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Dynamic Buckling Estimates

Jouvy W. Hurcaivson* anp BERNARD BuplaNsgyT
Harvard Unzversity, Cambridge, Mass.

The present paper continues an earlier study by the same authors with a view toward pre-
senting a complete picture of the dynamic buckling of some imperfection-sensitive models.
The initial sLudy was concerned with buckling of the inodels, and real structures as well, when
subject to loads suddenly applied and subsequently held constant. Here, consideration is
extended to buckling under loading histories characterized by a finite length of time of Joad
application. The results are presented in a form such that the dy namic buckling load of the
initially imiperfect model is velated to its static buckling load. Thus, explicit depeudence on
its initial impexfection has been bypassed. In this form the implication of the model results
for real structures are most apparent. I'be application of these results to actual structures
is discussed, and several observations on the general character of dynamic buckling are noted.
Finally, attention is foeused on the eylindrical shell under axial corapression. The limited
results obtained tend to substantiate the validity of the model results, and we are led to sug-
gest what should be a conservative criterion for this structure for design against dynamie
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bucllding.

Introduction

HE buckling of imperfection-zensitive structures, such ax

eylindrical shells under axial compression and spherical
shells subject to uniform pressure, has been studied in-
tensively in recent years.  Although the static buckling of
such structures is fairly well understood, a clear understand-
ing of dynamic buckling is» lacking. Txisting analyses, as
vet, hardly provide any general guidelines for design against
dynamic buckling.  The present paper continues the study
initiated in Ref. 1 with a view toward presenting u complete
picture of the dynamic buckling of some imperfection-sensi-
tive models.  That initial study was coneerned with buckling
of the models, and real structures as well, subjected to step
loadings, i.e., loads suddenly applied and subsequently held
constant. Here, consideration is extended to loading his-
tories characterized by a finite length of time of load applica-
tion. In addition to the presentation of results for the
models, the application of these results to actual imperfee-
tion-sensitive structures is discussed, and attention is focused
on the eylindrical shell under axial compression.
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Simple Models: Static Buckling

T'he imperfection-sensitive model shown m Tig. 1 is &
modificd version of that eraployed by Karman, Dunn, and
I'sien? in their earlv study of cylinder buekling. The three-
hinge, rigid-rod model is laterally constrained by a nonlinear
softening spring, and a mass M is concentrated at the hinge
joining the two rods.  The initial imperfection is identified
with the deviation of the unloaded strueture from the straight
configuration. Two variations of the basic structure are
investigated. The force of the constraining spring of the
quadratic model is given by

F = kLl@/T) — ax/Ly)

where & 15 the lateral displacement. (Note that the total
displacement is then © + #, where the initial imperfection is

l)\

] L
Fig. 1 Idealized column |
constrained by nonlinear i

spring. {x+X)
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Fig. 2 a) Quadratic model, static load-deflection curves;
b) cubic model, static load-deflection curves.

Z.) The spring force of the cubic model is expressed as
F = kL{(z/L) — B(z/L)?)

The equation of dynamic equilibrium for the quadratic
model is, neglecting geometric nonlinearities,

i+ (1 — MDAz — 922 = N 1)
and for the cubic model is
E4+ (1 — MNho)z — §28 = N Ae 2

where z = /%, 7 = ai/L, { = B(#/L)% and (') = (1/w)
(d/dt) where w = (k/M)V? is the vibration frequency of the
unloaded structure. The static buckling load of the perfect
column, the classical buckling load, is A¢ = kL/2.

The static buckling load of the imperfect structure is de-
fined as the maximum value obtained by the applied load
and is denoted by As. The static load-deflection curve for
the quadratic model is shown in Fig. 2a. The maximum
value of A is obtained when d\/dz = 0, and this condition
used in conjunction with Eq. (1) (with £ = 0) yields

(1 — As/Ne)? = 4nks/A¢ 3)

Only for 5 > 0 will there be a real value of \s that satisfies
(3); for 7 < 0 there is no static buckling load.

Figure 2b displays the static load-deflection curve for the
cubic model. A maximum value of X\ occurs only if 8 > 0;
the condition for the model to exhibit imperfection-sensitivity.
The static buckling load of the cubic model satisfies

(1 — As/Ae)¥% = [3(3)V2/2]Ns/ ¢ 4

Dynamic Buckling of Models

Two classes of loading histories will be considered in this
paper. Rectangular loading (Fig. 3a) is characterized by
A%, the value of applied load, and T, the length of time of
load application. A particular triangular loading (Fig.
3b) is specified by A?, the initial and, thus, peak value of the

}
A
X
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a) Fig. 3 a) Rectangular
T loading, b) triangular
loading.
A
»
t— T
b
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applied load and T. The dynamic response of either of the
two models is such that (for a fixed value of T) for A° less
than a certain value, call it Ap, the response is bounded,
whereas it is unbounded for A\° greater than Ap. Thus,
Ap is the natural definition of the dynamic buckling load
for the models. The unbounded behavior of the dynamic
response is related to the fact that the static equilibrium
curve falls monotonically once the buckling load has been
attained. This curve does not decrease to a minimum value
of A and then rise, as is characteristic of an actual structure.

The dynamic buckling loads for the case of step loading
(the loading displayed in Fig. 3a with T = «) were obtained
in Ref. 1. For the quadratic model, the dynamic buckling
load is related to the imperfection parameter » by an ex-
pression similar in form to that for the static buckling load,
namely

(I = Ap/Ae)? = ¥9Ap/Ac (5)
The analogous expression for the cubic model is
(L = Ao/A)¥? = [3(68)"%/2]Ap/Ac (6)

An expression relating Ap to Ag (rather than 5) is obtained
by combining Eqgs. (3) and (5) so that

3{¢ — Ap)/(A¢ — Ng)12 = Ap/As Q)

The dynamic buckling load of the cubic model is related to
the static buckling load in a similar manner by

2712 [(A¢ — Ap)/(A¢ — Ns)]¥? = Ap/As 8)

Curves of Ap/As vs Ag/A¢ for the two models are displayed
in Fig. 4. In this form, explicit dependence on the magni-
tude of the imperfection has been eliminated but is reflected
in As/A¢. Thus, the implications of the model results for
real structures is most easily seen.

For rectangular loadings of finite duration expressions,
analogous to (7) and (8) (but considerably more complicated)
relating Ap, As, Ac, and the additional parameter T, are
derived in the Appendix [see Eqs. (A7) and (A9)]; these re-
sults also involve the vibration period of the unloaded struc-
ture Ty = 27/w. Similar analytic expressions could not be

QUADRADTIC MODEL
CUBIC MODEL

T/To

Fig. 5 Buckling of imperfect model under rectangular
loading.
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found for triangular loading, and so it was necessary, for this
case, 1o resort to numerical integration of the differential
equations (1) and (2) in order to discern the dynamic buckling
loads Ap. In fact, as a matter of convenience, most of the
resul{s for rectangular loading were also found by this pro-
cedure outlined in the Appendix,

A typical set of results is presented in Fig. 5 to facilitate
comparison between the two models for buckling under
rectangular loading.  For the case hs/Ac = 0.5, Fig. 5 dis-
Plays curves of Ap/As vs 7/Ts for cach model.  For a given
value of T'/T,, the cubic model buckles at a lower load than
the quadratic.  For large T/To, Ap/Nys approaches the value
predicted by either Eq. (7) or Eq. (8).

Figures 6a and 6b essentially summarize all the data for
buckling under reciangular loading. These figures display
curves of Ap/As vs Mg/ Mo Tor various values of T/T;.  In this
form the data arc presented in the same spirit as in Fig. 4,
i.e., the dynamie buckling load of the structure is related to
its statie buckling load. The lowest curves in Figs. 6a and
Bh, corresponding to 7/Ty = «, are those presented in Fig. 4,

Figures 7a and 7b are plotted in the same manner as Fig. 6,
but for the case of triangular loading, The general features
of these curves are similar to those of Fig. 6. For triangular
as well as rectangular loading, Ap/As approaches the value
given by either (7) or (8) for large 7/ T.

The finite-time buckling impulse is I = ApT for rectangular
loading, and 7 = {xpT for triangular loading. The zero-
time buckling impulse for the quadratic model (given in Ref.
1)is

T = [23) 7/ 7 NsTo{l — As/Ac) 7 {9)

7

116 = T/,

a) Quadratic model

116 = T/Ty

W
b} Cubic model

Fig. 6 Buckling under rectangular loading.
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Fig. 7 Buckling under triangular loading.

and for the cubie model iz readily found to be
Foo = [3(6)2/87AsTo{l — As/Ag) 732 (10)

Thus, /1. depends only on T/Ty and As/Ae; and these re-
sults for both reetangular and triangular loading are given
in Fig. 8. Over the range of T/T plotted, the buckling im-
pulse required for triangular loading does not differ appreci-
ably from that associated with rectangular loading. It s
noted that for all but highly imperfect structures the finite-
time buckling impulse can be considerably less than the zere-
time buckling impulse.

Application of the Simple-Model Results

Refore aftempting to discuss the application of the previous
results to real structures, we can make three observations of
a qualitative nature which follow from the simple-mode]
results. Tirstly, it is seen in Fig. 6 that for any given value
of T/T,, there isa large variation of \p/As over the possible
range of Ag/Ac.  Clearly, the more imperfect is the strueture,
the smaller s Ap/As. The simple-model results strongly
suggest that one should expect even more seatier in experi-
mental resulta on dynamic buckling than has been noted
in gonjunction with static buckling tests. The second ob-
servation is related to the first, but seems worthy of separate
notice. For nearly perfect structures, that is, when Ag/A¢
is almost unity. the indication is that there is a possibility
of dynamic buckling loads several times larger than the siatic
buckling load, even for leads that are applied for times com-
parable with the natural vibration period of the unloaded
structure. The third comment, already made in regard to
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Fig. 8 Finite-time buckling impulse.

Fig. 8, is that the finite-time Impulse necessary for buckling
can be significantly less than zero-time buckling impulse.
The zero-time buckling impulse is only a safe estimate for
the finite-time impulse when the structure is highly imperfect.

Buckling under step loading of actual imperfection-sensi-
tive structures was investigated in Ref. 1 by means of an ex-
tension of Koiter's general theory of elastic stability? to in-
clude inertial cffects. General equilibrium equations were
obtained such that the load parameter was related to the de-
flection of the structuire in the buckling mode (or modes)
associated with lowest buckling eigenvalue of the linear
buckling analysis. For some special classes of struetures, the
general equilibrium equations reduced to either Eqgs. (1) or
(2), and, hence, one or the other of the curves in Fig. 4 was
directly applicable. For certain other structurcs (including
the cylindrical shell under axial load) it appeared that the
lower curve in Fig. 4 should provide a conservative estimate
of dynamic buckling under step loading,

When the lengih of time of load application is very short
so that the dynamic buckling load is large compared to the
classical buckling lead (the buckling lead of the perfect
strueture), it is much more difficult to justify the applica-
hility of the model results. Two necessary conditions for
their validity are 1) that the inertia associated with the pre-
buekling mode of deformation of the perfect structure be
negligible and 2) that the dynamic buckling mode of the
structure be not appreciably different from the static buckling
mode.

Application of the model results to an imperfection-sensi-
five structure necessitates: 1) assignment of a value to Ty =
27/w and 2) specification of the nature of the structure,
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quadratic or cubie. If the buckling mode of the structure
1s a vibration mode as well, the first requirement can be met
il @ is associated with the vibration frequency of this mode.
A structure that deforms in a number of buckling modes, such
as the eylindrical shell under axial compression, presents
difficulties in this respect. A conservative choice may lead
to identifying « with the largest of the buckling mode fre-
quencics.

For a given time of load application T/Th, the lowest
value of Ap/Ns for either model is that corresponding to the
limiting case As/he = 0 (see Figs. § and 7). These limiting
relations provide a conservative estimate of Ap/As vs T/T,.
In situations in which the possibility of small values of A5/ he
cannot be discounted, the use of these conservative relations
between Ap/hs and T/To may be appropriate. Tor con-
venience, the variations of Ap/As with 7p/T for rectangular
loading for the case Ag/A¢ = 0 are plotted in Fig. 9. Tor
small T/T, the value of hp/As approaches that for step load-
ing, lLe., & for the guadratic model and 27Y* for the cubie
model. If To/T is large, the behavior approaches the zero-
time irapulse situation, and, from TEqs. (9) and {10}, the
product (A p/Xs)(T/Ty) approaches 2/7(3)42 for the guadratic
model and 3(6)"%/8x for the cubic model. As previously
noted, the cubic model estimates are below shose for the
gquadratic model. Analytic expressions [or these limiting
cases are given in the Appendix,

Long Cylindrical Shell under Axial Load

In what follows, we have no intention of presenting any-
thing but a crude analysiz of the axially loaded eylindrical
shell, the imperfection-sensitivity of which is associated
with a multipiicity of buckling modes. ‘The results, never-
theless, tend to substantiate the general applicability of the
results for the models. On the basis of these results we are
led to suggest what would seem to be conservative buckling
estimates for the cylindrical shell under axial compression.

The classical buckling stress of a long eylindrical shell
under axial compression having sufficiently strong end con-
straints is

he = [3(1 — #H)]TVHER/R)

where £ 13 Young's modulus, » is Poisson’s ratio, K is the shell
radius, and A is the shell thickness. Iollowing the treatment
given in Ref. 1, we vestrict consideration to only wwo of the
many buckling modes associated with this critical stress.
In particular, we assume that the buckling deformation of
the shell takes place in its axisymmetric buckling mode and
in the nonaxisymmietric mode with axial buckle wavelength
twice that of the axisvmmetric nmode.

The following fwo equilibrium equations were obtained in
Ref. | on the basis of the previously mentioned extension of

QUADRATIC
. MODEL -

T CUBIC MODEL

Fig.9 Conservative buckling estimates, rectangular
loading.
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Koiter's general theory:
Hib 1= Mhh — Be/328 = MAoh (11
L4 (1~ Mhdh — Be/2bks = M & (12)

where ¢ = {3(1 — #%}|"2,  Here, & is the deflection (relative
to the shell thickness) of the shell in its axisymmetric buckling
mode; similarly, & is the deflection in the nonaxisymmetric
mode. The initial timperfections in the cylindrical geometry
of the shell are taken to be in the form of the two buckling
modes and are of amplitude £, and & relative to the shell
thickness. Tinally, we have let (") = 1/ [d( )/di},
where the vibration frequencies associated with the two modes
(axial and circumferential incriias neglected) arce

W' = (2E/p)V/R and w® = (E/2p)' /R

The buckling behavior of the eylinder under axially applied
step loading was studied in Ref. 1 with the aid of the previous
two equilibrium equations,  Curves of Ap/hs vs Ag/he were
obtained for a variety of ratios of & 0 &, 1.e., relative amount
of axisymmetric te nonaxisymmetric impericetion. The
smallest value of Ap/hs for any given value of Ag/h\e was
found to correspond te combinations of & and & such thag
the axisymmetric imperfection was zere, £ = 0. A good
approximation to this case can be obtained analytically if the
inertia term 1§ in Bq. (11) is neglected. With this approxi-
mation, Togs. (11) and (12} can be combined to give

40— Miga — [v/(L — MAgle® = Mie (13)

where 2, = &/5 and v = (9e%/64)E2  Although this equa-
tion is not identical to the equation for the cubie model, it is
strikingly similar.

Yor the case aof step loading, the dynamic buckling stress is
velated to the static buckling stress of the imperfect structure
by

2_”2[()\0 — AD)/’[(AC — ?\S)]Q = Ap/As (14)

This formulas was given in Ref. 1, and the results are between
those for the two models.

No attempt has been made to make a eomplete study with
either Egs. (11-12) or Eqg. (13) for dynamic buckling of the
cylinder under rectangular loading, However, we do present
two results using Eq. (13} which tend to reinforec predictions
based on the simple models.  The zero-time impulse necessary
to buekle the cylinderis

1. = limD AT = [3(6)72/8x1asToll — (As/Ae) ]2 (15)
T —

where Ty = 2r/w®. All values of As/A¢ give values of
Tor/XsTo for the cyvlinder between the predictions for the two
models ag given by FEgs. (9) and (10).

SBecondly, and perhaps more important from the stand-
point of design, the relation between Ap/As and To/T fox
rectangular Joading for the limiting case Ag/h¢ = 0 can be
shown to be identical to that for the euble model. Reecall
that this relation s given in the Appendix and is plotted in
Fig. 9.

Thus, we scem to be led to the same conservative estimate
for An/As vs T/T as was obtained for the cubic model. It
is well known that values of Ag/he for evlindrical shells under
axial compression are often as litile as 0.25; thus, design on
the basig of the limiting case As/A¢ = 0 may not be unduly
conservative. The value of Tyis

Ty = 2r/w® = 27R(2p/E)12

but one iz tempted to suggest an even more conservative
criterion on the basis of the argument that w® really has no
special significance since it emerged as a result of our restric-
tien te only one nonaxisvmmetric buckling mode. Among
all the static buckling modces of the shell, the vibration pericd
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Fig. 10 Schematic of a
series of responses in the
(=, 2) phase plane.

of the axisymmetric mode is the smallest. The choice of
Ty = 2r/0™W = 2rR{p/2E)'"

in conjunction with the results in Tig. 9 for the cubie model
provides what would seem to be a conservative dynamic
buckling eriterion.

We end this section on a note of caution. Eqs. (11-13)
are obtained under the assumption that the dynamic buckling
modes sre the same as the static buckling modes. This
would seem fo be a reasonable assumption as long as the
applied stress A is not significantly greater than he. How-
ever, [or shorter lengths of time of load application and, sonse-
quently, larger values of applied axial stress, one must not
overlook the possibility of buckling in modes that are not
characteristic of static buckling, 'This possibility has not been
accounted for in the present analysis.

Appendix: Analysis of Simple Models

Here we present an analytic procedure for obtaining the
buckling load of the quadratic model under rectangular
loading. The results for the cubic model can be found in a
similar manner,

Analytic Procedure (Rectangular Loading)

The equation of dynamic equilibrium for the guadratic
model is

401 — MNAz — m = M (A1)
where 7 = a{z/L) and { ") = (1/w){d/df). A first integral

can be obtained for the case of X suddenly applied for & length
of time 7. Onc finds

84 (1 — MAgha? — Enz® = 2N/ Nz for (< T
(A2)

and

BT 2t — dp et = N Ae(2F + 27 for t>T
{A3)

for the initial conditions z = ¢ = 0 at ¢t = 0 and where 2
denotes the value of z at ¢ = T
The dynamic buckling load Ap for any given value of time
of load application T has been defined as the maximum value
of X\ such that the response remains hounded. The analysis
is simplified if we adopt an equivalent but slightly different
point of view. Applying a load M we look for the maximum
value of 7, call it T'p, such that the response remains hounded.
Figure 10 depicts schematically, in the (z, 2) phase plane,
a series of responses for several values of T for one given
value of A, When the response is bounded, that is for any
T < T'p, z attains a maximum z,, when 2 = 0, and this value
I By Eq. (A3)

oceurs for £ > 7.
Zn? — F0Ea® = N Ac(22 4+ 70 (Ad)

Tor all responses in which 7 < Tp, # < 0 when &z = z,; but

Bl



530 J. W, HOUTCHINSON AND B. BUDIANSKY

for T = Tp, % = O when z = z, and by Eq. (A1)
B = N Emt =0
or
Zn = 1/9 (AB)

Now the value of 7 associated with the maximum bounded
response ¢an be obtained from Eqs. {A4) and (A5). Thisis
zp = {L + (/300 (Ae/N)]V2 — 1 (AB)

The value of T associated with the maximum bounded re-
sponse T'p is found by integrating Eq. (A2); this gives,
finally, for the quadratie model

T 1 3D Ap Aoy, , 2 3]‘“?

L= AL S _~o s d

7" J, [2 e z (1 )\c) 2+ 3 nz 'z
(AT

where Ty = 2r/w, and, consistent with the notation in the
body of the paper, 7' has been identified with Tp and X with
Ap. Note that n can be expressed in terms of As/Ae [(see
Eq. (3)].

The relation of Ap/Agto T/T, for the limiting case g/ Ae =
0 may be useful as a conservative buekling criterion. For
small hg/A¢

N = $(Ae/As)
and
Ep = §(hs/ M) (Ms/Ap)

In the limit, as As/A¢ approaches zero, (A7) becomes, with
an appropriate change of the variable of integration

T 2(3)74 hg
To - k) ?\p X

1 4 fAas\? 16 M“’.;]’”g
fo [1 3()») vt (AD) v dy _(AS)

Cubic Results (Rectangular Loading)

Analogous expressions for the cubic model, based on Eq.
{2), are found in a manner similar to that described for the
quadratic model. The dynamic buckling load A is related
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to the imperfection parameter { [and thus, by Eq. (4), to
)\,s/)\c] a,nd T by

T _ 1 foly)s _ My, L ,4]“”
To_21rf0 [ Ao (1 AC)ZJsz” dz
(AD)

where, here, z2p = [1 4+ (1/20)(Ae/Ap))¥2 — 1. The con-
servative buckling estimate for the cubic model corresponding
to the limiting case Ag/A¢ = 0 and plotted in Fig. 9 is

T 3(6) hs 1[ 2 N5\
To~ 87 o fol 2\, ¥ T

1 (27N hs\¢ T
16 Ge) (G2 w] e

Since expressions similar to those given for rectangular
loading could not be found for triangular loading, a straight-
forward numerical procedure based on integration of the dif-
ferential equation (Al) was derived. This procedure was
actually used for most of the rectangular loading caleulations
as well as for triangular loading, and spot checks on its ac-
curacy were made by means of the analytie results for rec-
tangular loading. For prescribed histories of A, the values
of z and #, at the time { = T were calculated. Using these
values, 1t was possible to determine, again numerically,
whether the subsequent response was bounded or unbounded.
Thus, repeated caleulations with different choices for A were
necessary to determine the eritical history for a given value
of T.

Numerical Procedure
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