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Introduction

THE aTUDY presented in this paper has been prompted
by two mnteresting papers by Kempner and Chen [1, 2]? on the Rl
buckling and postbuckling behavior of oval cylindrical shells
In the second of these papers, the
authors have presented results which indicate that an oval cylin-
der with sufficient eccentricity may be relatively insenpsitive to
imperfections and may even be able to support loads significantly
in excess of its classical buckling load. Of course, such behavior
is in sharp departure from the extreme imperfection sensitivity
of the circular cylinder under axial compression which under no
circumstances can support loads above its classical buckling load.

The differenrces in the postbuckling behavior hetween the cir-
cular cylinder and an ecceutric oval cylinder are prominently dis-
played in the load-deflection curves in Fig. 1. The curve for the
periect ghell in Fig. 1(d) is a schematic reproduction from Kemp- Pt
The behavior m the early stages of
buckling was not determined, but they tentatively conjectured
it might follow the dotted seginent of the curve in Fig. 1(b). TIf,

Buckling and Initial Posthuckling Behavior

of Oval Cylindrical Shells Under
Axial Compression

Buckling and initial postbuckling behavior is determined for thin, elastic cylindrical

skells of elliptical cross seciion.
postbuckling colculations reporied by Kempner and Chen on @

This siudy complemenis the buckling and advonced

similar class of shells.

The initial posibuckliing amalysis tndicales that, like compressed civeular cylinders,
the ovel cylinders will be highly sensitive fo small geomelrical imperfections and may

buckle at loads well below the predictions for the perfect shell. Onli

he other hond, buckling

will nof necessarily vesull in complete collapse. A series of simple lests has been per-

Sormed whick provide qualilative verificaiion of the major features
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Fig. 1
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Schematic laad-end-shortening curves

length of major axis of
Cross section

B = length of minor axis
b = initial postbuckling co-
efficient; see equa-
tion (13}
c o= [3(1 -/
E = Young's modulus
F = stress function
F = @'F/(BRy?), mnondi-
mensional stress
function
F F® = defned in equation (8)
N fo, fa = defined in  equations
B6 / marcH 1968

7 AT
sz) qu f\’sa

(16} and {22)
axial wavelength of
huckle pattern
membrane stresses

y =
zz) Arzs; Nﬂ.‘l RU/_(Eiz) '(1\_7;::1 N:a; RqB _
NSS)
N, o' Ro/(Ei) R =
P applied axial load ¢ =
Py classical buckling load
Prax = maximum suppert load Eg =

prior to complete col-
lapse

buckling load of iwnper-
fect structure (maxi-

muam support load in
the initial postbuck-
ling regime)

(1201 — »2)) /(R /1)
radius of curvature at
ends of minor axis
{perimeter length -+

21}, reference radiusg
local  circumferential
radius of curvature;
see equaiions (2)and

(&)

(Continued on next pagel
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in lact, this is true, the oval eylinder would be relatively in-
sensitive to small imperfections as depicted by the dashed curve.
An alternate possibility iz suggested by the results of the present
analysis and is shown in Fig. 1(e). According o this piciure,
mitial buckling will be strongly influenced by imperfeetions but
will not be catastrophic. Complete collapse oceurs at a load
ahove the primary buckling foad.

The purpose of this paper is to present exact results for the ini-
tial postbuckling behavior and imperfection senzitivity of oval
cylinders. The study is made within the context of Koiter's
general theory of postbuckling hehavior [3-5]. This analysis
is specifically tailored to uncover the equilibrium behavior in the
vicinity of the classical buckling load. This method is quite dif~
ferent from that employed by Kempner and Chen, who maodified
the scheme which has been used to obtain large-deflectiou be-
havior of circular cylinders. Their procedure i3 well suited for
making large-deflection calculations but lacks accuracy and ease
of application when applied to the initial postbuckling regime.

Mention can be madc of several other studies which have
aspects in common with the present worle.  Koiter [6] found that
a narrew cylindrical panel under axial compression can have a
stable or unstable postbuckling behavior depeuding on its width.
Budiansky and Amazigo [7] have shown that buckling of cvlin-
drical shells under hydrostatic pressure can be sensitive to im-
perfections in some instances and insensitive m others. The
initial postbuckling behavior of toroidal shell segments under
various loadings is strongly influenced by the relative magni-
tudes of the two principal curvatures [S].

Nonlinear Equations for Axial Buckling of Oval Shells

The points on the middle swrface of a shell with an ellipfical

cross section satisfy
g 2 N i \2
e T - =1 1
(5 +(5) 2

A circurnferential coordinate § 15 introdueed as shown in Fig. 2.
The circurnflerential radius of curvature at any point on the
ellipse is given by

O (RN A

For purposes ol nondimensionalization, it is convenient to in-
troduce a reference radius Ry defined to be the radius of the circle
with exactly the same perimeter as the ellipse; i.e.,

perimater length

Fig. 2 Shell geometry

where E is the elliptic function of the first kind. The axial coor-
dinate % and the circumferential coordinate § are nondimen-
sionalized according to » = go/Ro and 8 = 3g9/Rs, where

@ = 11200 — )]V (Ry/1) 1)

and where ¢ is the shell thickness, and v is Poizson’s ratio.
Kempner and Chen considered a different class of oval shells
characterized by a circumferential radiug of curvature

£y

Ry= ——FV—————
1 — £sin (25/R0)

{5)
where £, the “eccentricity parameter,” gives rise to a circular
cross section at one limit (¢ = 0) and at the other (§ = 1}
correspends (o an oval with B/4 =2 0.483 and an infinite radius
of curvature at both ends of the mninor axis [2]. Results for both
cross sections will be presented.

The equations employed in the present analysis are the same as
those used by Kempner and Chen. In appearance, they are
identical to the nonlinear shallow shell equations and the Donnell-
type equations for elastic deformation of thin shells, Applica-
tion of these equations to the axial buckling of oval cylinders is
justified hecause of the shallow buckling mode character of the
buckling and initial postbuckling behavior. A more convincing
argument can be given, however. On the basis of an ad hoc
examination of the solutions, it was found that, in nearly all
cases, Koiter’s conditions for quasi-shallow shells [9) are met;
and therefore, the solutions are completely accurate within the
context of first-order nonlinear shell theory. Viclations of the
conditions occur at the ends of the major axis when the elliptical
cylinders are very flat, but inaccuracy in the regions of high
eurvature has essentially no effect on the quantities governing
overall shell behavior which have been caleulated in this study.

The equations for an initially perfect shell are written here in
a nondimensional forms:

Vil + % FY = 2e(F"W" + F'W— — 2F"W")  (6)
T

Fs =
¢ 2 1 i B .
ViIF — — W' = 2e(—W"W" 4+ W' (7}
24 w2 B\ . IR r(s)
I a [l + |:(.A ) B 1] sin® \'b] di (3) The dimensional normal displacement 13 has been normalized by
the shell thickness, W = W/t, while the other quantities appear-
— 24 Ei1, B/A) ing in these equations are defined in the Nomenclature. Alse,
L the abbreviations () = ( ), ( ) = { Jeand Vi=[( )
Nomenclalure
ro= [iz/My W, wy, wg = defined in equations ] “flatness parameter’;
¥ circumferential coordi- (16) and {21) see equation (34)
nate . . & ¥, & = Caricsian coordinates; A defined in eguation
3 Eqn/.h)a’ n(t).ndlmt.an]monal see Fig. 2 (16)
t r- . , .
Sl]l:;;: erential too & = £go/R, nondimensional v = Poisson’s ratio
‘ shell thickness axial coordinate £ = “eccentricity parame-
W outward normal dis- § = amplitude of buckling tl“;l‘”; see  equatlon
placement displacement;  see (3}
W 17/, nondimensional equation (16) a® applied  compressive
normal displacement & = amplitude of initial stress

Wo, Won, W

defined in equation (8)
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+ { )")% have been introduced. The nondimensional mem-
brane stresses are related to tbe stress function F by N, = F”,
Neyy=—F" and N,, = F".

Buckling and Initial Posthuckling Analysis

The analysis which follows proceeds along the lines laid out by
Koiter [3-5] for exploring the equilibrium behavior in the initial
stages of buckling. A general development of this theory will not
be given here; instead, jnst the essential steps of the caleulation
will be recorded. A number of results from the general theory
have been taken directly [rom {10, 11], which contain a reworked
version of Koiter’s theory.,

First, an analysis of the perfect shell is carried out. An asymp-
totic perturbation expansion for tbe normal deflection and stress
function is developed about the primary state of uniform axial
stress —¢® The amplitude 6 of the deflection in the classical
buckling mode, denoted by W<V, is the expansion variable, and W
and F are written as

W = W@+ G/OWO + AP + .
F o= —VaNS5st 4+ (B/OFO + (B/F® 4 ...

where N . = ¢'R,/El is the nondimensional prebuckling mem-
brane stress, and W® i3 the prebuckling deflection. Implicit in
the development of this expansion is the assumption, to be justi-
fied in what follows, that buekling is associated with deflection
in a single classical buckling mode W, As is well known, this
is not true for the circular ¢ylinder under axial compression, which
owes its highly unstable postbuckling behavior to nonlinear
coupling hetween many simultaneous classical modes. For this
reason, the present analysis does not encompass the limiting case
of the cireular cylinder.

A sequence of linear boundary-value prohlems is generated for
the functions appearing in the foregoing expansion as described
in {10, 111. The first of the sequence is the eigenvalue problem
for the classical buckling stress ¢(N_.%); and W and F(:

Il

(8)

VO 4 2 POV L 9N, WO = 0 ©)
;

ViR — L W = g (10)
r

Once the classical problem has been solved, it will also be neces-
sary to solve the second boundary-value problem, whose field
aquations are

1
VWS 4 = PO 4 2N, 0 W
T

= 2c(FO.FW? 4 FAFMW.. — JFWIUTF@CY (11)

ViR — 1 W = 9g(—~WWHWn.. = ey (12)
r

We ignore boundary conditions at the ends of the shell and
thus, in effect, treat the case of an infinitely long eylinder.
Solutions are sought which are periodic functions of the axial
coordinate. The Huler mode is deliberately eliminated from

P ii 3
PERFECT, -0 ch"+b(r)

P

F’C 4

I wperecT, 540

(3)

& = BUCKLING DISPLACEMENT AMPLITUDE
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consideration. Various possible solution symmetries or asym-
metries are possible with respect to the major and mmor axes.
The circumferential boundary conditions for the first and second-
order boundary-value problems appropriate to the different pos-
sibilities will be discussed in detail at a later point. Specification
of the problems is completed by the additional 1'equirementf not
written here, that the inplane displacements of the shel! middle
surface be single-valued about any circumferential circuit of the
shell,

Qolutions to these two problems are used to calculate t:he
equilibrium relation of applied axial load P to buckling deﬂe.ctlo'n
& in the inilial postbuckling regime.® This relation, which is
necessarily symmetric in the buckling deflection for the present
prohlem, can be written as

5 \2
P/Pcsl—&-b(?) + ... {13}
An explicit expression [or the postbuckling coefficient b is given
in [10, 11] for a class of thecries in whieh the present shell theory
is included. 1n terms of the guantities of the first two boundary-
value problems, the eoefficient is

b= {2‘[ [F 00 O & + F 0w W @
S
— FL (W OW 0 4+ WO ]S

+ f [F 0 2 4 F o mE — 2F,,,‘“W,;”W,,(U]dS}
8

+ {(Nu")cf [W.z“’I“dS] (14)
2

The character ol the postbuekling behavior in the initial stag(‘:s
after buckling hinges on the sigu and magnitude of b, If b is
positive, the applied load P increases to values abc.we the classical
buckling load Pe with increasing buckling deflection, Howevgr,
if b turns out te be negative, then the equilibrium load fa‘]ls.mt.h
increasing buckling deflection and the postbuckling bchafnor is
unstable under dead loading. In such a case, the shell is imper-
fection sensitive and, in an actual test, small geometrical imper-
fections can greatly reduce the buckling load. Koiter has ob-
tained an snalvtic relation between the static buckling l().tid' {33
and the imperfection amplitude 5 for the case in which the lI‘ll.tla]
deviation of the middle surface is in the shape of the classugl
buckling made. This expression, which is asympiotically valid
forsmall §, is

1/y |\E Ps

P\ B3 P .
S = 2 (=} — (i
(l Pc‘) 2 (=¥ |t Pe

The symmetric bifurcation behavior discussed in the previous
paragraph is depicted in Fig. 3 along with plots of Ps/Fp versus

5 By its definition in equation (8). 3 is the amplitude of t..he maxi_-
mum normal deflection since W will be chosen such that its maxi-
mum value is unity.

= IMTIAL DISPLACEMENT AMPLITUDE
t = SHELL THICKNESS

Fig. 3 Buckling of imperfection-sensitive shells
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&/t for several values of b. Tneluded in this figure is a curve, taken
{rom Koiter [2], showing the effect of an axisymmetric imperfec-
tion on the buckling load of a circular eylinder under axial com-
pression.  Although the eircular cylinder is not characterized by
equations (13) and (15), this curve does provide a ealibration for
the postbuckling coefficient b for oval cylinders., [t would be
highly desirable to have relatione between the buckling load and
the imperfection obtained under less restrictive assumptions than
equation (15) involving, perhaps, statistical mesasures of the
imperfection. Such a characterization, however, is beyond the
cuwrrent state-of-the-art.

Solutions to the classical buckling equations (9) and (10) are
sought in the form

W = w()(g) cos Az

(16)
F J((3) cos Az

In this way, equations (9) and (10) are converted into a pair of
coupled, ordinary differential equations with nonconstant coel-
ficients:

Wi — 2AZpll. 4 Al

)\2
_ :f(” — 2NN, = 0 (17}

S0 — 2N £ MW A% = 0 (18)
r

The critical eigenvalue was found to be associated with a mode
which was either symmetric with respect to hoth the major and
minor axes (Mode I} or symmetriec with respect to the minor axis
and asymmetric with respect to the major axis (Mode 1T}, Since

& numerical method was used to solve equations (17) and (18), it
wag convenient to restrict consideration to a one-quarter segment

of the circumference running from 8 = 0 to 8 = wg/2. The
boundary condition at these points are
w(l). f— -wflj... = f{1). = {{})... = D
/ ! } Mode 1 (19)
s = 0, 7go/2
and
wl = . = fi) = f. =
s =10
Mode 11 (20)
wih = it = f = f. = {)
§ = Mq/2

Equations (11} and (12) for the second-order boundary-value
problem also reduee to ordinary differential equations. The
quadratic terms involving W and # on the right-hand sides of
the equations give rise to nonhomogeneous terms which are either
independent of the z-coordinate or vary as cos 2Az, where, of
course, A is predetermiued by the classieal analysis. Thus W@
and F are sought iu the separated form

W = clwgls) 4+ wpls) cos 2hz] (21)
PO = c[fa{s) + fals) cos 2Az) (22)
end equations (11) and (12) reduce to
we T = — AWt {23)
S = a0 (24)
and
w™ — BNwg't - 16Nt — 4NYa/r

— 8AZ(N,Mows = — AR f0 D 4 flpll. - ittty (25)
f87 — BAYg" 4+ 16AYs + 4Awa/r = A2(wtD-w) — i) (26)
The “loading terms’ on the right-hand sides of equations (23)-

(26) are quadratic in w and f and are symmetric with respect
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to the major and minor axes. The second-order conbributions to
the deflections and stresses will, therefore, be symmetric about
this pair of axes, That is, lor both Modes I and 1T,

=g =0 }8_03 (27)
s =f,6. — fﬂ... _— ’ g ' (28)

Equationg (23) and (24) can be integrated by inspection such
that the preseribed boundary conditions are satisfied. For our
purposes, it is only necessary to determine w, and f.'’; these are

Wa = Wq

wa = wy

= _Azf fpinds + )\z(gs/ﬂ.qn)f fypDds  (20)

AL — ()\z/wqo}f

Note that the boundary conditions (27) are not sufficient to deter-
mine f, but must be supplemented by the condition that fo be
single-valued, which insures that the circuit average of the mem-
brane siress N, is the specified value N_.% Also, the differential
equation (23) and boundary conditions (27} yield a unique solu-
tion for e, cxcept for an arbitrary constant which is determined
by the further requirement that the circumferential tangential
displacement he single-valued ahout any complete circuit of the
shell. With this condition satisfied, it ean be shown that tangen-
tial displacements are single-valued up to and including terms of
order (§/t)2,

From this point, all ealculations were carried out numerically.
The ordinary differential equations were finite-differenced and
then solved using Potters’ mcthod of Gaussian elimination [12].
The homogeneous differential equations (17) and (18) comprising
the classical eigenvalue problem were solved for a number of
values of A to find for each value the lowest eigenvalue eV,,°. In
a systematic way, the value of A associated with the lowest eigen-
value of all ¢{N,.%)¢ was found along with the functions charac-
terizing the classical buckling mode w!V and ftU. Next, equations
{25) and (26) were solved for wg and fz using the same Gaussian
climination method. TFinally, the postbuckling coefficient b was
calculated using a standard method of numerical integration. A
reduced expression for b can he ohtained if the scparated forms of
equations (16), (21), and (22) are substituted in the general ex-
preszion for & (14) and if, then, the integrations with respect to x
are performed. This gives

b wigo/2 ] 1 .
T J; =S |y 4 5 s + [ 0wOypg

1
— fgpth (wu' - 5 w,g') — SV apDpg — fpro.

whds (30)

N:]»—l

fa” =

+ ( - —fg )w“)’ - fﬁ'w“)w“ﬁ] ds

o KQO
. (N s )cf w05 (31)
6 o

Results of Buckling and Initial Posthuckling Analysis
Elliptical Cross Sections

Buckling initiates in the regiou of minimum curvature at the
ends of the minor axis of the ellipse. If the shell is sufficiently
thin, the classical stress approaches that of a circular cylinder
whose curvature 1s the same as ocours locally at the ends of the
minor axig of the oval shell; i.e.,

Bt A
Rp =~

ge = 151 — w1 /s Ry 7

{32)

Plots of the elassical huckling stress, normalized by the foregoing
Jimitmg value, are given in the upper hall of Fig. 4. Over most

MARCH 19568 / B9



PrrRN———

Fig. 4 Classical buckling and imperfection sensitivity of elliptical
cylindrical shells under axial compression

of the range of B/A4 there is no appreciable difference between
the critical stress associated with the doubly symumetric mode
(0hfode I) and the symmetric-asymmetric mode. However, in
the lower range of B/A which has been plotted, the two cases
diverge and Mode I is critical as shown in Fig. 4 for ¢o = 10,
Plots of the circumferential variation of the buckling mode are
shown in Fig. 5. The curves shown were selected to display two
features, found by Kempner and Chen as well, wbich charac-
terize the classical buckling of oval cylinders. TFirst, the region
in which significant buckling takes place concentrates about the
ends of the minor axis when the shells are verv thin just as one
would expect. The second feature is ihat the buckling mode of a
near-cireular oval (B/4 = 0.907 is the case shown) is quite dis-
tinet in its radial deflection from any of the classical buckling
modes of the ecircular cylinder. In the limii, this distinction
vanishes. The axial wavelength of the buckling mode of the oval
shell 1s roughly equal to the wavelength of the axisymmetric
buekling mode of the corresponding circular cylinder of radius Ry

L= 2m{12(1 — o)) ~'s(Rg0)' (33

and approaches this value as g becomes large.

The iniiial postbuckling coeffieient & is displayed in the lower
half of Tig. 4. Judging from our previous discussion and the
curves in Fig. 3, the oval eylinders should be very imperfection
sensitive for all but the most highly eccentric cross sections. Ad-
ditional points in the range of very sinall B/A, where b docs cross
over to positive values, have also been cbtained but will not be
presented since this range iz of little praciical interest. On the
other hand, it is of interest to relate this study to work on axially
compressed narrow cylindrical panels by Ioiter [6].

When B/ is very small, either side of the oval ¢ylinder is much
like & narrow curved panel and, it B/A is zero, it is essentially &
fiat plate. Koiter has shown that the transition from an unstable
{b < 0) to a stable (b > 0) postbuckling behavior takes place when
the panels are sulficiently close to the flat plate configuration.
Similar behavior is expected to nearly flat elliptical ¢ylinders.
The *'Hatness paramcter’’ appropriate to the eccentric elliptical
oval is

10 / MmaRCH 1948
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Fig. 5 <Circumferential variotion of buckling mode omplitude (Mode )

o 24
(R

g = -1“ [12(1 — wp2)] {34)
2

Using houndary condiiions which are somewhat different from
those of either of Mode T or Mode II, Koiter found that the
transition (5 = 0) for the cyvlindrical panel ocourred when § =
0.64. Our caleulation gives # = 0.8 for Mode T and 8 == 0.6 for
Mode II; for g = 10, these values correspond to B/4 =2 0.04 and
.02, respectively,

1t can be shown that the analysis with the boundary conditions
of Mode IT for the limiting case B/A = 0 iz exactly applicable to
an infinitely long flat plaie of width 24 which is simply supported
along iis two edges and compressed in the long direcinn, The
initial postbuckling coefficient for the Bat plate s = 3(1 — »2/3,
and the present numerical results for very sinall B/ did coincide
with this value.

As mentioned previausly, the analyzsis just outlined is not ap-
plicable to the cireular cylindrical shell under axial compression
because, for this problem, the assumption of a single classical
buckling mode must be abandoned. Results have been obtained
and plotted for near-circular cylinders with B/4 as near unity as
0.96, and valies of b in the neighborhood of —2 have been found
as seen in Mg, 4. Judeging from the asymptotic curves of buckling
load versus imperfections in Fig. 3, it appears that near-circular
cylinders are about as susceptible to imperiections as the circular
cylinder. While this seems wtuitively obvious, it is reassuring
to see a qualitative verification of this similarity emerge from
two guite different analyses.

Nonellipsoidal Oval Cross Sections

Although it secmed quite unlikely that the imperfection-sensi-
tivity trends of the elliptical cylinders could be much different
from those for the oval evlinders studied by Kerpner and Chen,
nevertheless, the caleulations described were repeated for the non-
ellipsoidal cross sections. Results are plotted in Fig. 6 for ¢ =
18.2 corresponding to one of the values chosen by Kempner and
Chen for their advanced postbuckling ¢aleulations. The classieal
buckling predictions agree completely with their ealeulations.
The initial postbuckling predictions are at odds with their
tentative curves for this region, which suggests a transition from
imperfection sensitivity to insensitivity somewhere between £ =
0.5 and 0.8 when, actually, the oval cylinders will be imperfection
sensitive for all cross sections, including the limiting case £ = 1.
A careful examination of the present solution was made; and it
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Fig. 6 Classical buckling and imperfection sensitivity aof ovol cylinders
under axial campression {nonellipsoidol cross section)

became elear that, of all the second-order terms contributing to b,
the z-independent terms, w, and f.' ", ave by far the most im-
portant, The series representation t=ed by Kempner and Chen
could not yield accurate results in the initial pohubucklmcr regime
sinee th =il 1r1but10n of this series i= identically zero.

ngc dion caleulations have sequ .“d a reputation for
being 1mi0rioﬁ|-ly hard. The large-deflection load versus end-
shortening relation for circular eylindrical shells Las been recal-
culated many times; and, as Hoff, Madsen, and Mayers (131
have recently shown, this problen is still not completely re-
sulved. IKempner and Chen'’s problem is even more diflicult since
one 15 nlmost forced to use trigonnmetric series representations,
nnd these are not nearly so well suited for application to the oval
evlinder as thev are to the c¢ireular evlinder. Thus the exaet
initizal p< :Lhuekling results complemuut the large-deflection eal-
enlatiocns and enable one to constr nruch clearer picture of
the tofal I--.cL.I g behavior.

It remsins, then, to reconcile our iuitial posthuckling predic-
tons with Kempner and Chen’s predictinn of a maximum support
load, which is in excess of the clazzical burkling load when the
oval eylinder is sufficieuily eccentrie, {the transition oceurring for
£ sutnew here Letween 0.5 and 0.8 for the nunelliptical ovals).

Iy

and depicted schematically in Fig. 1(¢}.* A perlect shell would
undergo snap bucklnw but not complete collapse when the
classical buekling | ud Pc iz attained. The buckling defleciions
would be confined mainly to the neighborhood at the eud= of the
minor axis. As the lond is increased above Pe, buekles wall spread
to the regious of higher curvatiure until the entire =hell collapses
catastrophically. The imperfect shell will buckle at loads well
below P, but, again, will sustain greater leads before enllapse
ogeurs.

Tests of Elliptical Cylinders in Axial Compression

Ten specimens, two for each of five values of minor-miujor
ratio rauging {rom B/4 =

axis
1 to 0.25, were subject to increpsing
amounts of axial comprezsion under dead loading wutil they cal-
lapsed. The specimenz werce constructed of thin Muylar sheet
which was formed around, and bonded to, wonden elliptical end
pieces. The axial seam of overlapped sheet was uide as unrrow
as po=zible and, in the case of the noneireular cylj.rulmi, was lined
up with one o[ the eml: of flw maj01 axis v.here it has tl‘ leqsh

such that its Plassucnl buck.lmg E:'fnl'EDS was a small 1racuon of the
Mylar vield siress. This method of construetion leads to residual
stress in the unloaded shell; however, this sires< should play far
less of n degrading role fhan the initial waviness of the shell which
is invariably present in shells fashioned in this wav., According
to the theoretieal predictions, mitial deviaficns on the order of
the shell thickness should have a very olservahle effect on the
huckling load.

Dain on these specimens and the tests are listed in Table 1.
Two circular cylinders were tested to provide a calibration of the
overall quality of the conztruction. Both buckied a7 belween
one third and one fourth of the elassical load and thus are more
or less typical of the gpecimens of Weingurten, Morgan, and
Seide [14] for B/ = 500. In accord with the dizscussion of the
previous section, two “buLLerr Joads” have been recorded: FPg
is the load atv which o distinet buekling pattern first emerges, and

Praz is the collapze load. 11 was not possible to distinguish be-
tween Ps and Po.. with the first six specimens, slihough even
one of the cireudar cvlinders developed a very =light, izolated

dimple 2t loads below collapse. In contrast, speciinens 7 and 8
underwent a fuirly sharply defined preliminary buckling into a
distinet pattern at Pg less than one half of Pe. The i

amplitude was several tunca the shell thickness and grew in mag-

nitude with increazing load until the shell eollupsed. Prelin l_mrv
buckling was less well demml iu specimer= 1 and 14, presumably
becausn the shells were quite imperfect, and assignnient of a value
to Py was semewhat gribitrary. Nevertheless, the maxiinum sup-
port lowd of specimen 0 was actually greater (han the clazsical
bueckling load by about 25 percent.
i The exact luad-end-zhortening relation for the perfert shell, valid
in the initial stages of buckling, is of the form
¢ r P
cmrrx(i-7)
wliere ec iz the value of the end-shortening e at the critirn

coeficient K has been ealeulated ulong with b; and, in all ¢n
This is accomplished in the muanner linved ot in the Introduction  for B4 greater than 0.1, ¢/¢c diminishes with decreasing I
Table 1 Test Data
Specimen B/A FTEN A B i Pe b Pslexp (Pus
1 1 L.o 2.64 2.64 0.31 34 7 9.2 9.‘2
2 1 Lo 2.64 2.64 0.31 34.7 8.9 8.9
3 0.73 0.877 3.02 2.26 0.38 22 8 —-2.5 6.5 6.5
4 075 U.NT7 .02 2.26 0.33 22.8 -2.3 0.4 9.4
a 0.30 0.77t 3.43 1.71 0.50 15.3 —2.1 5.1 3.1
6 0.50 0.771 3.43 1.71 0.50 13.3 —2.1 5.9 6.9
7 0.333 0.707 3.74 1.25 0.64 815 -1.9 2.7 4.9
3 0.33 0.707 3.74 1.25 0.64 8.15 -1.9 2.6 6.0
9 0.25 0.453 3.56 0.97 0.75 3.02 -1.8 2.5 7.6
10 0.256 0.653 3.86 0.97 0.75 5.02 —-1.8 1.6 5.7
All loads in pounds, lengths in inches; £ = 10 X 105 psi: £ = 0.003 in.; go = 33.7; axial length of all

specimens = 6 in.; » is taken to be 1/3.
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Clearly, conclusive experimental verification of the results and
conjectures of the previous section cannot be based on these
qualitative tests alone. Data on more nearly perfect shells are
desirable. On the other hand, tbe test data are entirely consistent
with the predictions of the initial postbuckling anslysis as well ag
Kempner and Chen’s predictions of ¢ollapse loads in excess of the
classical buckling load.
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