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PLASTIC STRESS AND STRAIN FIELDS AT A CRACK TIP*

By J. W. HurcHinsox
Harvard University, Cambridge, Massachusetts, U.5. A.

(Received 20th May 1963)

SUMMARY

FourTHER details of the stress and strain fields associated with the doninant singularity governing
the plastic behaviour at a crack tip are presented for eonditions of plane stress and plane strain
for cracks in both far tensile and far gshear feclds. Hesults are obtained for a power hardening
material. Limiting cases for non-hardening materials are shown to correspond to certain perfect
plasticity sclutions.

1. INnTRODUCTION

Most metals, including even the high strength alloys, undergo some plastic
deformation in regions of high stress concentration, and fracture precipitated by
a crack is nearly always preceded by at least a small amount of plastic deformation
at the erack tip. This deformation plays a crucial role in the fracture process which
is not yet fully understood. A background discussion of the general problem area
has been given by McCrixtock and Irwin (1965) and Rick (1968). In this paper
details of the plastic deformation at a crack tip are presented. This work continues
and elaborates on the studies of CuErePaNov (1967), HurcHINsON (1968), RicE
{1967}, and Rice and RosevereEN (1968). We complete this Introduction with a
summary of some of the results contained in these papers.

The discussion which follows is restricted to a small strain formulation of
plasticity in which the only nonlinearity introduced into the theory is in the stress—
strain relation while the equations of equilibrium and the strain displacement
relations are taken to be linear. A deformation theory of plasticity is invoked
and a power hardening relation between the plastic strains ¢;7 and the stresses
agy 1s assumed so that in simple tension ¢? = oo™, and in general

i = o § (og)"1 sy (1)
where the stress deviator is
S = gy — ¥ opyp Bis (2)
and
ot = § 545 5is (8)

Here » is the power hardeming coeflicient and « ean be regarded as a material
constant. Throughout this paper all unbarred stress quantities will have been
non-dimensionalized by a tensile yield stress gy and unbarred strain guantities
by the associated tensile yield strain éy. As implied by (1), plastic deformation
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338 J. W. HUuTcHINSON

is assumed to be independent of the hydrostatic component of the stress and
determined by the °effective stress invariant’ ¢,. The Mises yield condition is
simply 3, = sy or o, = 1.

The dominant singularity governing the behaviour at the tip of a line crack
as predicted by this theory for either the idealized conditions of plane stress or
plane strain can be obtained in some special cases with the aid of a path independent
integral given independently by CHEREPANOV (1967), EsHELBY (1956) and RicE
(1967). Application of this integral to the crack problems under discussion reveals
that the strain energy density must have an exact 1/r variation as the crack tip
is approached where r is the distance from the tip. The stress, strain and displace-
ment fields associated with the dominant singularity are

oy (r, 6) = Kr—1in+D) 5,,(8),
oe (1, 8) = Kr—Qintl) 5, (8),

&P (r, 8) = K" r—(nin+l} &y? (),

(4)
ug (r, ) = oK r(intD) g, (9),

where K will be referred to as the amplitude of the singularity*. For small scale
yielding, that is when the plastic zone at the tip of the crack is very small compared
to the crack length, the amplitude K can also be determined directly by application
of the path independent integral.

In the remainder of the paper details of the dominant singularity (4) are
presented for a tensile crack under conditions of plane stress and plane strain and
for a shear crack under plane strain. The character of these solutions at large

values of » (and thus a low strain hardening capacity) is related to certain perfect
plasticity solutions.

2. Prastic DEFORMATION AT THE Tip oF A TensiLE Crack
IN AN INFINITE PLATE UNDER CoONDITIONS OF PLANE STRESS

Here it is supposed that the plastic zone at the tip of the crack extends over a
distance of more than several sheet thicknesses such that an elastic—plastic theory
of plane stress has at least approximate validity everywhere except within a
distance of about a thickness or so from the crack tip where three dimensional
behaviour is prominent and the assumptions of generalized plane stress break down.

Plots of the §-variations of the stresses and strains associated with the dominant
singularity as given by (4) are given in Fig. 1 for two values of the hardening
coefficient n. The stress distributions and the calculational details were given by
Hutcuinson (1968). The effective stress invariant for plane stress is

g2 = a2 4 ag2 — ay gy + Bapl. (5)

As seen in Fig. 1 &, (8) has been normalized such that it attains & maximum value
of unity. Since the stress distribution is symmetric about a crack subject to a far
*In what follows, the angular coordinate 8 is taken to be zero ahead of the crack and the distance from the tip »

has been non’nalized by the half length of the crack. The amplitude K has been introduced since it is convenient to
normalize the & (8) such that [Fe (8)]max = 1.

b
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Fie, 1. @-Variation of stresses and strains at the tip of a tensile crack for plane stress.

tension field, only half the field is displayed. From (1) and () the plastic strains
are given in terms of the stresses by

ey® (r. g) = + K7 plinintl) 2 (6'3 (9))"—1 ';U (&)

wKr p—tninl) &P ((9) (ﬁ

—

and, thus, by definition of &;7 :

P (0) = ¢V (6 — } Ga)

& (6) = 6,5 (69— 1 57) X
a7 (0) = § 65171 60 )
& (0) = — (57 + &),

The amplitude of the dominant singularity for small scale yielding is
E— ( 1.,.)(lhrH—l) (o™)@insD (8)
p— a_I <

where 5@ is the magnitude of the tensile stress far from the erack and o* = /5.
Numerical values for I for various values of # were given in the previously mentioned
reference and are repeated here in Table 1. In the lnit for large n, I appears to
approaeh a constant value (&« 2-8) and the strains approach the limiting distribution

a? (r.0) = T (@R ey (0) ©)

while the stresses apparently approach

oo {r, 0) = G, (0) = 1 (10}
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TanLe 1
"= 3 5 9 18
1 3-8 341 8-03 2-87
. (1in+1}
Tensile crack L
];‘;fleest:; (7) 0-949 0-087 1.004 1-006
1 5-51 5-01 460 440
. . (1/r+1}
) 1 k k4
Pizi‘eeqz:fn (7) 0-869 0025 0963 0-976
1 0-694 0-458 0-269 0-181
(Lin+1)
h :
il:gz 2::::1 (%) 1-46 1.8 1-29 1.23
and oy (1, 8) = &5 (0). (11)

In the remainder of this section we explore the relationship between the do-
minant singularity solutions associated with large values of n—thus characterizing
a material with a low strain hardening capacity—and predictions based on the
theory of perfect plasticity. The perfect plasticity problem will be seen to have a
hyperbolic character, while the hardening solutions discussed above are obtained
from a system of elliptic equations; even so, a resemblance between the two sets of
predictions should be expected if both theories are reasonable models of low strain
hardening behaviour.

A general development of the theory of perfect plasticity for plane stress has
been given by HiLL (1950, p. 300). This theory, with thinning of the plate neglected,
is used here to investigate the stress field near a crack in a perfectly plastic thin
shcet subject to tension. No attempt has been made to construct the entire solution
to this problem. Instead, guided by the character of the dominant singularity of
the hardening solution, we construct a stress field centred at the crack tip whose
validity is restricted to the immediate vicinity of the tip. The result of this con-
struction is shown in Fig. 2 and is discussed in what follows.

The Mises vield condition for perfeet plasticity and plane stress is

Cfcz = G'r?‘ + 0'82 — Or J8 + 307'32 = 1. (12)

On a stress characteristic the normal stress component g, acting across the charac-
teristic is twice the normal stress component o acting along the characteristic.
No continuous stress field and its associated characteristies could be found which
satisfied the stress-free boundary conditions on & = 4+ 7 and which satisfies the
vield condition on the interval — 7 < # < ». Indeed, the hardening solutions in
Fig. 1, and in particular the low hardening case » = 18, strongly hint that a
discontinuity in the o, componcnt of stress should be considered in a perfect
plasticity treatment. The possibility of stress discontinuities in perfect plasticity
has been discussed by PraciEr (1948) and HivLr (1950), and an illustration of a
problem in which a stress discontinuity must be introduced has been given by
SurELp {1954).

Continuity of traction across a radial line emanating from the crack tip requires
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Fia. 2. Stress characteristics and stress distribution at the tip of a tensile crack in a perfectly
plastic material for plane stress.

that os and o,6 be continuous functions of #. If the yield eondition is satisfied
on both sides of a radial line of discontinuity then the jump in the o, component
of stress can be found from (12) to be

ot — ar~ = (4 — Bop? — 120,4%)%. (18)

Such a discontinuity stems from the idealization inherent to perfect plasticity
theory. If elastic strains were taken into account, the radial line across which
the jump occurs would actually lie in a narrow elastic region throngh which the
change in o, as given by (13) takes place,

Condition (13} inferred from the limiting behaviour of the hardening solution
cnables us to construct a perfect plastic stress field at the tip of the crack. The
region AOB in Fig. 2 is subject to uniform stress, ozz = — 1, oyy = ozy = 0, o1

ar = — 4 (1 +cos28), og= — L(1 —cos24), om = }sin20. (14)

In region BOC the stress is also uniform, but a jump in o, across the radial line OB
is spectfied according to (13), and thus in BOC

or = 2(—1 4 3cos 28ap) + 1 (1 + eos 20ag) cos 2{8 — Byp)

+ }s5in 2055 8in 2 (8 — Oop), (15)
o = —ar +%(—1 -+ % cos 26ap),

org = — ;{J + cos 280p) sin 2 (6 — fop) + $ sin 2805 cos 2 (6 — Gop),

where 85 denotes the angle associated with the line OB to be determined in the
subsequent analysis.
If OC is to be a stress characteristic as shown, then o, = Jos on € = Gye or

(— 1 + 8 cos 28a0p) + 3 (1 + cos 285g) cos 2 (8o — Fop)

+ 6 sin 2645 sin 2 (65¢ — Gop) = 0. (16)
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In the slip hine fan COD the stresses are given by HILL (1952)

4 1
o = 20, = ——_cos ; o =-—_—3s5néd 17)
T /B AV (
where the fan has been centred so as to give a symmietric stress field with ¢, = 0
at 4 = 0. Continuity of traction acress the radial line OC requires continuity of
og and o5 at § = &4 which by (15) and (17) requires

T~ 1+ 3cos28) — £ (1 + cos 28gg) cos 2 (8gc — Ogp)
— 1sin 28, sin 2 (B — dop) = —= cos Gac. (13)
/8

A simple numerical procedure was used to determine 8gg and &g from (16)
and (18) with the result : Ggp = 1514" and G = 79-7°. The stress distribution
as given by (14), (15} and (17) are those displayed in Fig. 2.

The distribution of plastic strains at the crack tip according to perfect plasticity
theory cannot be obtained by a simple analysis analogous to that for the stresses.
although it can casily be shown that there are many possible radial displacement
ficlds consistent with the stress distribution. Certain details of the strain field can
be inferred directly from the slip line field of Fig. 2. In particular, the plastic strains
can have a 1/ singularity—that is, &® (#) # 0 only in the fan region |0| < Bgc.
Furthermore, in the fan o5 -== 20, and thus s, = 0 and thus the radial component
&7 {§) must vanish for all &. Both these details as well as the stress distribution
itself are clearly reflected in the low strain hardening solution (n = 13) in Fig. 1.

GErBERICH (1964) has presented pictures of isochromatic lines in the plastie
zontes of thin aluminium sheets, These were obtained using a photoelastic coating
method and are reproduced in Fig. 3. Along an isochromatic the principal in-plane
strain difference, e — €f;. s constant. Such isochromatics have been calculated
on the basis of the present dominant singularity solution. These are also presented
in Fig. 8 for hardening exponents # = 3 and » = 13 corresponding roughly to the
hardening properties of 2040-0 aluminium and 6061-T6 aluminium, respectively.
Qualitatively, at least, the agreement 1s good although the plastic zone of the
6061-T6 specimen is clearly interacting with the boundary.

In our discussions of the perfect plasticity behaviour, we have excluded the
possibility of neeking ahead of the crack as envisioned in DuepDaALE’s (1960) model
and as treated by HiLL (1952) in his analysis of overall yielding of externally notched
strips subject to tension. Here, we are concerned with a combination of configura-
tion and material properties such that the plastic zone is relatively small compared
to the crack length and such that overall vielding of the specimen dees not cceur.
This is often the situation presented by cracked specimens of struetural metals
at the point of fracture. Judging from various experimental studies, necking often
occurs ahcad of a crack in thin sheets of some materials such as mild steel while
more diffuse deformation at the crack tip similar to that of the present solution is
evident in other materials such as the aluminium specimens investigated by
Gerberich.

The dominant singularity of the hardening solution as given by (&) and its
amplitude for small scale vielding as given by (8) were obtained on the basis of a
deformation theoryv of plasticity. Deformation theory can be a good representation
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F1a. 3. Isochromatics: upper figures from GrrBERICH (1964), lower figures derived from
dominant singularity.
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of actual plastic defermation only if the loading history at every point is propor-
tional or nearly so as the deformation proceeds (Bunransky 1959). It should be
noted that the dominant singularity here is also a solution to the equations of flow
theory since the loading is exactly proportional in the regime dominated by the
singulsrity. On the other hand, the amplitude (8) of the singularity would not
necessarily follow fromi a flow theory analysis; and it is difficult to assess the discre-
pancy between flow and deformmation theory analyses in this respect.

8, Prastic DrrormaTioN aT 1ur Trep or a Texsite Cracx
UNDER CoNDITIONS OF PLaxke STrRain

The analysis for a crack in a hardening material under conditions of planc strain
and subject to a far tension fleld perpendicular to the crack is analogous to that
described in the previous section and has been given by Rice and RosExGREN (1968)
and Hutcainsox (1968). Stress and strain distributions for this case are shown in
Tig. 4, Near the crack tip where the elastic strains can be ignored the Mises yield
condition for plane strain is

Ged = %(Uf — g)? + 8ot {19)
The plastic strains are again given by (4) where now
GP = — &P = 2,7 (G — Gp); &P — £ 5L g (20)

For small seale yielding the amplitude K of the dominant singularity is

K = {ﬂlj.&h_vz)]“mﬂ)[gm](zﬂmn (21)
where v is Poisson’s Ratio. The limiting form of the solution for vanishing hardening
capacity (i.e., 1 -> c0) is that given by (9) [except for a factor (1 — +2)]. (10) and
(11}—and the limit value for [ is about 4.8

The stress distribution and slip line field at the tip of a crack as predicted by the
well known perfect plasticity solution of PraznTL (1920) and Hiuw (1951) is given
in Fig. 5. As noted by Rice and RosexgrEx (1968). the stress distribution of the
hardening solution for large n closely approximates that given by the perfect
plasticity solution as can be secn from a comparison of the n = 13 solution of
Irig. 4 with the plots of Fig. 5 and the n — o0 limit clearly appears to be the perfect
plasticity solntion.

The strain distribution at the crack tip according to perfect plasticity theory
hhas not been found, but here again the plastic strains will be largest (i.e., a non-
vanishing 1/r singularity) within the fans on the top and bottem of the crack
where the only nonzero component will be e4?. These fcatures are reflected by the
Jow strain hardening solution of Fig. 4. In a related study Neimanx (1968)
introdueed strain hardening in his analysis of a doubly V-notched bar and with
the aid of an extremum principle for strain hardening materials was able to approxi-
mate the displacement and strain fields at the notch,

Plane strain eonditions at the tip of a crack result in a significantly higher
tensile stress ahead of the crack than is found under conditions of plane stress.
Using the stress ahead of the erack found from the Prandtl-Hill solution and that
for the tensile erack under plane stress {(17), the ratio is found to be
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T'1c. 4. §-Variations of stress and strains at the tip of a tensile erack for planc strain.

Te (9 = O)plrule strain

2 Apune B 1 L
og (9 = O)plﬂue stress

1ol

This value is the n — co limit for the ratio of the two amplitudes of the tensile
stress singunlarity ahead of the ecrack for the hardening solutions given by
HuTtcHinson (1968).

4. Prastic DETOKMATION AT THE Tir oF a Crack IN A
Suean Fieip uxpenr Coxprrions oF PLaNE STrRAIN

Figure 6 displays plots of the @-variations of the stresses and strains of the
dominant singularity at the tip of a crack under conditions of plane strain which
is subjeet to pure shear parallel to the erack far from it. These results were obtained
using the same procedure as has been applied to the erack in a tension field. Equa-
tions (13t), (6), (19) and (20) apply here as well. In this case the amplitude of
the singularity when the plastic zone is very small is

— 2\ la+1)
K = (il__y_)) ” [Ucozy]m n+1} (23)
o

where the erack is taken to be aligned with the » axis and where 4, is the non-
zero component of stress far from the erack and o%;, = %, /0y. Numerical
values for I and (#/I /21 are given in Table 1.

Stresses and slip lines assceiated with a local radial field centred at the erack
tip are shown in Fig. 7. These have been determined on the basis of the well known
plane strain equations of perfect plasticity. Here again, it has not been possible
to determine the strain distribution at the crack tip other than to note that a
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Fic. 5. Stress characteristics and stress distribution at tip of a tensile crack in a perfectly
plastic material for planc strain.

1/r singularity in strains can occur only in the fan regions and that, since the slip
lines do not extend, & and & are zero in the fans. These details and the near
coincidence of the stresses of the perfect plasticity field and those of the (n = 18)
solution of Fig. 6 strongly suggest that the limit stress field of the dominant singu-
larity of the hardening solution is the perfect plasticity solution given in Fig. 7.

The stress distribntion and slip line field at the crack tip have simple forms,

Fic. 8. §-Variations of stresses and strains at the tip of a shear erack for plane strain.
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Fic. 7. Characteristics and stress distribution at the tip of a shear crack for plane strain.

In the region AOB the stress state is homogeneous with ¢; = — 2/4/3 and
gy = ozy = 0 or
! (1 + cos 28} ! (v — cos 28) : sin 24.  (24)
O = — —— 528, op = — — — 00 y Orp — —— . 2
r ‘\/3 [ ‘\/3 ré ‘\/3
In the fan BOC
1 37 1
=g s — o |12 - = 8| = — . 25
Gr og /3 |: + ( mn )—’ O /3 (25)
The stress state in COD is uniform and on & = fg takes on the values
1| 3w 1
—ap=—— |14+ 2|Z — ] |; -—. 26
ar = ag WE [ + ( 1 oc)] Trp 3 (26)
In the fan ahead of the crack
2 1
0',-:0'0—*%9; Url)‘:% (27)
and continuity of traction across OD requires 8¢ = 27 + 1

8
Note that the maximum tensile stress which develops at the tip of a perfectly
plastic tensile erack under plane strain conditions is substantially larger than
predicted for the shear crack. At the same time an examination of the numerical
values for the strains reveals that the plastic strains at the tip of a shear crack
appear to be almost an order of magnitnde larger than those at a tensile erack at a
given distanee from the craek tip and at a comparable level of applied stress.
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