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Abstract

A mnodel is introduced and analyzed for localization of piastic flow in anti-plane shear
arising from strain softening material behavior. The model predicts the evolving shear strain
variation in a band within which strain sofiening starts at "defects” which are distributed in
various ways in the band. Resuits for & single defect, uniformly distributed defects,
clustered defects, and nonuniformly distributed defects are presented and compared. A
scheme for estimating the localization strain due to an arbitrary nonuniform distribution of
defects based on the notion of 2 critical cluster is proposed and evaluated. The scheme bas
promise for extension to predict localization in the presence of actual distributions of voids or
void-nucleating particles in ductile materials.
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Lintroduction

The predominant ductile failure mechanism in structural metals is micro-void
nucleation, growth and coalescence. Flow localization is usually the critical step in the failure
process in that the nucleation and growth of the voids results in strain softening which
promotes instability in the form of a separation or shear band. Localization can be triggered by
void nucleation, especially in high strength, low strain hardening materials. Moreover,
localization can begin when the void fraction is still tiny (e.g. a small fraction of a percent) with
coalescence occurring late in the process. The localization process itself is highly sensitive to
nonuniformity in the distribution of voids or void-nucleating particles. This is most clearly
seen from the infinite band calculations of Yamarnoto (1) and Saje, Pan und Needleman (2), as
illustrated for a separation band in Fig. 1.1. In these studics the material is characterized
by Gurson's (4) continuum theory of dilatational plasticity. In the examples in Fig. 1.1 the
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Fig. 1.1 Axisymmetric localization strain in infinite band with stress S normal to
band and stress T tangent to band. The difference between initial void volume

fraction in the band and outside the band is lj; ff . The strain hardening exponent
is 1410 --- see Ohno and Hutchinson (3) for further details.

material in the band has an initial void volume fraction, b, which is greater than that, f2, for the
material outside the band. The calculation iracks the deformation in the incipient band relative
to that outside the band until localization starts wherein all subsequent plastic deformation takes
place in the band. The figure shows how strongly the strain at the onset of localization (i.e. the
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maximum strain obtained outside the band) depends on the noneniformity of the void
distribution as measured by f¥ - f0 . Differences of void volume fraction between the material
inside and outside the band of just 10-3 result in & substantial drop in ductility, particularly at
high triaxiality T/S . The reference for f* = 0 is the material with a uniform distribution of
voids. Then, localization occurs as a bifurcation-type instability.

While the infinite band studies reveal the highly imperfection-sensitive nature of the
localization process, the infinite band imperfection is not a realistic nonuniformity.
Nevertheless, Spitzig, Smelser and Richmond (5) showed that experimental trends for
localization-lirnited ductility in iron compacts with initial porosity could be approximaltely
reproduced using infinite band predictions if the initial band porosity was taken to be 1.510 2
times the average porosity. At the same time, their observations of the actual initial distribution
of the voids revealed clusters of voids where the local porosity was as much as 4 to 7 times the

average porosity.

Calculations for more realistic nonuniform distribution of voids or void-nucleating
particles are extremely difficult due to the nonlinear character of void growth and interaction
and of the localization process itself. We mention three such studies here, cach of which
considers material with an initial nonuniform distribution of voids. Ohno and Hutchinson (3)
considered circular disc-shaped clusters normal to the direction of principal straining and
leading to a scparation band of the kind which occurs in the central region of the cup-cone of a
tensile specimen. This study was introduced to answer the question of how large must the
cluster be for it to be almost as deleterious as the infinite band nonuniformity. The curves in
Fig. 1.2 show the relation between the localization strain and the size of the cluster for four
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Fig. 1.2 Axisymmetric localization strain due to disk-shaped cluster of voids of
width = 2/ and thickness A . Material properties are otherwise the same as in
Fig.1.1 --- see Ohno and Huichinson (3) for further details.
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riaxiality levels. For sufficient large cluster size the localization strain does approach the
infinite band predictions of Fig. 1.1. In the limit as the cluster size goes to zero the bifurcation
localization strain for the uniform distribution pertains, The size of the cluster corresponding to
the transition between the two limits (designated by a dot in Fig. 1.2) is much smaller at high
triaxiality than at low triaxiality. At low triaxiality large clusters are required to cause a
significant loss in ductility due to nonuniformity. By contrast, at high stress triaxiality
nonuniformity in the form of relatively small clusters are severely deleterious. One obvious
conclusion to be drawn from these results is that one can not infer localization-limited ductility
by considering the interaction between just a few neighboring voids, as has sometimes been
attempted. Generally speaking, localization invoives the coliective interaction among a fairly
large group of voids which then engulf even more voids,

Becker (6) has carmied out a two-dimensional plane strain finite element siudy of
localization using the Gurson's continuum material model where the distribution of the initia}
porosity was chosen in accord with a pattern measured in a two-dimensional section of a
powdered iron compact. By comparing the macroscopic behavior of the material with the
nonuniform distribution with that due to 2 uniform distribution with the same average initial
void volume fraction, Backer established that prior to localization there was little cbservable
influence of nonuniformity on macroscopic response. However, localization occurred in the
material with the nonuniform distsibution at much lower overall strain.

A series of model experiments by Magnusen, Dubensky and Koss (7) on thin strips
pulied in tension was designed to illuminate the effect of nonuniform void distribution on strain
1o failure by localization. A group of specimens was prepared with circular holes of identical
diameter and with the same number of holes per unit area. The centers of the holes were
located randomly subject to a constraint on the distance between holes. The level of
nonuniformity was varied by changing the minimum allowable distance between centers --- the
smaller the minimum, the greater the nonuniformity in the distribution. The experimentally
measured strain to localization dropped significantly as the nonuniformity in the distribution
increased. The effects of nonuniformiry are large with more than a factor of two reduction in
the lccalization strain for the most nonuniform distributions compared to specimen with a
uniform distribution of holes. A theoretical model which simulates the interaction between the
nonuniformly distributed holes in the strips to predict the localization strain has been proposed
by Magnusen, Srolovitz and Koss (8). As in the case of the model presented in this paper,
their model was formulated with an eye to keeping the computational effort at a level such that
results for many realizations of distributions could be generated,

The main aim of this paper is a study of the relation between strain localization and
nonuniformity in the distribution of the microstructural defects which cause damage. A
relatively simple anti-plane shear model is proposed which permits the calculation of the
localization strain for any given distribution of defects. The model is used to identify a scheme
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for characterizing nonuniformity and for predicting its effect on localization failure.
2. Model for Localization in Anti-plang Shear

The main features of the model are introduced in Fig. 2.1. The stress-strain curve of
the material in pure shear is characterized by its elastic modulus L, its linear hardening tangent
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Fig.2.1 Details of anti-plans shear model: pure shear stress-strain curve on left;
distribution of strain at onset of softening, Yy(x) , in band at upper right; and shear
band geometry at lower right.

modulus 1, and a softening modulus |tp governing behavior once the nucleation of micro-
voids starts at ¥ =Yy. That is, in pure shear

y TS Yy
= uy for Y, <ySy, (2.1)
HpY LES Y

Whether the continuing softening is due to deformation of the voids or continuous nucleation
of additional micro-voids is not at issue here. It is assumed that the nucleation strain in the
potential localization band is nonuniformily distributed according to Yy (x). The model is used

to explore the spread of the softening regions, their interactions, and the uitimate shear
localization in the band.

The infinite blocks of material on either side of the band are assumed to have a large
nucleation strain 50 that nucleation, and therefore softening, is confined to the band. The
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thickness of the band is taken to be A . In an actual material A is determined by the micro-
structure and is typically on the order of the micro-void spacing. The following two modeling
approximations are made:

(i) With Tj=0y; and ¥, = 2e3; (i = 1,2) as the non-zero stresses and strains in anti-
plane shear, the incremental stress-sirain behavior according to J; flow theory for plastic
loading in the hardening range is

ool + - IARNICEY Q.

where a repeated indice implies summation. The incremental moduli in the infinite blocks of

material on either side of the band are taken to be uniform and equal to values at infinity. That
15, with 12 =% and 11 =0 in (2.2), the incremental relation in the blocks for T Ty 18

X A
v Y=,

(ii) The strain in the band is taken to be independent of x3 . Because of the symmetry,
¥, = 0 in the band, Thus the swess and strain in the band, 1(x) = 15(x) and ¥(x) = y,(x} , .
satisfy the pure shear relation shown in Fig. 2.1 and specified by (2.1).

This completes the specification of the model. The equations governing the distribution
of ¢ and ¥ in the band can be reduced to an integral equation. For a given distribution of
nucleation strain Yy(x} , the integral equation is solved numerically at increasiag levels of
remote overall strain ¥ until localization occurs, as will be discussed in more detail below.
The formulaton of the governing equations for the various cases discussed below are given in
the Appendix along with some discussion of the numerical solution methods.

3.Single Defect
The first distribution of nucleation strain in the band to be counsidered will be referred to

as a single defect. Interaction between multiple defects will be considered in later sections.
For the single defect (with x = x)

Y0 =1 + ) exp [— % Gﬁ G.1)

As shown in Fig. 3.1, [ is a measure of the half-width of the defect, y;l is the minimum
nucleation strain at the center of the defect, and 'yg is the nucleation strain well away from the
center. The level 1,3 can be regarded as the nucleation strain in the material outside the band
as well since ¥ never exceeds yg and thus nucleation is confined to the band, as already

mentioned. In other words, the single defect case represents a local region of width of roughly
2! in which the nucleation strain has 2 minimum v}, below the otherwise uniform level Yy of
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As 7 is increased from zero the behavior in the band and blocks is wnifoma until ¥
atizins 4y . For § > vy the region of softening in the band spreads and the strain in the band

in the vicinity of the defect grows more rapidly than the overali strainY . This is illustrated by
aplot of the sivain at the center of the defect versus ¥ in Fig, 3.2. The localization strain ¥, is
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Fig.3.1 Disaibution of Y(x) corresponding to single defect.
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Fig.3.2 Behavior of shear band at center of defect versus remote strain showing
the 1imit strain corresponding to localization.

precisely defined as the value of ¥ at which additional strain in the band can occur with no
further increase in ¥ ., In effect, the softening region has grown large enough to cause
nucleation, and thus softening, to spread with no further increase in remote stress T .

Computed values of the localization strain ¥, as & function of ’Y;,, for various sizes of

defects, /A , are shown in Fig. 3.3 for the choice of model parameters

B=0051 , py=00lu , ¥4=15y, (3.2
The following observations are evident from Fig. 3.3. For small defects with I/A less than
about 1, the defect has little effect on localization and ¥ = 'Vr(q) . For large defects with /A
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greater than about 10, localization sets in very soon after the first occurrence of nucleation and
¥, is only slightly larger than 7; . For a given size of defect, I/A, §_ diminishes nearly {but not

exactly) linearly with y§ ~v} .
15
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Fig. 3.3 Localization strain versus nucleation strain for single defect of various
sizes, /A , of defects (i, = 0.05t, Up = 0.01u, ¥ = 15yy).
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Fig. 3.4 Localization strain versus softening modulus for two sizes of single
defects (1= 0.051,%) = L5¥y, ¥y = 5¥y)-
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The model also predicts & strong sensitivity of the localization strain to the softening
modulus pp . Figure 3.4 displays this dependence for two sizes of defects with p, = 0.054 ,
y; =5Yy , and 'ylf,’ =15Yy . As an aside, we note that the source of continued softening in
shear in a given material element is not at all well established, Continuing nucleation of micro-
voids would produce continuing softening. Another mechanism proposed by Teirlinck, Zok,
Embury and Ashby (9) involves finite deformation of existing voids without additional
nucleation, but the status of this mechanism is stitl uncertain (10),
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Fig. 4.1 Diswibution of y(x} for uniformly distributed defects.
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Fig. 4.2 Localization sirain versus the ratio of defect size to defect spacing for
uniformly distributed defects of various sizes (u;= 0.05u, up = 0.01y,

1 = 15%. % =5%)-
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4_Uniformly Distribued Def

Interaction among defects is now explored for a uniform distribution of defects. The
distribution Yy (x) shown in Fig. 4.1 has period d with the centers of the defects located at
xi=id ,i=0, 21, £2, ... . Within each "defect” the nucleation strain varies in the same
manner as in the single defect case, i.e.

2
1

;
| @3

\ /

. i XX,
Yo%) =15 + (o) €xp [— 3 [
for |x-x;] =d/2.
The dependence of the localization strain on the size to spacing ratio of the defects, 2/d,
is shown in Fig. 4.2 for three sizes of defects, #3, . The parameters of the model used in these

calculations are those in (3.2} with y;‘ = Syy . For sufficiently widely spread defects (i.e.
2i/d < 0.1 in Fig. 4.2} therc is essentially so interaction and % coincides with the single defect

resuit as 2//d —+ 0. Fowever, when the spacing is decreased, interaction becomes pronounced
reducing the localization strzin well below the single defect result and ulidimately to ')'; when the

defects “overlap” significantly.
5. Clusters of Defects

We now consider nonuniform distributions in the form of clusters of defects. The
clustex results will play a central role in a scheme proposed in the next section for estimating the
localization strain for an arbitrasily nonuniform distribution of defects.

An n-defect cfuster has n equally spaced defects with centers at
X, = (-1 Gi=1m 5.0

where the left-most defect is arbitrarily centered at x; = 0 and d is the spacing between centers.
The distribution of the nucleation strain is still given by (4.1) for |x-;} €d/2 withi =2, n-1.
For the left-most defect (i.c. x < d/2) ¥y is given by (4.1) with x; = 0, where for the right-most
defect (i.e. x > (n-3/2)d), ¥y is given by (4.1) with x; = (n-1)d .

Curves of localization strain ; as a function of defect spacing d are shown in Fig. 5.1

for clusters of 2, 3, 4 and 5 defects. These curves are computed with the model parameters
chosen to be
w=0051 , Pp=00tp , R=157, , %=5Y%, and MA=4  (52)

For large spacing d the interaction between the individual defects in the cluster becomes
negligible and ¥, approaches the resuit for an isolated single defect. The closer the spacing,

the greater the interaction and the smaller the localization strain.  The lowest curve in Fig. 5.1
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labeled n = o= is the result for the uniformly spaced periodic defect distribution of Section 4.
Note that the 5-defect cluster is almost as deleterious as the infinite-defect distribution,

YLI'Y v

o 25 50 [ 20
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Fig. 5.1 Localization strain versus spacing between defects, d/A , for clusters of
defects (N =2,3,4,5and =) (4= 0.054, tp = 0.01p, 73 = 157y, ¥y, = vy,
i = 4),

While the qualitative features predicted by this model are likely to have general validity,
detailed predictions, such as the number of defects needed to constitute a deleterious cluster,
are likely to be model specific. For example, the study of Ohno and Hutchinson (3) indicates
that the size of a deleterious cluster in a separation localization is a strong function of stress
triaxiality. Whether this is so in shear localization is not known.

. Nonuniform Distributions of Defs ;

Let 0 < x £ L be a segment of the x-axis on which a representative distribution of
defects exists (such as a typical section of 2 material element examined for defects). Suppose
there are N defects each of width 2/ within this segment. Qutside this segment let the
distribution of defects be periodic with pedod L. That is, the representative segment of x-axis
is repeated over the whole x-axis. The arez fraction, or line fraction, of defects is 2N//L .

Let the centers of the defects, x; (i = 1, 2, ..., N), within the representative segment
[0,L] be randomly located. The nucleation strain y(x) within (0,L] is again determined by
{4.1) where x; is the center within [0,L) nearest x. For a given realization yy(x) the localization
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sirain can be calculated numerically using the integral equation formulation given in the
Appendix,

Four realizations are given in Table 1 chosen to emphasize the effect of clustering,
These same realizations will be used to motivate a scheme for estimating the localization strain.
Each of the four-defect distributions in Table 1 has the same line fraction of defects,
AN = 0.16 . The first is a uniform distribution which coincides with the case discussed in
Section 4. The second, third and fourth distributions comrespond to N = 4 but with two, three
and four defects clustered together, respectively. The localization strains for these four
distributions differ significantly, ranging from 9.52y for the uniform gdistribution to $.78y,,
for the 4-defect cluster. The effect of nonuniformity is clearly important with ciustering
promoting earlier localization.

Table 1. Four typical distributions with the same line fraction of defects show
the significant difference of the localization strains, where x; (i = 1,2,3,4) is the
center of the defects.

Wi= 0.05, hp = 0.014, ¥ = 1S¥y, ¥, =5¥y . #A =4, N=4 and LA =200

Distributions 1A XA ik x4/A Yty
uniform defects 25 75 125 175  9.52
2 defect cluster 25 35 125 175 7.39
3 defect cluster 25 31 37 175 6.29
4 defect cluster 25 30.2 354 406 5.78

We can use these same four distributions to illustrate another nonlinear aspect of
clustering, Define the average sirain in the band as

L -
Yave = L‘lj‘)’(x)dx ®.1)
0

Fig. 6.1 displays the remote shear stress  (which necessanily coincides with the average stress
in the band) as a function of v, for each distribution. The gverall strain in an actual specimen

is the weighted average of the strain in the band and the strain outside the band. From Fig. 6.1

it is evident that the overall stress-strain curve will be lowered by clustering. This feature is
observed in the stress-strain cusves for the perforated strips measured by Magnusen, Dubensky
and Koss (7).
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Fig. 6.1 Remote stress versus average strain in band for 4 defect distributions in
Table 1. Each distribution has the same fraction of defects corresponding to 0.16.

smation Sct

We now introduce the notion of a critical cluster to estimate the localization strain for 2
given nonuniform distribution of defects. With x; (i = 1, N) as the defect centers within the
representative section,

(1) Find the pair of defects closest to one another, denote the distance between their
centers by d2), and let yg) be the localization strain predicted for the 2-defect cluster with
spacing d = d() in Fig. 5.1 (or from 2 similar plot with basic parameters i, iy, p, Ty, €tc.
corresponding to that of the material element),

(2) Similarly, fori =3, 4, ..., find the smallest i-defect cluster, let d) denote the
average spacing between the centers for the defects in the cluster, and let yg\’ denote the result
from a plot like Fig. 5.1 for the localization of an i-defect cliuster with spacing d = ¢

(3) Identify the critical clusier as the one with the lowest localization strain, i.e.

. 2) (3 (4
Yﬁzﬂun {'YL ’YL 7YL l}

(4) Take f us the estimate of ¥, .

(6.2)

Verification of the Estimate Sct

This scheme was tested against the full integral equation solution for ¥ for more than
2000 distributions generated randomly. The parameters were chosen as i = 0.054,
pp =001, Y5 =15y, vy =5¥ and /A =4, and the centers of the defects were located by
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a random number generator but were not permitted to be closer to one another than the defect
haif width, I. The error between the estimate, ¥, and the computed localization strain ¥ never

exceeded 3%, in any of the more than 2000 realizations.

The success of the estimation scheme reflects the fact that the nonlinear localization
process is largely controlled by the most critical cluster of defects. In principle, the estimation
scheme can be generalized to more complicated models and even to actual materials. However,
the scheme does require that results for the effect of the bayic n-defect clusters (such as those in
Fig. 5.1) are available either from computation or experimentation.

~orrelati Ezl;..!”.. Spacins B D

In their series of perforated thin strip experiments, Magnusen, Dubensky and Koss (7)
found the localization strain to diminish with increasing nonuniformiiy as measured by the
minimuin spacing between holes. Motivated by this observation, we have taken the more than

2000 realizations for which ¥, was compured in the above subsection and have plotted §; asa -

function of the minimum spacing, dgi, , occurring between any two defects for 2ach
realization. The upper and lower curves in Fig. 6.2 cormespond (o the envelopes of largest and
smallest values of 3 attained at a given dy - The strong correlation of 7 with dp;, seen in

the experiments of Magnusen et af. (7-8) also holds for the model. The lower curve in Fig. 6.2
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Fig. 6.2 Envelope of localization strain versus the minimum defect spacing for
more than 2000 distributions (4, = 0.05, up = 0.0, ¥g = 15¥y, ¥y =S¥y,
UA=4,N=4).
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is quite close to the prediction for uniformly distributed defects where dy,;q is identified with d.
in Fig. 5.1. This is readily understood because % _for a large cluster approaches that for a
uniform distribution with the same spacing (cf. Fig. 5.1). On the other hand the upper curve in
Fig. 6.2 is very close to curve for the 2-defect cluster in Fig. 5.1. Again, this is readily
understood in terms of the presence of a realization with an actual 2-defect cluster with
dmin = d. The spread between the upper and lower curves in Fig. 6.2 obviously reflects the
susceptibility of the material to the size of the actual ciuster over and above the minimum
spacing. At low minimurm spacing the variability is fairly large in the case of the modef and the
correlation of ¥ with dmy 15 not as strong as at larger values of dpig -
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APPENDIX

Single Def;

The integral equation governing the shear stress distribution within the band is now
specified. Nucleation always occurs after the two blocks on either side of the band have
vielded., Write the total displacement 25

Uy =YX, WK LX) (A1)

with w denoting the contribution additional to the displacement associated with the uniform
state. With 7 increased monotonically above Yy, and with nniform moduli in the blocks

associated with the stress state at infinity, J; flow theary can be "integrated-up” o give the
following equation for w

HWo Wi, =0 (A.2)

Fig. A.]

The equation governing the distribution of T35 = t(x) within the portion of the band
whercin nucleation has occurred is formulating by taking the siress and shear displacement
across the band as the boundary conditions on a "crack”, in analog to the Dugdale—Bax:enblatt
model. Denote the segment of the band in which nucleation has occurred (i.e. ¥> ¥y(x) ) by
x| < B. Let K(x,£) be the crack opening displacement at x due 1o a pair of “wedging" forces
on the otherwise traction free crack faces at € as shown in Fig. A.1. By solving (A.2) with
appropriate boundary conditions, one finds

K(x,&) = —-2— log Dix4l A3

o, D2-1§+\/DTx2-‘/Dz-§2
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g (A.2) with

(A3)

The extra shearing displacement 8(x) = w(x,0+)-w(x,0-) of one crack face relating to
another for x| < D is given by

D .
500 ~ [KOuBIEIE + 22(uny VD' a4
b

where the second term is the opening due to the remote stress T . The extra shearing
displacement is taken to be relaied to the shear strain in the band, ¥(x) , by

8(x) = A[¥(x) - ¥x(x))] (A.5)

where 'I)\’(T) is the strain at stress 1 had nucleation not occurred, i.e.
¥r)y=p't for t<1,

A6
=Yy + 1:.;1(1-1Y) for 12 Ty (A6)

Equation {A.4) thus models the additional sirain in the band as measured by 8(x) due to
nucleation of damage. It is an integral equation for t(x), or equivalently for Y{(x) , for x| S D.
The equation must be supplemented by a condition which eliminates the singularity in T at x =
+D and ensures that T varies continvously across the ends of the nucleation region. This
equation for D is

2 fr(é{nz-tz]-mdi =% A7)
0

where the symmetry of shear stress T, T(-&} = ©(E), has been used, As discussed in the body
of the paper, the equation admits a solutionfor Y < ¥, . AsY - ¥, » av/dy,_ grows without

bound.
Uniformly Distribufed Defects

The formulation for the periodic array of identical defects is similar to that just
described. The kemel function for an array of cracks of period d is now

tog fOIfx) - £ (A.8)
B 172
cos [’%J [0 - 1] + W{’E—x]i fe) - 0|

K(xyg) = 2
=,

where f(§) = cos?(rl/d) . The integral equation again takes the form (A.4) with (A.5) where
now the second term on the right hand side of (A.4) is




7%d f(x) f(x)
__10g[ —— 4 [z (A9
= /iR, \/ D) ~ \ TD)

Equation (A.7) is replaced by
112
£ oyl
2d"_[z(g) 1[@} j dE = % (A.10)
]

Noguniform Diswibution of Defects

The formulation of the model for clusters of defecis and for arbitrarily nonuniform
distnbutions differs frorn that described above in that it is incremental and it models the band
somewhat differently. The incremental form of (A.2) governing the additional displacement
increment W(x,y) in the blocks on either side of the band is

HW iy + LW gy = O (A11)
To couple the band to the blocks we will use the Green's function correspond to the

displacement increment at (x,0) due to 2 unit concentrated shear load at (£,0) on an otherwise
traction-free suifaceony =0

K(X,) = —=—1log Ix-¢| (A.12)

LAy

The additionat displacement incremént S(x) across the band is now taken as
80 = 10 -7] (A.13)

where ¥ is again the strain in the band and ¥ is the remote strain. The band and the blocks are
coupled together using (A.12) by requiring that the additional displacement across the band be
compatible with the additional displacement of the blocks, i.c.

Lbw =AIK(X'€){'1@ -ilag (A12)

For numerical purpose it is better to work with 2 modified form of (A.14);

b0 - 800)] - _|'f<<x,2';){ HE) - 1(0)JdE (A15)

=3

where k(x,@) = K(x,E) - K(0,E) . The system of equations is completed by requiring ¥ and %
to be related by (2.1) and by the overall equilibrivm condition
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(A.14)

(A.15)

viring ¥ and ©

ﬂt(&) -t =0 (A.16)

Egs. (4.15), (2.1), (A.13) and (A.16) comprise the set of incremgntal equations
governing the increment of strain distribution in the band as a function of ¥ . Localization
occurs when a non-zero distribution ¥(x) is possible with 7 ={}. As mentioned in Section G,
the nonuniform distribution was taken io be periodic with period L characterizing a
representative material element. In this way the infinite integrals could be reduced to a sum of
finite integrats of the form

o L
[Reboren = Y, [Resit Ot A1)
- ju=

where f has periocd L. The sum was approximated by 201 terms with j sumsming from -1060 to
100. This same procedure was applied to obtain the cluster results in Section 5. The length L
was taken to be very large compared to total width of the cluster so that to a very good
approximation the interaction between clusters was negligible.

The model for the nonuniform distribution does not reduce exactly to the model for the
single defect or the uniform distribution of defects when specialized to these cases.
Nevertheless, the numerical predictions of the two models are very close when applied to the
same defect distribution assuming A/L is sufficiently small. For example, the results for the

uniform distribution of defects in Fig. 4.2 are repraduced to within 0.5% by the general model

~ as long as A/L £0.005.




