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Axial Buckling of Pressurized Imperfect Cylindrical Shells

Joux HurcHINsON*
Harvard Undversity, Cambridge, Mass.

Whereas some experiments seem to confirm the contention that the axial buckling load of a
pressurized cylinder approaches the classical valne (i.e., the value predicted by the linear buck-
ling equations) for sufficiently large internal pressure, other tests indicate a much smaller
buckling load increase resulting from pressurization. Here it is shown that the buckling load
of an elastic shell with asymmetric imperfections, but sufficiently free of axisymmetric imper-
fections, closely coincides with the classical value for relatively small values of internal pres-

sure. However, the buckling load of a shell with a predominance of axisymmetrie imper-

fection can remain well below the classical value for the entire range of internal pressures for

which the shell bruckles elastically. Of particular interest is the caleulation of an upperbound
to the buckling load as predicted by the nonlinear Donnell-shell equations for a shell with

axisymmetric imperfections,

Introduction

HE several published analyses of pressurized cylindrieal

shells under axial compression do not adequately explain
the variety of behavior that has been reported for such struc-
tures, The linear buckling equations predict that the buck-
ling parameter

A= [3(1 — »)VR/ER) o — (pR/2h)]

is unity for pressurized and unpressurized shells. Here o is
the applied compressive stress, and pR/2h is the axial stress
resulting from pressurization as depicted in Fig. 1, Experi-
ments indicate that this buekling parameter is usually on the
order of one-half or one-third for unpressurized shells and is
larger for pressurized shells. In some tests the parameter is
unity for shells under sufficient internal pressure, although in
other cases this parameter remaing well below unity for the
entire range of pressures for which the shell buckles elastically.

Lo, Crate, and Schwartz! used nonlinear buckling equations
for a perfect shell and employed Tsien’s energy criterion of
buckling to show that the buckling parameter, as defined here,
increases from 0.62 at p = 0 to unity at pR%/Eh? = 0.17.
Thielernan® slso reported caleulations for initially perfect
shells based on a nonlinear analysis. He obtained load-de-
flection eurves from which he determined the minimum load
that the shell can support following buekling. This mini-
mum load increases with increased internal pressure.
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The role of shell imperfections, known to be the main de-
grading factor in unpressurized shells, was not considered in

- either of the previously mentioned papers. Luand Nash®have

studied the effect of initial imperfections on the minimum
load that the shell can support in the postbuckling region,
This analysis alse shows a larger minimum load for pressur-
ized shells than unpressurized ones.

From a design standpeint, the maximum load that the shell
ean support prior to buckling is of more interest than the

Fig. 1 Shell configuration.
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minimum postbuckling load. Indeed, it is this value that
most experimenters record aud that we will designate as the
buekling load in this report. Here, approximate solutions to
the nonlinear, Donnell-type shell equations will be obtained
which display the role of axisymmetric and asymmetric im-
perfections on the buckling load of a pressurized elastic shell.
It will be seen that axisymmetric imperfections of a certain
wavelength are particularly degrading. An upperbound to
the exact buckling load as predicted by the nonlinear equa-
tions is obtained for the case of axisymmetrie imperfections.
Finally, these solutions are compared with some experimental
results, and it is noted that they seem to aceount for the
variety of reported behavior.

Donnell -Shell Equations

The elastic shell is characterized by its radial displacement
W (positive outward) and an airy stress function 7 that gives
the resultant membrane stresses as Nz = Fy Ny =
F e, and N., = —F _, The shell is assumed to have an
mitial imperfection in the form of an initial, stress-free radial
displacement Wy With & and y as the Cartesian coordinates
in the axial and circumferential directions, the equations are

(V/ERVAE — (I/BYW o0 + (Wose + W)W o +
WouoW oz — W2 — 2Wo oW oy =0 (1)
and '
{ER3/112(1 — w9 }VW + (U/R)F oo ~
(Woze + Wl yy —~ (Wow + WoundF e +
2Woeol oy + 2W oiF oy —p =0 (2)
where V4 is the two-dimensional biharmonie operator.

Classical Buckling

We consider a perfect cyhndex (W, = 0) under internal
pressure p and axial compressive stress o (in addition to the
axial stress resulting from the internal pressure). The radial
displacement and stress function can be written as

W = v/E{ch — (pR/2}] -+ ({/E}pR + » 3
= (~4oh +4pR)Y + }pRe®+5 @

where the terms added to w and f constitute the prebuckling
solution for the perfect shell. The classieal buckling equa-
tions are obtained by substituting (3) and (4} in the Donnell
equations and then linearizing the resulting equations with
respech to w and f.  The linear buckling equations are

(/ERVY — (1/R)w,.. = 0 (5
{BR3/112(1 — )]}V + [ho — OR/2) w2 —
pr.yy + I/Rf.zx =0 (6}

Solutions to these equations are well known,t The eigen-
value

o-qoﬂ ?-) 1 (a2 + .62)2 a2 B 2
oF "2 2 ( @ Tt 62)2) +? (E)
(M

corresponds to a radial deflection mode of the form
w = cos(ager/R) cos(Beuy/R) (8

T In this paper we will assume that the shell is sufficiently long
to justify neglecting the boundary conditions at the ends of the
ghell. For certain end conditions, Hoff has produced a solufion
to the linear buckling equations which predicts buckling at A =
% for an unpressurized cylindrieal shell. It is not known if the
shell is significantly imperfection-sensitive for buckling in this
mode. Although in certain instances the shell buckling may be
characterized by the solution obiained by Hoff, we will not con-
gider auch end conditions. Our interest will center on the effect
of initial imperfections on the buckling load.
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and the associated stress function

ERh o Os(aqw)cos(ﬁqw) )

@ (et + Y R R

f=_

where
gt = 121 — v B htand p = (PRYERD[3(1 — »D) V2

The classical buckling parameter for the unpressurized
shell, obtained by minimizing M as given by Eq. (7) with re-
spect to e and B, is

A = oqt/2E =1 (10)

with an infinite number of associated buckling modes such
that « and 3 satisfy

ol 4+ B2 —a=0 (1)

Included in this set of critical buckling modes are the axi-
symmetric mode w = cos(ge/R) and the asymmetric mode
w = cos(igex/R) cos(iqy/R).

The classical buckling load {.e., value of buckling param-
eter) for the pressurized shell is also unity )

= (o*/2E) — (p/2) =

however, only the axisymmetric mode, w = cos(qz/R), is
associated with this critical value. All other modes of the
form of Eg. (8) are associsted with eigenvalues larger than
unity, Thus, for example, corresponding to w = cos(dger/
B) cos(3ay/R) is the eigenvalue A = 1 4 5.

Nonlinear Buckling Equations

We must turn to the nonlinear equations and the effect
of initial imperfections to explain the discrepancy between
the predictions of the linear or classical theory and common
experimental observations. It is of particular interest that
Koiter® has presented an analytic procedure for obtaining the
role of imperfections in imperfection-sensitive structures.
This work is perhaps more readily available in Ref. 6 or in a
less general form in Ref. 7.  His general theory for ¢ylindrical
shells? indicates that an imperfection in the form of the radial
displacement component of the axisymmetric buckling mode,
Wy = p cos(gew/R), is the most degrading and is able to re-
duce the buckling load of an unpressurized shell under axial
compression to one-half or even one-third the classical value
for values of p only a fraction of the shell thickness.

In general, any radial imperfection pattern of the shell
¢an be represented by a double Fourier series in the axial and
circumferential coordinates. We will restrict ourselves fo a
consideration of just two terms of such a series, one axisym-
metric and one asymmetric. Each is taken in the form of a
linear buckling mode of the unpressurized shell.

Thus, we study the behavior of a pressurized eylindrical
shell under an applied axial load where the initial imperfee-
tion is assumed to be

Wo = — Ehcos{ger/R) +Eh cos(E qoz/R) cos(d quy/RY (12)

where E and &, are the ratios of the amplitude of the imperfec-
tion to the shell thickness.

Any equﬂlbrmm state of the axially loaded cylinder can be
written in the form of (3) and (4); we approx1ma,te w by

w = &k cos(gr/R) + £h cos(] qov/R) 005(3' qy/R) +
£sh sin(} qz/R) cos(d ay/R)  (18)

Here &, £, and & are the ratios of the amplitude of the de-
flection in the axisymmetric or asymmetric modes to the shell
thickness.

Solutions to the full nonlinear equatlons (1) and (2) are ob-
tained in the following manner. First, since Eq. (1) is a

compatibility equation, it is solved g}_cac_ﬂy for F in terms of
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the assumed W. This is accomplished with the aid of Egs.
(3) and {(4). Bince we are ignoring the end conditions and as
the average stresses in the shell are given by the polynoraial
terms in (4), f is required to be the sum of terms periedic in
the axial and circumferential directions. Second, we solve
Eq. (2) (an equilibrium equation) approximately by sub-
stituting therein F and W and then applying the Galkerin
procedure. The steps of this calculation are easily carried
out, and the resulting equations are

B — N + Fpels? — &) + febh + M+
o0 02@2 + &) [EZEI + & — 51)52] +
Hs & — B)& =
Q14+ 5 — N+ % CELEZ - 052-‘31 + ‘35152

0 (18

(p— NE+ 22ef — B)iaE + b(E& - B)] +
¥ Mg L) (EE + 6 =0 (15
and
E(l 4+ p— ) — §ctbs + ok + 3 cE — B +

T@CEEB == 0 (16)

where ¢ = [3(1 — »9) V2

A solution to these equations would provide the equilibrium
configuration of the shell as & function of A, i.e., &, &, and &
as a function of A, If A attains a maximum as the compres-
sive axial load is applied, then this is the value of A associated
with the buckling load. It will be denoted by Ay. The es-
sential character of the shell behavior in the prebuckling and
immediate postbuckling descriptions is retained if the terms of
order E£%, ££2, and £* are omitted from the previous three

equations, With this simplification the equations to be
studied are
BQ— N+ ol — &) + bbb = — N0 (D)
EQA+p— N+ bt —chh + chh = A — & (18)
and
EL+p— N —Febbit kb =0 a9

“For sufficiently small £ and &, these equations yield a

buckling Toad that is asymptotic to that predicted by Eqgs. -

(14-16) if p = 0. If 3 > 0 we cannot make this assertion;
however, the upperbound solution for the case of axisym-
metric imperfeetions obtained in a later section indicates
that these equations provide a sufficiently accurate estimate
of the buckling load for the purposes of this paper.

The behavior of the perfect shell as predicted by these equa-
tions is shown in Fig. 2. A perfect shell suffers no deforma-
tion in the buekling modes (§ = £ = & = 0) until A reaches
unity. With A remaining at unity, deformation can oceur in
the axisymmetric mode; and since & = 0, & can take on
either positive or negative values. If, as shown in Fig. 2,
£ attains the value —2p/3¢, the coefficient of & in Eq. (18)
vanishes, and a bifurcation of the solution occurs. The bi-
furcated solution corresponds to falling values of A with de-
formation in both the & and £ modes. If the deformation is
such that & attains the value 25/8c, then the coefficient of
£ [Eq. (19)] vanishes, and M falls with deformation in the &
and & modes. In either case, the max1mum value of A
attained iz the classical value A = 1.

Axisymmetric Imperfection

If the imperfection is purely sxisymmetric (& = 0, § > 0),
the prebuckling deformation is also purely axisymmetric.
From (17}

= -0 -NE

and & = & = 0 until there is a bifurcation of the sclution,
which occurs when the coefficient of & in (18), 1 + 5 —
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Fiz. 2 Schematic load-deflection curves,

A + & cE — c&i, vanishes. Following bifurcation, the value
of A falls with deformation oceurring in the £ as well as the
axisymmetric mode. This behavior is also depicted in Fig.
2. The maximum value of A, denoted by Ay, oceurs af
bifurcation and is found from the previous two equations fo be

200+ p ~ Ml — M) — 2+ A)eE = 0} (20)
The buckling load for an unpressurized shell is given by
201 — Au®)? — 24 Ak =0 1)

and is shown as the dashed eurve in Fig. 3 where it can be
compared with an upperbound solution obtained in a later
section, Curves of Ay vs p obtained from (20) are given in
Fig. 4. For this plot, values of £ have been chosen such that
the unpressurized shells buckle at A = 0.3, 0.5, and 0.7.
These curves as well as all others in this paper are calculated
withr = 4.

Asymmetric and Axisymmetric Imperfections

If both § and £; are nonzero, deformation oceurs in both the
E and & modes for any nonzero values of p and A. Nonzero
values of & can oceur only if the coefficient of & in Eq. (19)
vanishes, which for the moment we will assume does not
happen.

An expression relating A and £ can be obtained by eliminat-
mng & from the two equilibrium equations (17) and (18).
This is _

M - &) ~ M&E@ + p) + &0 + 2} +
EGeh + b))+ (L4 0o — Gebo + o) X
(-3— e? ’+’ 05252) - sz«fa + ’P& =0 (22)

A maximum value of A (if it oceurs) is associated with
di/dg& = 0. This condition aleng with (22) yields an ex-
pression for Ay analogous to (20} but considerably more coin-

19 T T t T 1 -

08 Wo= =& h Gos (a5 X/R) .
=0
Ly .
AM
o UPPER-BOUND, KOITER (8)
FORMULA (21]
02 _
0 | | | | | |
Bl 02 03 04 05 (13

&

Fig.3 Effect of axisymmetric imperfection on buckling of
unpressurized shell.

1If & < 0, the coefficient of £ in (19) vanishes when A reaches
An, and the bifurcated solution corresponds to falling values of A
with deformation in the & and & modes. Thus Ay is dependent
only on the absolute value of &.
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Fig. 4 Effect of axisymmetric imperfection on buckling
. of pressurized shell.

plieated. It was found more convenient to obtain hx from a
plot of M vs & using (22). If & is positive and large as com-
pared to %, £ assumes only negative values, and the coef-
ficient of £ in Eq. (19)

A+p— N —Fcbi+ck (23)

does not vanish. However, when £, is zero or small as com-
pared to &, negative values of £ are possible; and for suf-
ficiently large values of p, it was found that this coefficient
vanished for a value of X less than the Ay provided by (22).
Furthermore, in these cases it was found that the bifurcated
solution resulted in A decreasing with deformation in the £ as
well as & and & modes.  In such cases the maximum value of
A attained is that for whieh (23) vanishes.

The indieated caleulations were carried out for several

combinations of £, and &; and the maximum value of A, Ay

. was obtained over a range of 5 from 0 to 4. Curves of Ay vs
p are shown in the three plots of Fig. 5. In the first plot the
combinations of ¥ and & are such that the unpressurized
eylinders buckle at Ay = 0.7, whereas the other two plots
depict cylinders that buckle at 0.5 and 0.3 when free of inter-
nal pressure. The curves of Fig, 4 are also included.

It is clear that prediction of the buckling load of a pres-
surized cylinder requires knowledge of the relative amount of
axisymmetric imperfection.

In effect, the asymmetric imperfections are ironed out by the
pressure, whereas the axisymmetric ones are not. If &/E
is small, Ax is almost the classical value when p is near unity,
If, however, the initial irperfection is purely axisymmetric,
the buckling load is much less mﬂuenced by internal pressure
as indicated by the curves &/ =

An Upperbound for the Case of Axisymmetric
Imperfection

The previous approximate analyses bare the role of the
axisymmetric imperfection of wavelength R/2wq. Not
only does it have the largest degrading effect for the unpres-
surized shell, but for buckling with p > 1 it almost completely
determines the buekling load. With relatively little difficulty
an upperbound to the buckling load as predicted by the
nonlinear Donnell equations can be obtained for a cylindrical
shell with axisymmetric imperfections, This is of particular
interest in light of the role of such imperfections and the

+ approximate nature of the previous caleulations.

Only the steps of this calculation will be recorded here,
since the details of a similar caleulation for unpressurized
shells have been given by Koiter? If the imperfection is of
the form s :

Wo = — Eh cos(gz/B)
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Fig. 3 Effects of axisymmetric () and asymmetric (&)
imperfections.

the state of deformation of the shell can be written as

2vhA pR _ Nk aw

W = {q 7 1_;\cosR}-l—'w' (24)
_ ) EBhp 1 ENLAR q.gv

F = { e + 2 pRz® + r(l — +f (25

where the terms in the brackets are the exaet prebuckling
solution to the nonlinear Donnell-shell equations (1) and (2).

‘Prior to buckling, 4 and f are zero. Buckling occurs with the

first deviation from the axisymmetric prebuckling deforma-
tion. Thus, we look for the value of the load parameter X at
which the nonlinear shell equations admit nonzero solutions
for w and f. Substituting (24) and (25) in (1) and (2) and
linearizing with respeet to w and f (we are looking for in-
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finitesimal deviations from zero), we find

1 1 Ehg® 0
_ 4 E——— P L L — =
Eh v f "B W,z + R”(l - }\) €G08 R W, gy 0 (26)
Eh? i Lo B ot
i —m VTl g -y g S t
EMBA: g BN,

- Tz — ¥y = 2
R — h)lGOSR W,y e 0, pRw, 0 @n

An exact solution to these equations is not found; however,
an approximate method is employed which guarantees that
the estimate of the buckling stress is an upperbound to the
exact buckling stress. Assume

w = &h cos(aez/2R) cos(veoy/2E) (@)

Solve the compatibility equation (26) exactly for f in terms of
the asstmed w. f must be the sum of terms periodic in the
axial and circumferential direction since we have ignored
the end conditions, and the average stresses in the shell are
represented by the polynomial terms in F in Eg. (25). Then
apply the Galkerin procedure to Eq. (27). This method of
solution is equivalent to an approximate minimization of the
second variation of the energy by the Raleigh-Ritz method,
which insures that the eigenvalue so obtained is an upper-
bound to the buckling stress.§ This straightforward ealcula-
tion yields the following eigenvalue equation:

@ = MH[A + vD¥4) + 4/Q0 + )2 +
2py* ~ 20} — eyl — DN+ 8/1(L + ¥} +
4ey?E)? (/A + ¥ + 1/ + v} =0 (29)

THe approximate buckling load Az, for any given values of 5 -

and £, corresponds to the value of -y so that A given by (29)
is & minimum,

With 3 = 0, (28} is the equation Koiter used to plot an
upperbound to the buckling load of an unpressurized shell
with axisymmetric imperfections. This curve for » = 3 is
shown in Fig. 3. For small values of £;, the minimum value
of A from (29) corresponds to values of vy in the neighborhood
of unity, and (29) becomes,

21 — Au"E — (1 — AuW(2 + ?\MO)CE + 28 (‘3§1)."4 =0 (30

Equation (20) from the more approximate analysis is obtained
if the term in &2 in (30) is neglected; and thus, as seen in
Fig. 3, the two curves approach each other for sufficiently
small £.

For nonzero values of 5, the minimum X with respect to v
was found from (29) with the use of a. digital computer.

Am 1
08 W ==& h cos{q X/R) -
a2k PASHED LINE CURVES FROM FIG. 4. i
0 1 ] I 1 ! L 1

L] 1 2 3 4 _ 5 6 7
p

Fig. 6 Upperbound te buckling load for pressmrized
cylinders with axisymmetric imperfection.

§ An elaboration of this statement is found in the Appendix.
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Three typical buckling load-pressure curves are shown in Fig.
6. Ax as obtained from (29) or this figure is an upperbound
to the buekling load for a shell with the initial imperfection
£ and internal pressure corresponding to the parameter .
The three curves of Fig. 4 obtained on the basis of the ap-
proximate calculation do not differ appreciably from the
upperbound curves of Fig. 6, although the value of E as-
sociated with each approximate curve is smaller than the
value associated with the corresponding upperbound curve.
Use of the curves of Fig. 5 would seem justified if one wishes to
relate the buckling load of a pressurized cylinder to the
buckling load of an unpressurized eylinder with similar initial
imperfeetions.

For large p, the buckling load as predicted by (20} ap-
proaches the classieal value. In most cases, however, plastic

-deformation will oceur before the pressure parameter attains

the value 10, since the elastic hoop strain caused by internal
pressure alone is of the order of ph/R. Clearly, the buckling
load can remain below the clagsical value for the entire range
of elastic buckling.

Comparison with Some Experimental Results

Recent tests with Mylar cylinders performed by Wein-
garten, Morgan, and Seide* are partieularly suited to com-
parison with the results obtained here. Mylar is able to
suffer reasonably large strains prior to deforming plastically.
Thus, Weingarten et al. were able to perform a series of tests
at different internal pressures with the same specimen with-
out incurring any plastic deformation.

Figure 7 preserits two typical test series and two theoretical
curves chosen from Fig. 5 which best fit the experimental
data. Weingarten et al. did not report any information
with respect to either the form or magnitude of the imper-
fection which would permit us to assign values to & and Z.
Certainly. the imperfection representation (12) assumed in
the analysis could represent the true imperfection only in an
average sense; and especially for § < 1, & more exact de-
seription would require additional asymmetric terms. Never-
theless, the trends of the present theory are very much like
the experimental trends, and the experimental results ean be
reproduced by an appropriate a posteriori choice of ) and .

The radius-thickness ratio of the previously mentioned
tests ranged from 200 to 2000, with the maximum load of the
unpressurized shells ranging from about 0.6 of the classical
value at B/h = 200 to 0.3 at B/h = 2000. This B/h de-
pendence is most readily interpreted in light of the present
analysis by associating larger imperfections (relative to the
sheil thickness) with larger values of B/%. Indeed, it seems
reasonable that such would be the case.

Judging from the results presented, the relative amount of
the axisymmetric imperfection is small as compared to the.

L

08 [e), F16. 5¢) e |

[, FiG. 5¢]

x SPECIMEN 100.2
}WEINGARTEN, et al. .
203

125 ° “ DL

¢ | | |
0 1 2 3 q

p

Fig.7 Comparisons of experimental data with theoretical
predictions.
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asymmetric imperfeetions in the Weingarten et al. test
specimens. This is particularly the ease for specimen 100.2,
and the buckling load is only slighfly below the classical
value for p < 1. Ineluded in Fig. 7 are data from a series of
tests on axially loaded, pressurized aluminum cylinders per-
formed at the Distance Velocity Laboratory (DVL) and re-
ported by Thieleman.? In this series of tests, new specimens
had to be used for each test; and although the radius and
thickness were unchanged, there was undoubtedly some varia-
tion in initial imperfections from specimen as indicated by
the data scatter. The important feature of these tests is that
the buckling load remains well below the classieal value for
values of the pressure parameter well above unity. Axisym-
metric initial imperfections are strongly suspeeted.

Appendix

‘We have asserted that A as obtained from Eq. {29) is an
upperbound to the exact buckling load as predicted by Eqgs.
(26) and (27). The following demonstration iollows from
Koiter's® general theory of elastic instability. The trivial
(or prebuckling) deformation at a given value of load X is
denoted by w. and is construed in & generalized sense. If w is
any kinematically admissible deformation in addition to the
prebuckling deformation ., then the change in potfential
energy of the structure is Plw 4 w.] — Plw.] = Pufw, A]
. Psfw, M] + - . . where P,[w, Al is a functional that is homo-
geneous and of nth® in w. Pilw, A] is zero since w, is an
equilibrium configuration. We have assumed that w is
sufficiently small to make this expansion meaningful.

At any value of the load parameter X, the structure is
stable if Pe(w, A} > 0 for all admissible w. Thus, if for any
A and admissible w.

Palwa, Na) =0 ° (A1)

then obviously A, > A where X, is the lowest value of A, so
that an admissible 1 exists for which Px(w, X) = 0.

Tn the present case the terms in the braces of Egs. (24)
and (25) constitute the exact trivial solution w. Equations
(26) and (27) are equivalent to the Euler equations for mini-
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mizing P.(w, A). Since we have solved the compatibility
equation exactly in terms of the assumed radial component of
the shell displacement, the stresses are derived from an ad-
missible displacement field. The Galerkin solution to the -
equilibrium equation is equivalent to an approximate Raleigh-
Ritz minimalization of Pa(w, A). That is, if the additional
admissible displacement that we have assumed is denoted by
£w,, then the approximate eigenvalue A, is found by

(O/0EYPy(Ewa, As) = 26P:3(we, Aa) = 0
Thus, by (A1), e > Aa.
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