparable magnitude. 

The fact that Model A has an additional constitutive parameter, 
A

C , is indicative of 

independence of the strain gradient contribution in this model. Model B has the drawback, noted 

in Fleck et al. (2015), that it can lead to an ‘elastic gap’ at the onset of plastic yielding in certain 

instances, such as the case of a layer subject to plane strain tension or compression that has been 

passivated on its surfaces to block dislocations entering or leaving the surfaces. It is doubtful that 



such a gap is realistic, although the relevant experiments do not appear to have been performed 

to verify or refute the prediction. As can be seen in Figs. 3 and 4, Model B predicts significantly 

more buckling resistance due to strain gradients than the other two models. Model C is a 

modification of Model B that eliminates all elastic gaps. The strain gradients in Model C elevate 

the hardening, 0σ∆ , but not the entire yield strength 0σ  as in Model B.  Of the three incremental 

versions considered, we believe Model C has the most favorable attributes.  Incremental SGP 

theories for single crystal plasticity been formulated and analyzed with due consideration to 

these same issues by Nellemann et al. (2017 a,b). 

At the heart of the bifurcation analysis and the implementation of the incremental elastic-

plastic boundary value problems is the quadratic expression for the work of the stress increments 

through their conjugate strain increments, ,( ) / 2
e P P

ij ij ij ij ijk ij k
qϕ σ ε ε τ ε= + +ɺ ɺ ɺɺ ɺ ɺ  (see, for example, Fleck 

et al., 2014): 

0 2 * 2
( )

2 ( , ) ( )( ) ( )
pe

ij P ijkl ij P ij kl P kl p A P

p

d e
e L e m e m e C E e

de

σ
ϕ ε ε ε= − − + +ɺ ɺ ɺɺ ɺ ɺ ɺ ɺℓ  Model A  (4.11) 
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       Model B   (4.12) 
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Є Є
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   Model C (4.13) 

where 
0 0

( ) ( ) / ( ) /S d dε σ ε ε σ ε ε= −  for Model B and 
0 0

( ) ( ) / ( ) /S d dε σ ε ε σ ε ε∆ = ∆ − ∆  for 

Model C.  They can be expressed in terms of quantities in the current state plus the incremental 

strains 
ijεɺ , 

P
eɺ  and 

,P ieɺ .  

4.3 The non-incremental SGP model 

 Non-incremental SGP theories were proposed by Gudmundson (2004) and Gurtin and 

Anand (2005) with essential aspects of their implementation provided by Fleck and Willis 

(2009a,b). This class of theories employs stress quantities that are not fixed in the current state 

but depend on the increments of plastic strain and strain gradients. The construction underlying 



the non-incremental theories ensures satisfaction of the thermodynamic requirement that plastic 

dissipation is non-negative. A basic rate-independent non-incremental version will be employed 

in this paper to illustrate the issues that arise when one attempts to use this class of theories for 

modeling plastic bifurcation and buckling phenomena. The plastic deformation in the non-

incremental model is taken to be entirely dissipative such that in the notation introduced earlier 

0
R R

ij ijk
q τ= = , 

UR

ij ij
q q=  and 

UR

ijk ijk
τ τ= . Following notation and developments similar to those of 

Fleck and Willis (2009a,b), generalized stress and strain-rate vectors are defined, 

 ( )13 / 2 ,
ij ijk

q τ−=Σ ℓ  and ( ),
2 / 3 ,P P

P ij ij k
ε ε=Eɺ ɺ ɺℓ ,     (4.14) 

with ( )2(3 / 2)
ij ij ijk ijk

q q τ τ−≡ Σ = +Σ ℓ  and 
P P

E=Eɺ ɺ  as the unrecoverable generalized strain 

rate defined earlier such that 
P p

E E=  ɺ . The yield condition for this theory is 
0 ( )pEσΣ =  where 

0
( )

P
σ ε  is the plastic portion of the tensile stress-strain curve defined earlier. With 

0 ( )pEσΣ =  

regarded as a yield surface in generalized stress space, Σ  is an outward normal.  

 As in the incremental models, the model used here has ( )
e e e P

ij ijkl kl ijkl kl kl
L Lσ ε ε ε= = − . The 

other stress components are defined by the constitutive requirement 

 
0
( ) ,P

P

P

E
E

σ=
E

Σ

ɺ

ɺ
or 

,2

0 0

2 2
( ) & ( )

3 3

P P

ij ij k

ij P ijk P

P P

q E E
E E

ε ε
σ τ σ= =

ɺ ɺ
ℓ

ɺ ɺ
   (4.15) 

As in the case of the three incremental models used here, this choice reduces to the input stress-

strain curve in uniaxial tension, and it coincides with the classical 
2

J  flow theory in the absence 

of plastic strain gradients or with 0=ℓ . Further, for strictly proportional straining this version of 

the non-incremental theories coincides with Model B. The plastic work increment in this theory 

satisfies 
0 ( ) 0P P PE Eσ= ≥Σ Eɺ ɺi  guaranteeing non-negative dissipation.  

Non-incremental theories differ significantly from incremental theories in problems 

where abrupt changes occur in the direction of the strain-rate 
PEɺ , such as in most plastic 

buckling problems, because the stress quantities ( , )ij ijkq τ  defined in (4.15) are not known in the 

current state but depend on the solution increment itself. Consequences of this construction for 

physical predictions have been discussed in Hutchinson (2012), and Fleck et al. (2014, 2015). 

Relevant to the present study of column buckling in the plastic range is the finding in Fleck et al. 

(2014) that a planar layer undergoes an elastic bending response, according to the non-



incremental theory, when it is deformed uniformly into the plastic range in plane strain 

compression (or tension) and then subject to an increment of bending. In other words, the 

incremental bending stiffness/depth D  according to this class of theories is the elastic bending 

stiffness. Except in the range immediately exceeding plastic yield, an elastic incremental bending 

stiffness implies that bifurcation into a buckling mode will not occur. The consequences of this 

seemingly unphysical prediction will be explored in Section 6 by including initial imperfections 

and carrying out detailed buckling computations for the non-incremental theory. 

 

5. The 2D plane strain bifurcation problem for buckling of the clamped column 

 The exact plane strain analysis carried out in this section follows similar previous 

analyses by Hill and Hutchinson (1975), Young (1976), Needleman (1979), and Benallal and 

Tvergaard (1995). The paper by Benallal and Tvergaard is especially relevant because that 

bifurcation study is also carried out for a SGP material and considerable attention has been paid 

to some of the underlying mathematical issues that need not be readdressed here. Our starting 

point will be the quadratic functional governing the bifurcation problem for the uniformly 

compressed rectangular block of dimension 2 2h L×  in the compressed state with the geometry 

and notation given in Fig.1. In the pre-bifurcation state the rectangular column has been loaded 

monotonically in uniform plane strain compression into the plastic range with 

11 02 ( ) / 3
P

eσ σ= −  and 112 / 3P

P P
e ε ε= = − . 

 The unknown field quantities in the plane strain bifurcation problem are the increments, 

1 1 2
( , )u x xɺ , 

2 1 2
( , )u x xɺ  and 

1 2
( , )

P
e x xɺ , subject to the incompressibility condition 

1,1 2,2 0u u+ =ɺ ɺ . The 

quadratic bifurcation functional is 
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( ) ( )
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− −
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 (5.1) 

where 4 / 3psE E=  is the plane strain elastic tensile modulus (for an elastically incompressible 

material) and 
,( ) ( ) /i ix= ∂ ∂ . The incompressibility condition is enforced with a Lagrangian 



multiplier, λ , and elsewhere in the integrand contributions involving 
2,2uɺ  have been replaced by 

the substitution 
2,2 1,1u u= −ɺ ɺ . For all three incremental theories, 

( )
0

1

3 /( )3

1 /

t psP

P t ps

E Ed e
a

E de E E

σ
= =

−
        (5.2) 

where 
t

E  is the plane strain tangent modulus at 
P

e , and 
2

a  is defined for each of the theories by 

(2.6). The top and bottom surfaces are traction-free such that there are no constraints on the 

variations of the displacement increments or 
P

eɺ , while on the ends, the shear traction increments 

vanish and the eigenmode contribution to the bifurcation solution is constrained such that 
1

0u =ɺ . 

The details at arriving at (5.1) in the absence of gradient hardening are given in Hill and 

Hutchinson (1975) and for a problem with strain gradient hardening by Benallal and Tvergaard 

(1995). In brief, the stress increments in ,( ) / 2
e P P

ij ij ij ij ijk ij k
qϕ σ ε ε τ ε= + +ɺ ɺ ɺɺ ɺ ɺ  are identified as the 

Jaumann increments of true stress components. The terms in (5.1) multiplied by 
11 / psEσ  arise 

from transforming to the Jaumann rate within a rigorous finite strain context with increments 

measured from the current deformed state. The first four terms in the integrand in (5.1) derive 

from an exact reduction of ϕ  defined for the models in (4.11)-(4.13). In this formulation, the 

stress 
11

σ  in the current configuration is the true stress, 
11

ε  is the log strain, and the tangent 

modulus 
t

E  is the ratio of their increments. 

 Before carrying out the 2D analysis, we digress to interject the derivation of the 

incremental bending stiffness employed in the 1D buckling analysis in Sections 3 and 4. 

5.1 The incremental bending stiffness D  under increments of uniform stretch and bending 

 We impose strain increments which are independent of 
1

x  on the block such that 

11 0 2
xε ε κ= − −ɺ ɺ ɺ  and produce solutions governed by (5.1) with increments of strain gradients and 

plastic strain that are independent of 
1

x , disregarding the ends of the block. Our objective is to 

derive the incremental bending stiffness/depth D  under conditions of uniform bending and 

stretching such that plastic loading occurs across the block. The 2D functional (5.1) reduces to a 

1D functional of 
2( )pe xɺ  over the interval 

2
h x h− ≤ ≤  with 

0
εɺ  and κɺ  being prescribed 
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

ɺ
ɺ ɺɺ ɺ ɺ ℓ  (5.3) 

The terms in (5.1) multiplying 
11

σ  have been neglected anticipating that 11 t
Eσ << . Note, 

however, that the term 
2

11 2,1uσ ɺ  in (5.1) is critical to the stability of the column.  Through its 

contribution, 
2

1 1( / )
L

L
P dW dx dx

−
− , to the 1D functional governing buckling, it generates the 

term, 2 2

1/Pd W d x , in the 1D buckling equation (3.1). 

 The solution to the variational equation generated by (5.3), assuming no constraint on 

plasticity at the top and bottom surfaces and combinations of εɺ  and κɺ  such that 0
P

e ≥ɺ  across 

the block, is 

 2 2
0

1

sinh( / ( ))2 3

3 cosh(1/ )
P

x x h
e h

a h

α
ε κ α

α

  
= + −  

+   
ɺ ɺɺ      (5.4) 

with 2 1/ (3 ) /a a hα = + ℓ  or re-expressed as (2.3). The requirement that 
P

eɺ  be non-negative is 

 ( )0 1 tanh(1/ )hε κ α α≥ −ɺ ɺ         (5.5) 

The incremental bending stiffness in (2.2) can be evaluated using either ( )1 2 2

02
( )

P
S D eε κ+ = Φɺ ɺ  

or 11 2 2

h

h
D x dxκ σ

−
= −ɺ ɺ , where the latter follows from the principle of virtual work (4.1) using the 

fact that there are no tractions on the top and bottom surfaces of the block. 

5.2 The 2D plane strain buckling solution 

 The field equations for 
1 2

( , , )
P

u u eɺ ɺ ɺ  rendering Φ  in (5.1) stationary admit a uniform 

solution  

 1 0 2 0 0/ , / , (2 / 3)(1 / )P t psu h x u h y e E Eε ε ε= − = = −ɺ ɺ ɺɺ ɺ ɺ  for 
0

0ε ≥ɺ    (5.6) 

and separated solutions for the eigenmode problem of the form  

( )1 2( / , / , , ) ( )sin( ), ( )cos( ), ( )cos( ), ( )cos( )
P

u h u h e U y x V y x y x Q y xλ ξ ξ η ξ ξ=ɺ ɺ ɺ  (5.7) 



where 
1 2

( , ) ( , ) /x y x x h= , ( ) ( ) /d dy′ = , /h Lξ π= . The uniform solution satisfies the boundary 

conditions and is associated with an increment of 
11

σ . The separated solution satisfies the 

symmetry about 0x =  and zero shear traction increment and 
1

0u =ɺ  on the ends. Because the 

functional (5.1) involves only the gradients of 
2

u  a constant can be added to ( ) cos( )V y xξ  so as 

to satisfy 
2
( / ,0) 0u L h± =  as well as 

2 1
( / , ) / 0u L h y x∂ ± ∂ = , consistent with the idealized 

clamped-clamped boundary which otherwise do not constrain 
2

u  on the ends. When the 

separated solution is substituted in (5.1) and the integrations with respect to x  are performed, 

one obtains the reduced functional for the eigenvalue problem 
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 (5.8) 

 The system of ordinary differential equations (odes) and boundary conditions rendering 

Φ  stationary is 
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,   1 1y− ≤ ≤      (5.9) 

and  

 0, 0, 0U V Qξ η′ ′− = = = ,  on 1y = ±       (5.10) 

with 
1 112 2 / psA Eσ= − , 

2 111/ 2 / psA Eσ= − ,
3 111/ 2 / psA Eσ= + , 4 2 3A = , 

5 1
(3 ) / 2A a= + , and

2

6 2 ( / ) / 2A a h= ℓ . Anti-symmetry allows one to restrict attention to the interval 0 1y≤ ≤  with 

0U Q η= = =  on 0y = . The system of odes is 6th order with constant coefficients. The 

eigenvalue is the critical value of the compressive strain 
0

ε , or, equivalently, the associated 

value of 
P

e , which enters all the coefficients but 
4

A . We have pursued two solution methods. 

One follows the procedures of Hill and Hutchinson (1975) and, more specifically, that of 



Benallal and Tvergaard (1995) by generating the linearly independent solutions to (5.9) and then 

expressing the boundary conditions (5.10) in terms of the amplitudes of the independent 

solutions. Solving the resulting algebraic system for the critical eigenvalue and eigenmode 

requires numerical computation. A more straightforward method requiring less analytical effort 

involves reducing (5.9) to 6 first order odes and using a standard ode solver to generate the 

solutions and boundary conditions. To implement this second scheme for the eigenvalue 

problem, we imposed all of the boundary conditions except 0Q =  on 1y = , replacing it by 

1V =  on 1y = , varying 0ε  (or, 
P

e ) until 0Q =  on 1y =  is satisfied. 

 The example shown in Fig. 5 illustrates the results of these procedures for Model C and it 

also gives a clear indication of the extensive range of accuracy of the 1D buckling analysis 

presented in Section 3. There is almost no error in the 1D result for /L h  as small as 10, and the 

error for rather stubby columns with / 5L h =  is still quite small. A gratifying outcome of the 

exact plane strain analysis is that the much simpler 1D approach should be adequate for all but 

extremely stubby columns. Analogous conclusions are likely to apply a broader range of 

problems in the plastic buckling of plates and shells. 

 

Fig 5 Comparison of exact 2D plane strain buckling analysis and 1D buckling analysis for Model 

C. The results apply to a wide column of thickness 2h and length 2L  which is clamped at both 

ends and subject to plane strain compression. The compressive strain 
11

Cε  and stress 
11

Cσ  at the 

onset of buckling are normalized by 
11

Yε  and 
11

Yσ , respectively. Curves are presented for three 



values of the dimensionless gradient length parameter / hℓ  plus conventional plasticity with 

/ 0h =ℓ , and with 11 3 / 2Y

Y
Eε σ= − , 11 2 / 3Y

Y
σ σ= − , / 0.003

Y
Eσ = , 0.2N =  and 1k = .  

 

6. Finite element modeling of 2D plane strain buckling at small scales: non-incremental 

plasticity 

The finite element analysis builds upon the finite strain framework developed in Nielsen and 

Niordson (2019) for the version of non-incremental SGP theory by Fleck and Willis (2009a,b). 

This section aims to further explore the behavior of micron size wide columns that buckle in the 

plastic range specifically for a non-incremental SGP theory which, as noted earlier in the paper, 

does not predict bifurcation buckling when the column is perfectly straight. In this section, we 

study the behavior when slight initial imperfections from straightness are introduced. The 

modeling framework adopts a rate-dependent (visco-plastic) version of the SGP theory presented 

in Section 4.3, such that 

��� = 2
3 ��	
�� 

� �

��� �
� �����


� �     and   ���� = 2
3 ℓ���	
�� 

� �

��� �
� ����,��


� � ,         	6.1� 

and the visco-plastic potential is 

 !
�. 
� �" = ��	
�� ���# + 1 

� �
��� �

�%&
,                                      	6.2� 

with # being the rate sensitivity exponent and ��� the reference strain rate. The expressions for 

the micro- and higher-order stresses are identical to (4.15), apart from the rate-dependent factor 

'
� �/���)� (also discussed in Fleck et al., 2015). As remarked in Section 4.3, the rate-

independent limit of this version of non-incremental constitutive theory coincides with Model B 

for proportional straining. In the simulations to follow, the rate-independent limit is approached 

by considering low rate-sensitivity 	# = 0.01� and strain rates corresponding the reference 

strain rate 	���+/∆� = 1�.  

The finite strain model is based on an updated Lagrangian formulation, using the Jaumann 

rate, �∇�� = ���� − /� ����� − ���/���, such that the elastic relation is; �∇�� = +���01 	���0 − ���0� �. Here, 

/� �� = 	2� �,� − 2��,��/2 is the spin rate. The displacements, 2�, are the vector sum; 3 = 4 − 5, 

where 4 is the position of the material in the current configuration, and 5 is its position in the 

reference configuration. The virtual work principle is stated in (4.1) for the current configuration, 



and the finite element implementation makes use of Minimum Principle I and II first outlined by 

Fleck and Willis (2009b). In the current configuration, stationarity of Minimum Principle I yields 

6 ���7�����8
+ ���,�7����,��  d9 = 6 :��7�����8

d9 + 6 ;��7�����<
 dS,                     	6.3� 

and stationarity of Minimum Principle II gives 

6 ���7����8
 d9 = 6 >�72� �<

dS.                                              	6.4� 

when only accounting for the dissipative part of the micro- and higher-order stresses. Equation 

(6.4) is rewritten using the original reference configuration following McMeeking and Rice 

(1976), Niordson and Redanz (2004), such that the incremental form becomes 

6 ���∗ 7���� − ���	2����7���� − 2�,�72� �,��8A
 d9 = 6 >���72� �<A

dS.                    	6.5� 

By discretizing (6.3) and (6.5) using the finite element method, a staggered solution approach for 

determining the plastic strain rate field, ����� , and the displacement increments, 2� �, is adopted. In 

Step 1, the stress field in the current configuration is assumed and this allows iteration on a 

solution to (6.3) that delivers the plastic strain rate field. In Step 2, the displacement increments 

are determined from (6.5) based on the plastic strain rate field from Step 1. The reader is referred 

to Niordson and Nielsen (2019) for further details on the numerical procedure. A standard finite 

element interpolation is used such that bi-linear elements discretize (6.3) and bi-quadratic 

elements discretize (6.4), using 2-by-2 Gauss integration in both element types (see also Nielsen 

and Niordson, 2013).  

Figure 1 illustrates the boundary value problem with the imposed conditions: zero surface 

tractions on the sides and 2� & = ±∆� , >� = 0, and ;�� = 0 at D& = ±+. The undeformed column is 

discretized by elements of size +1 × +1 = 	ℎ/6� × 	ℎ/6�, such that 12 elements are used 

through-thickness of the column (in the D�-direction, see Fig. 1). A mesh-convergence check has 

been performed. Introducing an initial imperfection, with the eigenmode shape in Eq. (3.2) and 

amplitude 7 (the initial lateral deflection at the center of the column). As noted in Section 4.3, 

the adopted non-incremental (Fleck and Willis, 2009b) class of theories yields an incremental 

bending stiffness equal to the elastic stiffness when the column is perfectly straight, implying 

that bifurcation into buckling will not occur in the plastic range. Thus, the purpose of the study in 



this section is to investigate whether realistic plastic buckling behavior ensues when 

imperfections are introduced. 

Figure 6 shows the load-displacement response, in terms of normalized average end-stress 

and average overall strain, for two columns with very different gradient strengthening. The 

conventional limit, represented to a good approximation here with a very small material length 

parameter, ℓ/ℎ = 0.01, shows a reasonable match to the results from the 1D plastic bifurcation 

analysis for both the critical strain (see Fig. 3, Model B) and the critical stress (see Fig. 4, Model 

B). Moreover, the load-carrying capacity of the column drops dramatically after attaining its 

maximum in the plastic post-buckling response, as expected from earlier studies (Hutchinson, 

1974). Imperfection size plays a role in the response in the conventional limit, but the effect is 

seen to be rather limited when the imperfections are relatively small, contrasting with the column 

response when the gradient length parameter is large. The plot on the right in Fig. 6 shows the 

column response for the case ℓ/ℎ = 0.6. In line with Figs. 3 and 4, the gradient enhanced 

material stabilizes the column such that the critical stress and strain at buckling increase for 

increasing ℓ/ℎ. However, the results predicted on the right in Fig. 6 are almost certainly 

unrealistic large from a physical standpoint. Note, for example, that the strain at bifurcation 

predicted in Fig. 3 for the incremental version of Model B is 
11 11/ 3Yε ε ≅  and this is roughly one 

half the strain at buckling for the largest imperfection considered in Fig. 6. Moreover, the trend 

in Fig. 6 for ℓ/ℎ = 0.6 suggests that the strain at buckling continues to increase as the 

imperfection amplitude decreases, consistent with the fact that no bifurcation is possible for the 

non-incremental theory when the column is perfect.  

In fact, according to the non-incremental theory, more stubby columns undergo such 

extreme end-shortening that the thickening of the column becomes important, preventing the 

column from buckling. Figure 7 displays the seemingly unbounded increase of the critical strain 

with diminishing imperfection size for two length to thickness ratios and four values of the 

gradient length parameter. For both length to thickness ratios, the result for the conventional 

limit (ℓ/ℎ = 0.01) displays relatively little effect of the imperfection size in the range considered 

as one would expect, however the critical buckling strain is expected to drop for larger 

imperfections (not shown here). In comparison, the critical buckling strain shows no sign of 

leveling off for diminishing imperfection size when the gradient length parameter is not small. 



The reluctance to buckle at a small scale according to the non-incremental theory is even more 

pronounced for more stubby columns (+/ℎ = 10) considered on the right in Fig. 7. 

 

  

Fig 6 Normalized average compressive stress versus normalized average compressive strain for 

two values of the gradient length parameter; a very small value, ℓ/ℎ = 0.01, and a relatively 

large value, ℓ/ℎ = 0.6, and for several imperfection sizes; 7/ℎ = 10GH, 10GI, 10GJ, 10GK, and 

10G�. The column height is +/ℎ = 20. In these plots �&&L = −√3�L/2
, �&&L = −2�L/√3, �L/

 = 0.003, N = 0.2, and O = 1. Note that for the column on the right with ℓ/ℎ = 0.6, the 

bifurcation strain for the incremental version with Model B from Fig. 3 is 
11 11/ 3Yε ε ≅ . 

 

 

Fig 7 Normalized critical buckling strain versus the imperfection size, 7/ℎ, for four values of the 

gradient length parameter ℓ/ℎ = 0.01, 0.2, 0.4 and 0.6, and two different column length to 

thickness ratios +/ℎ = 20 (left figure) and +/ℎ = 10 (right figure). In these plots �&&L =
−√3�L/2
, �&&L = −2�L/√3, �L/
 = 0.003, N = 0.2, and O = 1.  



 

7. Conclusions 

 The three incremental strain gradient plasticity models considered in this paper predict 

that buckling resistance in the plastic range is substantially enhanced if the ratio of the material 

length parameter to the column thickness, / hℓ , is greater than about 0.2 or 0.4. Experimental 

measurements of ℓ  yield values typically in the range of a fraction of a micron to perhaps 5 

microns, with softer metals tending to have a larger length parameter than those that are harder. 

Of course, to some extent, the measured value depends on the constitutive model employed to 

analyze the test and back out the length. Given the range, 0.1 5m mµ µ< <ℓ , the present 

predictions suggest that columns with thicknesses in the range, 0.5 25m h mµ µ< < , depending on 

the material, will display enhanced plastic buckling resistance due to strain gradients. This study 

shows that there is considerable sensitivity of the predictions to the details of the SGP models. In 

Section 4.2, we have argued Model C appears to have the most favorable attributes of the three 

incremental models considered here. 

 While non-incremental formulations have some attractive features for numerical 

implementation, the present study suggests that they have severe limitations for analyzing 

column buckling in the plastic range. It has been shown that not only does this class of theories 

predict that bifurcation into a buckling mode is effectively excluded, but even when 

imperfections are introduced, these theories predict that plastic buckling will be postponed to 

unrealistically large strains and stresses. There is good reason to believe that the inadequacy of 

the non-incremental SGP theories for column buckling will carry over to other instabilities in the 

plastic range, such as the plastic buckling of plates and shells and to more exotic phenomena 

such as shear bands and surface wrinkles.  

 The more complicated and accurate 2D plane strain bifurcation analysis has shown that 

the 1D analysis based on Euler-Bernoulli beam theory with input of the gradient enhanced 

bending stiffness retains good accuracy for all but very stubby columns, assuming an incremental 

constitutive model is employed. For the incremental models, it remains to explore the initial 

post-buckling behavior and the effect of initial imperfections. It also remains to determine the 

gradient enhancement of the incremental bending stiffness for columns of various cross-sections. 

 

Acknowledgements  



KLN is financially supported by VILLUM FOUNDATION EXPERIMENT in the project 

``Micron-Scale Crashworthiness", grant no. 00028205. 

 

References 

Benallal, A., Tvergaard, V., 1995. Nonlocal continuum effects on bifurcation in the plane strain tension-

compression test. J. Mech. Phys. Solids 43, 741-770. 

Engesser, F., 1889. Ueber die knickfestigkeit geradu strabe. Z. Architek. Ing. 38, 455. 

Fleck, N.A., Willis, J.R., 2009a. A mathematical basis for strain-gradient plasticity theory. Part I: Scalar 

plastic multiplier. J. Mech. Phys. Solids 57, 161–177. 

Fleck, N.A., Willis, J.R., 2009b. A mathematical basis for strain-gradient plasticity theory. Part II: 

Tensorial plastic multiplier. J. Mech. Phys. Solids 57, 1045–1057. 

Fleck, N.A., Hutchinson, J.W., Willis, J.R., 2014. Strain gradient plasticity under non-proportional 

loading. Proc. R. Soc., A. 470, 20140267. 

Fleck, N.A., Hutchinson, J.W., Willis, J.R., 2015, Guideline for constructing strain gradient plasticity 

theories. J. Appl. Mech. 82, 071002, 1-10. 

Gudmundson, P. A., 2004. A unified treatment of stress gradient plasticity. J. Mech. Phys. Solids, 52, 

1378-1406. 

Gurtin, M. E., Anand, L., 2006. A theory of strain-gradient plasticity for isotropic, plastically irrotational 

materials-Part I: Small deformations. J. Mech. Phys. Solids, 53, 1624-1649. 

Hill, R., 1958. A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 

6, 236-249. 

Hill, R., Hutchinson, J. W., 1975. Bifurcation phenomena in the plane strain tension test. J. Mech. Phys. 

Solids 23, 239-264. 

Hutchinson, J.W., 1974. Plastic Buckling. Adv. Appl. Mech. 14, 67–144. 

Hutchinson, J.W., 2012. Generalizing J2-flow theory: Fundamental issues in strain gradient plasticity. 

Acta Mech. Sin., 28, 1078-1086. 

Kyriakides, S., Corona, E., 2007. Mechanics of Off-Shore Pipelines: Vol. 1. Buckling and Collapse. 

Elsevier, Oxford, UK. 

Kyriakides, S., Lee, L-H., 2020. Mechanics of Off-Shore Pipelines: Vol. 2. Buckle Propagation and 

Arrest. Elsevier, Oxford, UK.  

McMeeking, R.M., Rice, J.R., 1975. Finite-element formulations for problems of large elastic-plastic 

deformation. Int. J. Solids Struct. 11, 601-616. 



Muhlhaus, H. B., Aifantis, E. C., 1991. A variational principle for gradient plasticity. Int. J. Solids Struct., 

28, 845-857. 

Needleman, A., 1979. Non-normality and bifurcation in plane strain tension-compression. J. Mech. Phys. 

Solids 27, 231-254. 

Nellemann, C., Niordson, C.F., Nielson, K.L., 2017a. An incremental flow theory for single crystal 

plasticity incorporating train gradients. Int. J. Solids Struct. 110-111, 230-250. 

Nellemann, C., Niordson, C.F., Nielson, K.L., 2017b. Hardening and strengthening behavior in rate-

independent strain gradient crystal plasticity. Eur. J. Mech. A/Solids 67, 157–168. 

Nielsen, K.L., Niordson, C.F., 2013. A 2D finite element implementation of the Fleck-Willis strain-

gradient flow theory. Eur..J. Mech. A/Solids 41, 134–142. 

Nielsen, K.L., Niordson, C.F., 2019. A finite strain FE-Implementation of the Fleck-Willis gradient 

theory: Rate Independent versus visco-plastic formulation. European journal of Mechanics A/Solids 

75, 389–398. 

Niordson, C.F., Redanz, P., 2004. Size-effects in plane strain sheet-necking. J. Mech. Physics Solids 11, 

2431-2454. 

Sewell, M.J., 1963. A general theory of elastic and inelastic plate failure. Part I. J. Mech Phys. Solids 11, 

377-393. 

Shanley, F.R., 1947. Inelastic column theory. J. Aeronaut. Sci. 14, 261-267. 

von Karman, Th, 1910, Untensuchungen über knickfestigkeit, mitteilungen über forschungsarbeiten. VDI 

(Ver. Deut. Ing.), Forschungsh. 81. 

Young, N.J.B., 1976. Bifurcation phenomena in the plane strain compression test. J. Mech. Phys. Solids 

24, 77-91. 

 


