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1. Introduction

Plastic buckling has received a great deal of attention in the past and
progress in the subject has been slow but steady. The column under axial
compression has been studied more than any other single structure and its
history is well known. The turning points in this history are marked by the
work of Considere (1891) and von Karman (1910) to obtain the load at
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which the straight column becomes unstable. Then almost 40 years later,
Shanley (1947) explained, by way of a simple model and careful experimen-
tation, the significance of the tangent-modulus load of Engesser (1889) at
which the straight column would start to deflect laterally under increasing
load. It was recognized that the tangent-modulus load is the lowest possible
bifurcation load; the straight configuration loses its uniqueness at this load
but not its stability (von Karman, 1947). Shortly thereafter Duberg and
Wilder (1952) studied the post-buckling behavior of a column model. They
showed that the inclusion of imperfections and realistic stress—strain beha-
vior gave rise to a maximum support load that was closely approximated by
the tangent-modulus load, as Shanley had conjectured and in accord with
existing experimental data.

Extensive testing of plates and to some extent shells was carried out in the
late 1940’s and early 1950’s and solutions for the lowest bifurcation load,
analogous to the tangent-modulus load for columns, were obtained for
many cases of interest [see, for example, Bijlaard (1949) and Gerard and
Becker (1957)]. A major obstacle to further progress surfaced in this period,
It was discovered that bifurcation loads calculated using the simplest
incremental, or flow, theories of plasticity consistently overestimated buck-
ling loads of plates and shells obtained in tests. Calculations based on the less
respectable deformation theories of plasticity gave reasonably good agreem-
ent with test results. It was found that the difficulty could be largely over-
come if the smooth yield surface of the simplest flow theories was discarded.
In fact, the bifurcation load predictions of a deformation theory could be
justified rigorously in nearly all cases by establishing the connection between
the deformation theory and a more sophisticated incremental theory which
develops a sharp corner on its yield surface (Batdorf, 1949). Yet basic experi-
ments on the multiaxial stress—strain behavior of typical metals failed to
show conclusively that corners on yield surfaces do actually develop. Aimost
20 years later this state of affairs remains at essentially the same impasse.

On the theoretical side, Hill (1956, 1958, 1959, 1961) placed the bifurca-
tion criterion for elastic-plastic solids on a firm mathematical foundation
which embraces solids characterized by smooth or cornered yield surfaces.
His formulation applies not only to bifurcation under compressive
loading—that is, problems which are loosely categorized under the heading
of plastic buckling—but also to less thoroughly explored problems such as
necking which can involve bifurcation in tension.

Thus, except for the difficulty in identifying an adequate plasticity theory,
bifurcation theory for compressive loadings is reasonably well understood.
A recent survey by Sewell (1972) includes an organized bibliography of
much of the enormous amount of work on plastic buckling, Relatively less is
known about post-bifurcation behavior and imperfection sensitivity in the
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plastic range. What is known comes largely from tests and a relatively few
model studies such as that of Duberg and Wilder (1952). This can be con-
trasted with the situation which now prevails for elastic buckling where a
great deal is known about these matters and where a general theory of initial
post-buckling behavior and imperfection sensitivity is available (Koiter,
1945, 1963a).

The importance of post-bifurcation considerations in the plastic range can
immediately be appreciated in noting that in almost all cases of compressive
loading the lowest bifurcation occurs under increasing load in the sense of
Shanley, even for a structure which bifurcates unstably in the elastic range.
Furthermore, this occurs even though material nonlinearity in the form of
decreasing stiffness with increasing deformation contributes an additional
destabilizing influence to the geometric nonlinearity already present. By
itself, the fact that the initial slope of the load-deflection relation is positive
can be highly misleading since recent work has shown that the magnitude of
the initial curvature of the load-deflection curve is usually infinite (Hutchin-
son, 1973a), and the maximum support load of the perfect structure may be
only very slightly above the lowest bifurcation load. It is also significant that
even the column under axial compression, which has a fully stable post-
buckling behavior in the elastic range, is appreciably affected by small im-
perfections in the plastic range.

The main accent in this article is placed on post-bifurcation and
imperfection-sensitivity aspects of plastic buckling. A combination of model
studies and analytical and numerical work has been drawn on to illustrate as
wide a range of behaviors as possible.

In Section IT a simple two degree of freedom model is used to introduce
post-bifurcation behavior and a second model brings out some of the fea-
tures peculiar to the behavior of continuous solids and structures. Hill’s
bifurcation criterion for a class of three-dimensional solids is given in the
first part of Section III and is then applied to a widely used theory for plates
and shells, the Donnell-Mushtari-Vlasov (DMV) theory. Following
specification of the bifurcation criterion, a detailed commentary is given on
the extent to which bifurcation predictions for plates and shells depend on
the plasticity theory used with particular focus on the differences between
predictions based on the simplest deformation and incremental theories.
Much of what will be said was common knowledge in the 1950’s but seems
to be less widely appreciated now.

A general treatment of the initial post-bifurcation behavior of plates and
shells is given in Section IV within the context of the DMV theory. The
theory is illustrated by applications to several column and plate problems. A
discussion of some of the effects of imperfections is also given. The article
ends with a selection of numerical results for columns, plates, and shells.
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II. Simple Models

A. DISCRETE SHANLEY-TYPE MODEL

The first model to be examined 1s similar in all respects to Shanley’s (1947)
model of plastic column buckling except that it also is capable of illustrating
the behavior of a highly imperfection-sensitive structure. In this respect it is
similar to the model of von Karman et al. (1940) for the elastic buckling of
imperfection-sensitive structures. The model succumbs to an elementary
analysis yet still retains many of the essentials of plastic buckling. The results
given in this section are taken from Hutchinson (1972).

As shown in Fig. 1, the rigid-rod model has two degrees of freedom: the

o K = k(202 + K, 1263+
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Fic. 1. Rigid-rod model with two degrees of freedom.

downward vertical displacement u and the rotation 8. An initial rotation
from the vertical in the unloaded state is identified as the imperfection and is
denoted by 8 so that the total rotation from the vertical is # + . An incre-
ment in the compressive force in either of the two support springs depends
on whether plastic loading or elastic unloading occurs according to

F=E¢ for F=F"™ and F >0,
F = E; for F< F™ or F=F" and F <0, 2.1)

where ¢ is the contraction of the spring. Initial yield occurs for F = F, and
F™ is set to be F, at the start. The tangent modulus E, is taken to be
constant. Geometric nonlinearity is incorporated into the model only
through the nonlinear elastic spring which develops a force K(f) =
k, 260> + k, 260 + -+ under rotation with the sign convention shown in
Fig. 1. Equations of equilibrium and strain displacement are

F1+F2=P, (2.2)
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(F, — Fy)L + PL(0 + 0) + LK(0) = 0, (2.3)
81 = U "f‘ LG and 82 = U — LO, (2‘4)

where the subscripts denote springs Nos, 1 and 2.
When the parameters of the model are such that buckling takes place in
the elastic range the load-rotation behavior of the model is found to be

(P, — P)) —~ K(0) = P9, (2.5)

where P, = 2EI?/L is the bifurcation load of the perfect model. If k, = 0 the
bifurcation point is asymmetric and for k, 8 > 0 the maximum support load
of the slightly imperfect model is given by the asymptotic formula

PP =1 — (2Lk,0/E)"? + - (2.6)
If the load-rotation behavior is symmetric in @ then k; = 0. If k, > 0, then
PP =1 — 3Lk, 0%E)' + -+ (2.7)

These two cases, depicted in Fig. 2, illustrate the two most common occut-

P
R
/_4<§: 0
G<o 8>0
8 2]
ASYMMETRIC BIFURCATION POINT SYMMETRIC BIFURCATION POINT
(k,>0) (k=0 |, k;>0)

F16. 2. Elastic post-bifurcation behavior and imperfection sensitivity of the models.

rences of imperfection sensitivity in elastic structures. When K = 0 (the
Shanley model) the maximum support load of the model is always P, and in
this sense approximates the small deflection behavior of an axially com-
pressed column,

1. Behavior of the Perfect Model

Throughout this article a subscript or superscript ¢ will be reserved to
denote quantities associated with the lowest possible bifurcation point. The
lowest bifurcation load of the model in the plastic range is given by the
tangent-modulus formula P, = 2E, [?/L. Bifurcation occurs at P, under in-
creasing load as discussed by Shanley. When the model has an asymmetric
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bifurcation point with, say, k, < 0, then the load increases linearly with
positive values of 6 in the neighborhood of the bifurcation point even in
the elastic range. In the plastic range, one can readily show that both springs
will continue to deform plastically in some finite range following bifurcation
if
+k L/2E)>1 and 8s0. (2.8)

Thus, for example, if k; L/(2E,) > 1 the geometric nonlinearity itself is
sufficient to ensure that P increases with negative 8 sufficiently rapidly to
ensure that neither support spring unloads. Of the two bifurcation branches
emanating from such a nonsymmetric bifurcation point, the above-
mentioned branch is of inherently less interest than the opposite-signed
deflection. On this latter branch the geometric nonlinearity has a destabiliz-
ing effect. We limit consideration to k; > 0 and 6 > 0.

For this case spring No. 1 continues to load and No. 2 undergoes elastic
unloading or neutral loading (i.e., ¢ = 0) following bifurcation. With the
bifurcation load denoted by Py, Egs. (2.1) to (2.4) give

p= [Pbif + f(%f—?) [Ponl) — K(())]J [1 + 11:(5 * E)HJ (2.9)
e
—92[(;) (g +§) (Pom — Pox) + k LL(EJ_r Z)J 1 0(0%). (2.10)

In this formula P, is the reduced-modulus load of von Karman (1910)
where bifurcation takes place with no first-order change in load which is
given by
2
p,— EE 2P (2.11)
(1+EJ/E)L (1 + EJE)

Bifurcation can take place at every load in the range P, < Py < P, and
for Py; < P,y it occurs under increasing load as can clearly be seen from
(2.10). A simple formula for the maximum support load cannot be obtained
for a general function K(0). However when K = k, I26? the maximum sup-
port load P§** associated with bifurcation at the tangent-modulus load P, is
given by the equation

E - E
(P — P22 — 4k, LL( £ E)(Pma* —P)=0 (2.12)

If the geometric nonlinearity is strong in the sense that k, L/E, > 1 then

max E \(E-E E \*
Prax = Pp[l + (2le) (EJFE[) + O(k L) J (2.13)
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{a) (b)

FiG. 3. Behavior of the model in the plastic range. (a) Shanley model, k, = k, = 0; (b) Model
with a destabilizing geometric nonlinearity, k, > 0. Dashed-line curve corresponds to
bifurcation at the reduced-modulus load P,,. (" )~ onset of elastic unloading;
{*) ~ maximum load. The lowest bifurcation load is P_.

When K = 0, P — P,,, for large 0 as can be seen from (2.9) and Fig. 3a.
This is also similar to the behavior of the model of Duberg and Wilder for
their constant tangent-modulus calculations. Even when the tangent mod-
ulus is constant, the present model has a maximum load which falls below
the reduced-modulus load if the geometric nonlinearity has a destabilizing
effect. A similar effect is also observed in the model studies of Sewell (1965),
Augusti (1968), and Batterman (1971). A strong geometric nonlinearity re-
sults in a maximum load which is only slightly above P, as can be seen from
(2.13) and Fig. 3b.

2. Effect of Initial Imperfections

In the presence of an initial imperfection 0 > 0 the load-rotation behavior
of the model is more complicated; however a complete analysis can still be
carried out for the case of the simplest geometric nonlinearity, K = k, 1262,
There are three distinct sequences of loading and unloading which can take
place depending on the magnitude of 6. We will first consider the case for
which 0 is sufficiently small such that the resulting formula will be valid in
the limit as 0 vanishes.

In this case it is found that there are four steps to the loading history
which must be treated separately in the analysis. With the first application of
load both springs are elastic. Next, spring No. 1 starts to deform plastically
and is followed by No. 2 at a slightly higher load. With the load still rising
spring No. 2 starts to unload at a value of P and 0 denoted by P and 8. From
this point on spring No. 1 continues to load while No. 2 responds elastically.
The maximum load is attained at a point (P™*, 6*) following the onset of
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elastic unloading at (P, ). The expressions for § and P are given by

(n,  LOJL— 02 12
LO/L 12 _

~(i v horom) o0 2
and

P/P.=1—0—[1+ (k,L/E))(0 + 0) (2.16)

(_) r 1/2 -

o[+ (le/Et)](] :(Lk /ETzE )) Lo0):  (217)

also.
) 5.9, E— B 1/2

0* =0 + (0 +0+ E+E[){[1 + (QEJk, L)Y — 1) (2.18)

and

prex = Py 2k 2[00+ (0 + 0)([1 + QE/k, L)Y — 1)}, (2.19)

where P3™* is the maximum load of the perfect model given by (2.12) for
bifurcation from P,.

If k, = O then P — P,, for all values of § as shown in Fig. 3a. If k; > 0
then we can show that (2.19) reduces to

P™/p, = Pp™/P, — (2k LO/E)'* + O(D). (2.20)

A small imperfection results in a reduction in the maximum support load
which is proportional to the square root of its amplitude. The limit in which
0 — 0 is the bifurcation response of the perfect model for bifurcation from
P.. Asymptotically the reduction in the buckling load according to (2.20) is
precisely of the same form as is the analogous formula (2.6) for the elastic
model, except that the effect of a small imperfection is magnified by an
amount E/E, compared with the elastic case. ’

For larger imperfections the maximum load can be reduced to a
sufficiently low level such that the force spring No. 2 does not reach F,, and
(2.19) ceases to be valid. In this sequence of loading spring No. 1 yields at a
value of P just under 2F, and the model deflects readily under a slight
increase in load, helped along by the geometric nonlinearity, until the maxi-
mum support load is reached. The maximum load is not too different from
the initial yield load of the perfect model, i.c.,

P = 2F (2.21)
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Load-rotation curves showing the effect of initial imperfections are shown in
Fig. 3b.

For even larger values of the imperfection a third possibility may arise.
Suppose the bifurcation load P, = 2E, I?/L is only slightly below the asso-
ciated elastic load 2EI?/L. Then if 0 is large enough neither spring becomes
plastic before the maximum load occurs and the elastic result holds. For
K = k, IZ0? the elastic result is given exactly by the equation

(1 — P™/p )2 = (2k, LO/E)P™/P, . (2.22)

Figure 4 shows the relation between P™* and # for such a case. On the
portion of the curve A-B the strong imperfection sensitivity associated with
(2.20) is seen; on B-C (2.21) holds; and on C-D the elastic result (2.22)
pertains.

1 i 1 1 1
0O 02 04 06 08 10 12 14
2k 5
12 8
E,L

FiG. 4. Ratio of maximum support load to maximum support load of perfect model as a
function of the imperfection amplitude. This case is an illustration of the effect of an
imperfection in reducing the maximum load to the point where the structure no longer deforms
plastically prior to buckling. EJE = . k, L/E, = 10, &,1/1* = 0.525. From Hutchinson (1972)
J. Appl. Mech. 39, 155-162, with permission.

The implication of the model is that if a structure is highly imperfection
sensitive in the elastic range then an imperfect realization of the structure
may buckle elastically even though a perfect version would buckle in the
plastic range. The converse situation is also of interest. Namely, what is the
effect of initial imperfections on the maximum support load of a structure
designed such that a perfect realization bifurcates at a load which is slightly
below initial plastic yielding? We will look at this question in connection
with the next model which incorporates a more realistic stress—strain
relation.
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B. CoNnTINUOUS MODEL

According to the Shanley concept, bifurcation occurs at the lowest pos-
sible load under increasing load in such a way that no elastic unloading
takes place at bifurcation. This is manifest in the simple model of Section-
ILA in that one spring continues to load plastically and the other undergoes
neutral loading (¢ = 0) at bifurcation and then unloads elastically im-
mediately following bifurcation. Mathematically this is expressed by the fact
that the contraction rate of the unloading spring is given by &é ~ —0 for
small 0. Tt is clear that elastic unloading must start at the lowest bifurcation
point in this sense. To see this, suppose that no elastic unloading occurred in
some finite neighborhood of the bifurcation point. Within this neighbor-
hood the response of the model would be identical to an elastic model with
moduli E,. But this leads to a contradiction since a reversal in sign of the
contraction rate will occur in the elastic model at bifurcation, except when
+k, L/(2E) > 1 and 0 S 0 as already discussed.

P
| .
MM,E l%K=k,L292+k2L283+»-

—

i

FiG. 5. Continuous model.

In a continuous elastic-plastic structure it is also generally true that elastic
unloading must start at bifurcation at at least one point in the structure, as
will be shown. As the bifurcation deflection increases the region of elastic
unloading expands in a continuous fashion in most problems. It is this
feature which makes an analytic treatment of the initial post-bifurcation
behavior of a continuous elastic-plastic structure considerably more difficult
to carry out than for an elastic structure. The model discussed in this section
is perhaps the simplest meaningful model which is capable of illustrating
some aspects of the analytical character of initial post-bifurcation behavior.
It is the continuum version of the model of the previous section and is shown
in Fig. 5.
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This model is already sufficiently complicated that closed-form formulas
analogous to those for the discrete model cannot be obtained. A representa-
tion of the behavior is obtained in the form of a perturbation expansion
about the lowest bifurcation point. In this study the variation of the tangent
modulus with increasing plastic deformation will also be taken into account.
Most of the results for this model were previously given by Hutchinson
(1973a,b). Here we will indicate an alternative method of analysis of the
model which is very similar to the general method applied to columns,
plates, and shells later in the article.

The model of Fig. 5 differs from the previous model only in that it is
supported by a continuous distribution of springs. The contraction of a
spring attached at a point x along the base is given by

¢c=u+ x0. (2.23)

The rate of change of the compressive force per unit length 5 is related to the
contraction rate at any point by

max

s=Ez for s=3 and 5= 0,
s=Ei for s<s™ or s=s"™ and 5«0, (2.24)

where E, is taken to be a smooth function of ¢ or s. (Note that E, and E have
dimensions force per length? in the continuous model while in the discrete
model they have the dimensions force per length.) Equations of vertical and
moment equilibrium are

L

L
P=| sdx and [PLO+0)] + KL =| isxdx (225ab)
YL oL

These may be replaced by the single variational principle of virtual work
L
Péu + [PL(0 + 8) + KL]'60 = | 3¢ dx, (2.26)
YoL

where de = du + x56.

The elastic bifurcation load is P, = 2EI}/(3L) and (2.5) continues to
apply. Asymptotic formulas for the elastic buckling load are still given by
(2.6) and (2.7) if k, is replaced by 3k,/L in (2.6) and k, by 3k,/L in (2.7).

1. Behavior of Perfect Model

The lowest bifurcation load in the plastic range is given by the tangent-
modulus formula P, = 2E{I3/(3L), where Ef is the value of the tangent
modulus at P,. Just as in the case of the discrete model no elastic unloading
occurs in some range of positive or negative 6 if the magnitude of k, is
sufficiently large, but otherwise elastic unloading starts at bifurcation with
the occurrence of neutral loading at one point.
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First entertain the possibility that no clastic unloading occurs so that the
model behaves as a nonlinear elastic model with variable moduli E, , i.e., the
unloading branch of (2.24) is suppressed. The behavior of this comparison
model is readily analyzed. Its initial post-bifurcation expansion is found to be

P/P.=1+d560 +a50* + -, (2.27)
where
3k, L 2 (dE) |71
e = _ 71— 2| , 22
@ 2E5L{ 3L(dsH (2.28)

and we have expanded E, about the bifurcation point according to
E = E{ + (s — s)(dE/ds). + (s — s.)*(d*E/ds?), + --.  (2.29)

The superscript ¢ is used to distinguish the initial slope of the clastic compar-
ison model from that of the elastic-plastic model given below; af figures
prominently in formulas for the elastic-plastic model.

The contraction rate in the comparison model just following bifurcation is
given by

LZ

Y3

L\L

@ + i(") }0 + 0(00). (2.30)

For example, if k, is sufficiently large such that a5 < —3L/L and § < 0, then
no reversal in sign of the contraction rate will occur in some finite range of
negative 6. Over this range the behaviors of the comparison model and
elastic-plastic model coincide. As already mentioned, the more interesting
bifurcation branch has the opposite-signed rotation. From here on we will
take k; > 0 so that ai < 0 and consider bifurcation under monotonically
increasing 6. In this case the comparison model does not pertain.

For the elastic-plastic model the Shanley loading condition requires ¢ > 0
on |x| < L which in turn implies

1dP| _ 3L
P b |, > R (2.31)
If the inequality holds in (2.31) then ¢ > 0 everywhere at bifurcation and by
continuity implies that no elastic unloading will occur in some finite range of
positive 8. By the same argument made for the discrete model, this would
imply that the comparison model pertains with its initial slope aj. But since
a5 <0, {2.31) is contradicted and we must conclude that the equality in
(2.31) must hold for bifurcation at the load P,. Elastic unloading starts at
bifurcation in the sense that ¢ = 0 at x = — L. It follows then that

P/P.=1+ a,0+ - and u/L =u/L + b0+ -, (2.32)




Plastic Buckling 79

where
a,=30/L and b, =1 (2.33)

The instantaneous position d of the boundary between the regions of
elastic unloading and plastic loading occurs where ¢ = 0 so that from (2.23)

d = —dujdf. (2.34)
To obtain additional terms in the expansion (2.32) write
P/P.=1+a;0 + a,0' % + P(0),
u/L = u/L + b0+ b, 0'"F + u(0), (2.35)

where we anticipate that 0 < p < 1, and require that 0~ “’(13, u)=0,as
6 — 0. Now make the identification

(") =d( Yo, (236)
$0 that
P/P.=a, + (I + Pla,0® + P,
d/L = —u/L = —b; — (1 + B)b, 0 — i (2.37)
Substitute these expansions into the principle of virtual work (2.26) noting

that one can write

L L L d
| soede=| Eédedx+ | (E— Eideds, (2.38)
“-L oL ‘oL
and from (2.29) and (2.32)

E, = E¢ + O(L + x)E{(dE/ds), + . (2.39)

Using (2.31) and (2.32) to eliminate the lowest-order terms in the principle of
virtual work (2.26) one obtains

Pl(1 + Bla 0 + ﬁ] Su + [2P.La, 0 + 2k, 1210 + -] 50

L

. dE
((1 + B)ECLb, 0 + EiLu + O(L + x)zEf7;

+ ) o¢ dx
“~L c
.d
+ [ (B~ Eisedx + . (2.40)
" -L
The last term in the above equation arises from elastic unloading and
must be examined closely. From (2.33) and (2.37)

gL =1+ (x/L) + (1 + p)b, 0" + i, (2.41)
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and ¢ = 0 at x = — L at bifurcation as already noted. The last term in (2.40)

vanishes as  — 0 since d —» — L. To evaluate the lowest-order contribution
*

of this integral, introduce a stretched coordinate x chosen such that the
position of the elastic-plastic boundary d is independent of 0 to lowest order
in this new coordinate system. With the choice

*
x =071 + x/L)[— (1 + B)b,], (2.42)
* *
the limits of integration on the integral run from x = 0 to x = 1 + O(¢F)
*

where o > 0. In terms of x,

*

¢/L =61 + p)b,(1 — x) + (2.43)
To lowest order,
d 1 * *
| (E— Eededx = 07(1 + BPDI(E — O [ (1 — x)(6u — Ld6) dx
J, Jo
= —10%(1 + P)*bI(E — ES)L*(5u — L50). (2.44)

Requiring terms of order ¢ in (2.40) to vanish implies that
P.a, = 2I?Eh, . Next, take du = 0 and 80 = 0 and collect terms to get

0[P, La, + k, 2L — 2 E{(dE,/ds).]
— 071 + B)?bIE — E)/4+ - =0, (2.45)

If B> 4, (2.45) cannot be satisfied since the terms of order # will not
vanish. Similarly, if § < %, (2.45) cannot be satisfied except with b, = 0,
which implies that the assumed expansion is not possible. Suppose however
that f# = 4. Then there is a balance of terms in (2.45) and the following
expressions for b, and a, are obtained:

3L 4L L2dE | \|?
= — b = - — 2 ¢ — M —_— l
a L 72 L EfL(a, 01)(1 37 ds )}
4L (2E3L — (dE,/ds), L*] + 3k, L|'"? (2.46)
- L 3(E — E°)L ’ '

where the negative root of b3 was chosen consistent with (2.37) and (2.43).
The expansion can be continued by the above approach or by a direct
method given by Hutchinson (1973a). One finds

P/Pc: 1 +a,0+ a203/2 +a362 + a405/2 4o
d/L = —1—=3b,0Y2 — 2b30 — 3b,0°> + ---

H

, (2.47)
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where

_ E3L — (dE/ds). L*] — k,L

by =
3 3(E — ES)L ’
3L 3L ~dE | 3k L?
=" p, — o o) St
G = b= T 3L (2.48)

The fractional powers which appear in the expansion (2.47) are absent
from the initial post-bifurcation expansions for elastic systems (Koiter, 1945,
1963a) as well as from expansions for discrete element elastic-plastic
systems—see (2.10) and the studies of Sewell (1965) and Augusti (1968).
Terms involving fractional powers of the bifurcation amplitude arise in
connection with the continuous growth of the region of elastic unloading.
The significance of the term a, 6%/2 in (2.47) is that it is negative and may
become numerically significant compared to the lead positive term a, ¢ at
relatively small values of 0. For example, if the series is truncated after the
term a, 0*/% and is then used to find an approximate estimate of the maxi-
mum support load of the perfect model, one finds

Py™/P, = | + 4a}/(2743). (2.49)

If the magnitude of a, is sufficiently large the maximum load will only
slightly exceed P.. Note that a,, given by (2.46), depends on the geometric
nonlinearity through k, as well as on the material nonlinearity through
(dE,/ds),.

Figures 6 and 7 show comparisons between predictions based on the
expansion (2.47), up to and including the a, #3? term, and accurate numeri-
cal calculations carried out for the simple model. Nonlinear material beha-
vior was introduced by using a Ramberg—Osgood-type stress-strain relation

ele, = s/s, + als/s,), (2.50)

where ¢, and s, = Eg, are effective initial xield values. In Fig. 6 the model has
a strong geometric nonlinearity with k; L/(EL) = 1 and k, = 0. The model
of Fig. 7 has no geometric nonlinearity (i.c., k; = k, = 0). In both examples

=4 n=3,L/L=1,and (s,/EL) = 0.1094 (corresponding to the values
E}/E = 0.46 and s,/s, = 1.4, where s, is the value of s at bifurcation).

The combination of strong material and geometrical nonlinearity of the
model of Fig. 6 results in a maximum load which is only slightly greater than
P_and which occurs at a relatively small value of 6. In this case the first few
terms in the expansion (2.47) provides an excellent approximation to the
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FiG. 6. Post-bifurcation behavior and imperfection sensitivity of eontinuous model for the
case of a strong geometrical nonlinearity [(k, L/EL) = 1 and k, = 0]. Solid-line curves from
asymptotic formulas and dashed-line curves from numerical analysis. From Hutchinson
(1973b). J. Mech. Phys. Solids 21, 191- 204 with permission.

behavior in the range of interest. In the second example with only the
material nonlinearity, the maximum support load is attained further from
the bifurcation point and the expansion is not accurate over the full range of
interest. Nevertheless, the maximum load prediction involves rather small
CITOor.

2. Effect of Initial Imperfections

Prior to the occurrence of any elastic unloading the behavior of the
elastic-plastic model is identical to that of the nonlinear comparison model
introduced in the preceding subsection. However, once strain-rate reversal
starts elastic unloading must be accounted for in the analysis. Thus the
analysis of the slightly imperfect model separates into two parts as discussed
by Hutchinson (1973b} and the results presented here are condensed from
this reference.

A Koiter-type initial post-buckling analysis can be used to obtain the
behavior of the mode] prior to elastic unloading. The result of this analysis is
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F1G. 7. Post-bifurcation behavior and imperfection sensitivity of continuous model with no
geometrical nonlincarity [k, = k, = 0]. Solid-line curves from asymptotic formulas and
dashed-line curves from numerical analysis. From Hutchinson (1973b). J. Mech. Phys. Solids
21, 191-204, with permission.

an exact asymptotic equation relating the load, rotation, and initial imper-
fection 0 at load levels in the neighborhood of P,:
(1 —=P/P)O + a5 0* + - = pb, (2.51)
where a5 is the initial slope of the perfect model (2.28) and
I12dE || !
=11—-_=-- . 2.52
g [1 35 ds J (252)
The first reversal in sign of the strain rate in the slightly imperfect model
occurs when the slope of the load-rotation curve is reduced to the initial
slope of the elastic-plastic model. With values marking the onset of elastic
unloading topped by a wedge,
(P) 1 dP/d) = a, + OB, P — P, 0). (2.53)
Condition (2.53) together with (2.51) gives
0 = [p0/(a, — a3)]'* + O(0) (2.54)
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and
P/P, = 1 — (a; — 2&3)[p0/(a, — a)]'* + O(D). (2.55)

To obtain a uniformly valid expansion for the response following the
onset of elastic unloading, which holds for small 0 and reduces to (2.47) for
0 — 0, it is necessary to introduce a new expansion parameter { > 0 defined
for @ > 0 by

0 — 0 =02 + 12 (2.56)

where y is a constant parameter determined in the expansion process. The
¢xpansion has the form

P/P,=P/P, + p,l + po % + ps O + -,
diL=—1+d{+ d(* + -, (2.57)

where the coefficients of the expansion are given in the above-mentioned
reference.

Load-rotation curves showing the effect of initial imperfections are also
shown in Figs. 6 and 7. Here again the solid line curves are based on the
truncated expansion and the dashed line curves are based on an accurate
numerical calculation and can be regarded as essentially exact for purposes
of this comparison. A wedge marks the onset of elastic unloading in these
figures and a dot the maximum load. Plots of P™*/P§** (where P§** is the
maximum load of the perfect model) and P/P, as a function of @ are also
given in Figs. 6 and 7.

For model of Fig. 6 we see that

P™/PR = PIP = 1~ (ay — 2a3)[p0f(a; — a})]"* + 0(@). (2.58)

The pivotal role of P stems from the fact that in the presence of strongly
destabilizing material and geometrical nonlinearities the maximum load is
attained shortly after elastic unloading starts in both the perfect and imper-
fect model. The significant point is that the reduction in the maximum load
appears to be proportional to the square root of the imperfection amplitude
for small imperfections, similar to what was established conclusively for the
discrete model with k; # 0 in (2.20). For the model with no destabilizing
geometrical nonlinearity in Fig, 7, (2.58) is seen to be less accurate although
it appears to be qualitatively correct. It should be possible to establish
whether or not the reduction in cases in which k;, = 0 is proportional to §*/2
or to some other power of 0. This has not been done. Nor for that matter has
an analysis of the discrete model with k; = 0 and k, > 0 been carried out
even though this would be considerably simpler and also very revealing in
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this regard. Recall that in the elastic range the reduction is proportional to
6% when k, = 0 and k, > 0.

All the examples we have considered thus far have dealt with behavior
when the parameters of the perfect model were chosen such that bifurcation
occurred well into the plastic range. Equally of interest is the effect of initial
imperfections on a structure whose perfect realization bifurcates in the
elastic range or at least before appreciable plastic deformation occurs.
Numerical calculations of the maximum support load have been made to
illustrate the effect of initial imperfections under such circumstances for the
continuous model with the Ramberg-Osgood stress—strain relation (2.50).
In Fig. 8 we have followed Duberg (1962) and have plotted the maximum

8+ 0001

=0.01

FiG. 8. Effect of imperfections on the maximum support load when the bifurcation stress of
the perfect model s, Talls below the ellective yield stress s,. The model was taken to have no
geometrical nonlinearity. (a) High-strain hardening: n = 3; (b) low-strain hardening: n = 10.
(ky =k, =0, L/L = 1)

support load normalized by the tangent-modulus load of the perfect model,
PP as afunction of the bifurcation stress of the perfect model over the
effective yield stress, s./s, , for several levels of imperfection. One set of curves
pertains to a high strain-hardening material (n = 3) and the other to a low
strain-hardening material (n = 10). In both cases « = 2 corresponding to the
original suggestion of Ramberg and Osgood and the choice of Duberg. We
defer a detailed discussion of these curves until Section V where they will be
compared with analogous curves for columns and plates. Here we simply
note that the curves of Fig. 8 are very similar to Duberg’s resuits for a
two-flanged column model and that they emphasize the possibility of strong
interaction between imperfections and plastic deformation when the effec-
tive yield stress is not considerably in excess of the bifurcation stress of the
perfect structure.
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I11. Bifurcation Criterion

A. CRITERION FOR THREE-DIMENSIONAL SOLIDS

The theory given below is a specialized version of Hill's (1958, 1959, 1961)
general theory of uniqueness and bifurcation in elastic-plastic solids which
was given in somewhat less detail by Hutchinson (1973a). Sewell’s (1972)
survey article on plastic buckling deals at some length with Hill’s theory.
Here we are principally interested in presenting a suitable background for
the bifurcation criterion to be presented in Section I11,B for the most widely
used theory of columns, plates, and shells. Most of the usable nonlinear
theories of structures employ Lagrangian strain quantities where the un-
deformed configuration is usually chosen for reference, as has been discussed
by Budiansky (1969). The three-dimensional approach given below is
developed from the same point of view.

Let material points in the body be identified by a set of convected coordin-
ates x' and let ¢;; and g be the metric tensor and its inverse, respectively, in
the undeformed body. Denote contravariant components of a tensor by
superscripts and covariant components by subscripts in the usual way. With
u; and ' as the components of the displacement vector referred to the
undeformed base vectors, the Lagrangian strain tensor is

o = 3+ ) + Jul ug (3.1)

where the comma denotes covariant differentiation with respect to the
metric of the undeformed body. Let T be the surface traction vector per unit
original area and let T' be its contravariant components referred to the
undeformed base vectors. With dV and dS denoting volume and surface
clements in the undeformed body the principle of virtual work is

| 7 on, dv = | Tiou, ds, (3.2)
% Y8

for all admissible variations du; where
iy = Houp; + ouy,) + o ; + uliou ). (3.3)

Body forces will be omitted for simplicity.

The stress quantities 7/ which enter into this exact statement of the prin-
ciple of virtual work are the contravariant components of the symmetric
Kirchhoff stress referred to base vectors in the deformed body. [See, for
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example, Green and Zerna (1968), Bolotin (1963), or Budiansky (1969).]
Application of the divergence theorem in the usual way to (3.2) yields the
connection between the stress tensor and the nominal surface traction vector

T = (¥ + i, (3.4)

whete n; are the covariant components of the unit outward normal to the
surface of the undeformed body referred to the undeformed base vectors.
Similarly, the equilibrium equations are found to be

™+ (M), = 0. (3.5)

With rates of change denoted by a dot, the incremental form of the principle
of virtual work is

_'V{'fi"én;,- + ik Suy b dV = L Tisu, dS. (3.6)

First we consider the general rate-constitutive relation discussed by Hill
(1967a) for the isothermal, finite deformation of elastic-plastic solids charac-
terized by a smooth yield surface. At any stage of the deformation process
denote the current elastic moduli based on the Kirchhoff stress-rates 1/ by
4. If the current stress is on the yield surface, denote the components of the
unit tensor normal to the elastic domain in strain-rate space by m” where the
strain rate is given by

iy = 3l + i) + 30ding + ubin ). (3.7)
Thc rate-constitutive relation is
T = Liky for mtly,, > 0, (3.8)
=Pk, for m*ip, <0, (3.9)
where
LA = Pkl g~ Uikl (3.10)

The constant g depends on the deformation history (as well as on the current
point on the yield surface) and determines the current level of strain harden-
ing. It is assumed that a pure dilatation rate gives rise to an clastic response
independent of the sign of m*'f,; and this requires that m satisfy G;;m"” = 0,
where G;; is the metric tensor of the deformed body. When the stress lies
within the yield surface (3.9) holds for all strain rates.

Hill (1967a) has discussed the transformation of this constitutive relation
in going from one choice of objective stress rate to another. For the purposes
of this article it need only be noted that the rate-constitutive relation for any
elastic-plastic solid with a smooth yield surface can be cast into the present
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form (3.8) to (3.10).F In particular, the simple J, flow theory of strain-
hardening plasticity is a special case of this relation.

Dead loads are applied to the body in proportion to a single load (or
dlsplacement) parameter 4. On St prescribe surface tractions accordlng to

= AT% and on S, prescribe displacements u; = Au;, where T% and i are
independent of A. Attention is directed to bifurcations which occur prior to
any limit point of 4. All quantities associated with the fundamental solution
whose uniqueness is in question are labeled by a subscript or superscript 0. It
is to be understood that the fundamental solution is the solution starting at
A = 0 and is associated with monotonically increasing A.

L. Bifurcation Analysis for Solids with Smooth Yield Surfaces

At any stage of deformation characterized by uf (1), suppose that bifurca-
tion is possible so that for a given increment in load 4 (either positive or
negative) there are at least two solutions i and i!. Introduce the following
differences between the two solution increments:

u; = ';‘5'7 — uf, 771'.;' = '7571 - 57?;' = ‘.ffi;j - 'ré’!
and Ti= T, — T,

where from (3.7)
r"} = ( .+ u ) -+ %(uf)jkflk‘,- + uf)ik&k_j). (311)

Since T vanishes on S; and &, vanishes on S, and since both solutions are
assumed to satisfy the equilibrium equations, the usual construction in uni-
queness proofs gives

0 = .L Tia,‘ dS —_ lmv{%ij;’ij + ,L_ldaklzlk‘}} dV = H’ (3‘12)

where H is defined by the last equality.

In the current state at load A define the moduli L, of an elastic comparison
solid such that L, equals L where the stress is currently on the yield surface,
independent of the sign of m"r;;, and L, equals & where the stress lies within
the yield surface. To obtain Hill's (1958) sufficiency condition for uni-
queness, introduce the following quadratic functional,

F(L ) = [ L + T, ) V. (3.13)

The difference between the integrands of F and H depends on m"“{; and
m'i?; according to [from (3.8) to {3.10)]

T Later, the additional restriction £ = &% will be needed.
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for mYpf; >0 and mYpl > 0,

Sy LUK s - .
Mij ¢ Mij M or stress within the yield surface,

=g [mI(f;s — il

for mip% <0 and miph <0,
= g ity i

for m'pf, =0 and mYp), <0,
=g 1m[j("7?j - ﬁ?j)mk'ﬁ‘iz

for mUp{; <0 and mUpl;>0.  (3.14)
It is therefore apparent that for positive g the integrand of H is nowhere less
than the integrand of F and H = F. Consequently, the condition

F(, ) >0 (3.15)

for all admissible nonvanishing i; (which vanish on S,) is sufficient to ensure

uniqueness of the solution increment.
)
Let A, be the lowest eigenvalue with an associated eigenmode wu; such that
(1
F(4,, u) = 0. The mode is taken to be normalized in some definite way and
for simplicity it is assumed to be unique. The variational statement of the

eigenvalue problem, §F = 0, leads to the eigenvalue equations:
0 e8] (1) ) 8!

Ny = %(ui,j + oujy)+ %(“l(c)c/ uk + s “fcj)’ (3.16)
oW
Y = L;’klnk, R (3.17)
W )y
(t9+ tHudl + 1t uy); =0, (3.18)
m oo Ky
TV = (9 + tMub + u'n; =0 on Sy, (3.19)
and
(1)
u; =0 on §,. (3.20)

For bifurcation to be possible at the lowest eigenvalue of F it is necessary
that H vanish when F does. However from the inequalities in (3.14) it is seen
that H > F when m"i}; < 0 and/or m“}; < 0 in a finite portion of V. In
words, both solutions are possible when F = 0if and only if both solutions
share the property that no elastic unloading occurs.

The following condition on the fundamental solution ensures that bifurca-
tion can take place at the lowest eigenvalue A.. It should be possible to relax
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this condition in special cases but for many problems of interest it is clearly
satisfied. Suppose there exists a A > 0 such that the fundamental solution
satisfies

m(dnf/dA) > A (3.21)

throughout the current yielded region. As already emphasized it is to be

understood that the derivative in (3.21) is the one-sided derivative in the

sense that the fundamental solution is associated with monotonically in-

creasing A.

Identify the fundamental solution increment with #{ and consider a bifur-

() n

cation solution ! in the form of a linear combination of i and u,. Let & u;

be the contribution of the eigenmode to the bifurcation solution. Define the

amplitude & such that it is positive. To obtain the opposite-signed contribu-

(1

tion of the eigenmode change the sign of u; but not £ Regarding ¢ as the

independent variable on the bifurcation branch, write
(1)
A=A+ 4 &+ and (A /dE) s, = Ay(dul/dA) |, + u;,
(3.22)

so that at bifurcation

(1)
m' dylfdé = mI4,(dni/dA) + n ;] = 0. (3.23)

By (3.21), the above inequality can clearly be satisfied if 1, is large enough.
(n
Unless m”#,; > 0 throughout the current yielded region, (3.23) implies

that 4; > 0 and thus bifurcation takes place under increasing load in the

sense of Shanley as generalized by Hill. One can conceive of rather extraor-
(1)

dinary problems in which it would turn out that m” 5 ;; > 0 throughout the

current yielded region. In such cases bifurcation may be possible under

decreasing load in such a way that it is still true that no elastic unloading

occurs.

2. Bifurcation Analysis for Solids with Corners on Their Yield Surfuces

Generalizations of the constitutive relation (3.8)-(3.10) which account for
a singular yield surface with a pyramidal corner have been given by Koiter
(1953), Sanders (1954), Mandel (1965), and Hill (1966). At any stage of
deformation suppose there are N potentially active deformation systems
such that, with },, denoting the plastic shear rate on the pth system, the
plastic part of the strain rate is given by

: plastic

L I
Hij = Z Ty Vis -
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The rate of change of the yield stress on the pth system is denoted by 7, and
is assumed to be related to the shear rates by (Hill, 1966)

Tty = > Moy Via) -

where we will take the hardening matrix h,, to be symmetric. We will
formulate the constitutive relation using the convected rates of the contra-
variant components of the Kirchhoff stress since they arise naturally in the
bifurcation analysis. Other choices may be preferable depending on the
application (Hill and Rice, 1972), and the development may be altered to
accommodate a different choice. The conditions for plastic loading or elastic
unloading of the pth system are

Y= 0 if T =1, (3.24a)
and -

b =0 if TP <7 (3.24b)
Hill (1966) has shown that a sufficient condition for uniqueness of the stress
rate given a prescribed strain rate is that the elastic moduli £ be positive
definite and that the hardening matrix #,,, be positive semidefinite.

Since

= Ly — 3 i),
the conditions for loading and unloading can be rewritten in terms of the
strain rate and the shear rates as

Yz 00 mhiy =Y Agye e (3.252)
and
=0 if mi; <Y Apwie- (3.25b)
where
—_ i ikl (
Awpig = ViPLINVE + hipg
and

i cpijk
mg, = LD,

Let #,; be prescribed. Within a subdomain of strain-rate space containing
1:; any solution for the shear rates associated with the systems which do not
unload can be written as

M i g
Yo = 2 By ™ -
where By, is a symmetric M x M matrix and the sum extends over the M

system satisfying (3.25a). In general, the shear rates and B are not unique. If
a complete basis can be chosen within the subdomain of strain-rate space in

(9%
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question, it follows from the fact that the stress rate is unique that the moduli
must also be unique in this subdomain. Using the above expression in the
equation for t¥, the moduli can be written as

L = 0 =30 Y Biog M Mg (3.26)

where again the sums involve only the systems satisfying (3.25a).

Suppose the hardening matrix is positive definite. If & is also positive
definite it can be shown that the N x N matrix 4 will always be positive
definite. Let B be the N x N matrix given by B° = A~ '. Define comparison
moduli L, using B in (3.26) with the sums extending over all N systems.
Sewell (1972, Section 3, iv) has shown that comparison moduli defined in
this way ensure that the fundamental inequality,

TR — Lijkl;]ij;/kl =0, (3.27)

holds for all strain rates ¢ and 5, where T =t — ¢ and 7;; = 7}; — 7%;.

A central concept to our subsequent discussion is total loading. Suppose
there exists a subdomain of strain-rate space such that no elastic unloading
oceurs on any system [i.e., (3.25a) holds for all systems]—this is called the
total loading subdomain. Within such a domain the comparison moduli L,
are the actual moduli, and it immediately follows that if #f; and #%; are both
within the total loading subdomain then the equality holds in (3.27). It can
be shown [from Sewell’s construction of (3.27)] that, in general, the equality
will not hold if no total loading domain exists or, if it does exist, if both n;;
and #}; do not lie within it.

In the application of the comparison moduli L. to the bifurcation analysis,
suppose that the fundamental solution increment satisfies total loading at
each point in the body. Then, by the same argument that was made in the
analysis of the solid with a smooth yield surface, it is possible to construct a
bifurcation solution as some linear combination of the fundamental solution
increment and the eigenmode in such a way that the bifurcation solution
also satisfies total loading at each point in the body. Consequently, H van-
ishes when F does as it must if bifurcation is to be possible. The initial slope
Z; in (3.22) must be chosen to ensure that the bifurcation solution satisfies
the total loading constraint.

The requirement that the hardening matrix be positive definite is more
restrictive than one would generally wish since, for example, it excludes the
case of perfectly plastic behavior. However, for the arguments to be made
later in this article it does suffice to assume a positive definite hardening
matrix. N

Koiter (1953) showed that the slip theory of Batdorf and Budiansky
(1949) is a special case of this class of theories in the limiting sense as
N — o0. Sanders (1954) discussed a class of theories broader than slip theory




Plastic Buckling 93

but also based on the present structure with linear loading functions which
for strain-hardening materials has the property that the hardening matrix is
positive definite. These theories are pertinent to the discussion of the use of
deformation theories in bifurcation analyses to be given later since for total
loading histories they coincide with deformation theories of plasticity.

B. GENERAL BIFURCATION CRITERION FOR THE
DONNELL-MUSHTARI-VLASOV THEORY OF PLATES AND SHELLS

The Donnell-Mushtari-Vlasov (DMV) approximate strain measures for
plates and shells apply when the strains are small and when the character-
istic wavelength of deformation is large compared to the thickness of the
shell yet small compared to the radii of curvatures of its middle surface.
Their application is also restricted to relatively small rotations as discussed
by Sanders (1963) and Koiter (1966). A modern treatment of elastic buckling
using DMV theory has been given by Budiansky (1968).

Let the material points in a thin plate or shell be identified by convected
coordinates x* (¢ = 1, 2) lying in the middle surface of the undeformed body
and the coordinate x* normal to the undeformed middle surface. The DMV
approximation to the Lagrangian strain tensor in this coordinate system is

}11[3 = Eaﬂ + X3K1ﬂ ) (328)

where E,; and K,, are called the stretching and bending strains. They are
given in terms of the displacements of the middle surface U, and W which
are tangential and normal, respectively, to the undeformed middle surface by

Exp = 3(Usp + Upa) + by W + 2 W, W, (3.29)
and
Kaﬂ = — VV,aﬂ . (330)

where b, is the curvature tensor of the undeformed middle surface and the
comma denotes covariant differentiation with respect to a surface coordin-
ate. Greek indices range from 1 to 2.

The approximation to the three-dimensional expression for the internal
virtual work in this theory is

[t on, dv = [ MY 5K,y + N OE,} dA, (3.31)
v A

where dA4 is the undeformed element of area of the middle surface. The

bending moment and resultant stress tensors are given by

Y t/2

2 o
xidx® and NP =] A, (332)

—1/2 —-1/2

M :J
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where t is the undeformed thickness. An exact principle of virtual work is
postulated for the variables of DMV theory. Let p be the resultant force per
unit original area with components p* and p referred to the base vectors of
the undeformed sheil. The principle of virtual work is

l (M™ 8K,y + N SE,4} dA = J {p" 86U, + p W} dA + boundary terms.
A A

(3.33)
Equilibrium equations in terms of the stretching force and bending moment
tensors are obtained without approximation from (3.33).

To obtain the rate-constitutive relations in terms of the DMV variables
we invoke the same approximations as are used in the theory of linearly
elastic thin plates and shells. The state of approximate plane stress at each
point through the thickness is assumed to apply. The transverse shear-rate
components 7,5 and 7, are taken to be zero, and it is assumed that 33 = 0
so that there is no contribution to the internal virtual work from the normal
strain rate #55 . For a given strain rate denote the three-dimensional moduli
by L so that

T =LKy, (3.34)
The assumption of approximate plane stress gives
™ = [Py, (3.35)

where again the Greek indices range from 1 to 2 and the plane-stress moduli
are given by

Zaﬂxy — Lz/ix',' _ Ldﬁ33L33KY/L3333. (336)

For the special case of the relation (3.8)-(3.10) for solids with a smooth

yield surface the plane-stress elastic moduli are given in terms of the three-
dimensional quantities by

N Ay qpan33 gp3dnr ) p3aas, (3.37)

One can also show after some manipulation that the assumption of approxi-
mate plane stress leads to

£ = (L g R iy (3.38)
where o = 1 for m*5,; = 0 and a = 0 otherwise, and where
ﬁlzz[J _ ’na,li _ ’nSByaliBiﬁ/gB.’)BB and a*l — 97133333/143333.
(3.39)

Using (3.32) and (3.35) the rate-constitutive relations involving the DMV
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variables are

N = A By + HE K

M = HE By + HE Ky (3.40)
where
2 4
HE = | L2901 dx?, (341)
Y —1/2

In the linear elastic theory of shells the integrations in (3.41) can be per-
formed once and for all. In the elastic-plastic version of the theory the
moduli are stress dependent and the active branch of the moduli depends on
the strain rate. Thus an essential part of a general elastic-plastic calculation
using this theory is the computation of the local stress distribution using the
incremental relation (3.35) and evaluation of the integrals in (3.41) by one
means or another at each stage of the loading process.

Now we turn to the question of uniqueness within the context of the DMV
theory. At a given stage of deformation suppose there are two possible
solution rates associated with the same rate of applied (dead) load. Denote
these by Uz, we, UP, WP, etc. Following the uniqueness construction of
Section IILA introduce the differences U, = Ut — U2, ¥ = % — % etc.
Then if both solution rates are indeed possible solutions it must follow that

H= '\'A{Maﬂka,, + NEy + NYW W 5} dA =0, (3-42)

where N¥ is the current resultant stress tensor and
By = 3y + itga) + by WH S(WLW 5 + W),
Ky=—W,. (3.43)

Define three-dimensional comparison moduli in the same way as in Sec-
tion TILLA and use them in (3.36) to obtain the plane-stress comparison

moduli L,. Denote the integrals in (3.41) evaluated using L, by H,. If the
three-dimensional constitutive relation satisfies the fundamental inequality
(3.27), then one can show that the DMV quantities as they have been defined
satisfy

M¥K,; + NPEy > BHE Ky K,, + 2HE Ey K, + HEVE,E,, .
(3.44)

The equality holds if and only if both the solution rates satisfy total loading
(i.e., no elastic unloading if N = 1) through the shell thickness.
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The quadratic functional for testing for bifurcation in the DMV theory is
therefore

F=[ {H8R, Ry, + 2HEE, Ry, + HE By By + NYW W 5} dA.

YA

(3.45)

For any three-dimensional relation which satisfies the inequality (3.27) the
condition that F > 0 for all admissible, nonvanishing fields U,, W ensures
uniqueness. Furthermore by the same argument given in Section 11LA, if the
fundamental solution rate satisfies total loading, then bifurcation is possible
when F first vanishes with the bifurcation mode composed of a linear com-
bination of the fundamental solution rate and the eigenmode.
The eigenvalue equations associated with 6F =0 are listed in Section
IVA.

The Kirchhoff stress tensor arises naturally in the above formulation by
virtue of the fact that the theory employs an approximation to the Lagran-
gian strain tensor and the undeformed configuration as reference. Since the
difference between two stress-rate measures involves terms like t#, such
differences will be small if the stress is small compared to the instantaneous
moduli. In the compressive buckling of columns, plates, and shells the stress
level is usually a small fraction of the instantaneous moduli at buckling. For
example, the compressive bifurcation stress of a column is given by the
tangent-modulus formula CE,(t/L)?, where C is a constant of order unity
determined by the cross section and end conditions, and ¢ and L are the
characteristic thickness and length of the column. For a practical analysis of
a slender column one can therefore use a “small strain” theory of strain-
hardening plasticity in which no care is paid to the specification of the
stress-rate measure. On the other hand, when the stress at bifurcation is
comparable in magnitude to the instantaneous moduli it is necessary to
correctly identify 7 as the convected rate of change of the contravariant
components of the Kirchhoff stress. The moduli in (3.34) must also be
chosen consistent with this interpretation. A recent discussion of the extent
to which the stress-rate choice influences bifurcation predictions is il-
lustrated in a number of examples examined by Bazant (1971).

As it stands, (3.45) is referred to the original configuration as has been
discussed. If it is desired to use the deformed configuration at bifurcation as
the reference then (3.45) remains unchanged in form except that now the
comma denotes covariant differentiation base vectors of the deformed
middle surface, W represents a deflection normal to the current middle
surface, etc., and the components N®# are referred to the current base
vectors. Also. W° must be set to zero in (3.43), t represents the current
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thickness, and dA the current element of area of the middle surface. Since the
theory is restricted to small strains it is usually unnecessary to draw a
distinction between the area and thickness of the shell at bifurcation and in
the undeformed state.

C. DisCUSSION OF BIFURCATION PREDICTIONS BASED ON THE SIMPLEST
INCREMENTAL AND DEFORMATION THEORIES OF PLASTICITY

In the examples to be discussed below the stress levels at bifurcation are a
small fraction of the instantaneous moduli so that a discussion within the
context of small strain theories of strain-hardening plasticity is justified. The
most widely used incremental strain-hardening theory is J, flow theory. In
Cartesian coordinates the stress deviator is s; = 1;; — 37,4 6;; and
J, = 3s;;s;;. The instantaneous moduli are given by

E Vs s ahy ;s
1+ v 1 —2v 9% L v42nJ,)
(3.46)

where E is Youngs modulus and v is Poisson’s ratio. For J; = (J3)max»
a=1ifJ, 20, a=0ifJ, <0, and a = 0 if J, < (J3)ma. The function
h(J,) is determined from the tensile stress-strain curve in terms of the
tangent modulus E, (ie., 6 = E, &) as

h, = 3[E/E, — 1]/(4J5). (3.47)

The comparison moduli are given by (3.46) with « = 1 where J, = (J ) -

Since J, flow theory satisfies the inequality (3.27) the functional F defined
in (3.45) does form the basis of the sufficiency condition for uniqueness.
Furthermore when the fundamental solution has the property that J, > 0
everywhere the yield condition is currently satisfied, then bifurcation is pos-
sible at the lowest eigenvalue of F.

The simplest total strain theory of plasticity is usually referred to as J,
deformation theory. It is a small-strain nonlinear elasticity relation in which
the total strain can be expressed as a function of the stress according to

gij = (1/E){(1 + V)O'[j - Va'kkéij + hz(.]z)sij}, (348)

ikl =

1 . .
’ (Oudy + 0;40,) +

where
ha(J2) = HE/E, — 1) (3.49)

and where E, = ¢g/¢ is the secant modulus in a tension test. The instantan-
eous moduli are
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E | o v+ hy, |
sy = — | = el 040 — R
Ll_}kl 1 +ov o+ hz(z (blkbjl + il jk) + 3(1 . 2")0116kl
hy 88y
_ 2%t ) 3.50
L+ v+ hy + 2050, (3.50)

where hy = dh,/dJ,.

Bifurcation predictions based on F in (3.45) with either (3.46) or (3.50)
reduce to results obtained by many authors. Most problems which have
been worked out in detail have a fundamental pre-bifurcation solution
which is a trivial uniform state of stress. Many solutions {some involving
additional approximations) are presented in the well-known references by
Bijlaard (1949), Stowell (1948), and Gerard and Becker (1957). More recent
work includes Lee’s (1961, 1962) cylindrical shell studies, Batterman’s (1964)
equations for axisymmetric shells, and Jones’ (1967) results for eccentrically
stiffened shells. Sewell’s (1972) bibliography includes many more references
to problems in this class.

Sanders (1954) has shown that incremental theories of plasticity based on
linear loading functions such as those alluded to in Section LA are in-
tegrable for total loading histories on which no activated loading function
unloads. In particular, he has shown that there exists an incremental theory
with infinitely many loading functions which coincides exactly with J, defor-
mation theory for total loading. Put another way, for a restricted range of
deformations J, deformation theory coincides with a physically acceptable
incremental theory which develops a corner on its yield surface.

Slip theory of Batdorf and Budiansky (1949) is also integrable for total
loading deformations but it coincides with a deformation theory involving
both J, and the third invariant of the stress. We have already remarked that
theories based on multiple loading functions satisfy the fundamental inequal-
ity required to establish the validity of the bifurcation criterion based on F.

It follows from Sanders’ observation that most of the results which have
been obtained using J, deformation theory are rigorously valid bifurcation
predictions based on the incremental theory mentioned above which coin-
cides with J, deformation for total loading. This is contrary to statements
made repeatedly in the literature to the effect that bifurcation predictions
based on deformation theory are physically unacceptable. To be more
specific, suppose the fundamental solution satisfies proportional loading
everywhere, as is the case for almost all the examples which have been
worked out in detail in the literature. The bifurcation solution is a linear sum
of the fundamental solution increment and the eigenmode. We can always
include a sufficiently large amount of the fundamental solution increment
relative to the eigenmode such that the bifurcation mode satisfies the total
loading restriction. It scems to be widely appreciated that J, deformation
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theory cannot be labeled physically unacceptable for total loading histories
(Budiansky, 1959). The confusion in bifurcation applications apparently
stems from the misconception that when bifurcation occurs total loading
will be violated. On the contrary, it is the total-loading condition itself which
supplies the constraint on the combination of fundamental solution incre-
ment and eigenmode which must pertain—just as it is the condition
m"p?; > 0 which provides the constraint in (3.23) for the case of a smooth
yield surface. The above line of reasoning is due to Batdorf {1949) who used
slip theory, which was developed for this purpose, as the basis for his
argument.

As long as the fundamental solution satisfies total loading there are no
grounds that we have yet mentioned which favor the bifurcation-load
predictions based on J, flow theory over those based on J, deformation
theory or vice versa.

Perhaps the best example which brings out the essence of the difference
between the two simple theories in bifurcation applications is the buckling of
a cruciform column under axial compression shown in Fig. 9 and studied

a
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[ . . (a)
10 a2

Jec - (b} \
G(f/b)z.s . A

0 | | 1 | ‘ | I
0 10 20 30 40 50 60
O¢ (ksi)

F1G. 9. Theoretical and experimental results for the plastic buckling of a cruciform column.
Curve a, prediction of incremental theory with smooth yield surface; curve b, prediction of any
deformation theory with v = %; test data from 2024-T4 cruciform sections. From Gerard and
Becker, (1957).
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originally by Stowell (1948). If the column is not too long, it undergoes
torsional buckling in which the specimen twists about its axis. Only the
effective shear modulus enters into the formula for the bifurcation stress. In
the elastic range the compressive stress at bifurcation is

o, = G(t/b)?, (3.51)

where G is the elastic shear modulus, ¢ is the thickness, and b is the width of
the flange plates. This result can be obtained in several ways; but, in particu-
lar, it can be obtained from the DMV theory as a limiting case for a long
plate which is simply supported along one of the long edges and free on the
other (Timoshenko and Gere, 1961).F

In the plastic range (3.51) still holds according to J, flow theory. Because
this plasticity theory has a smooth yield surface, the increments in the
relevant components of shear stress and shear strain following uniaxial com-
pression are related by the elastic shear modulus. On the other hand, for any
deformation theory for an initially isotropic material it can be shown that
the relevant instantaneous shear modulus G following uniaxial compression
is given by

G
L+ 3G(VE, — /E)
where E, = g/c is the secant modulus. The deformation-theory prediction
(and consequently that of slip theory too) is

o, = G(t/b)?. (3.53)

Thus the ratio of the deformation-theory result to the simple flow-theory
result is G/G and for Poisson’s ratio equal to § so G = 3E in (3.52) this ratio
equals E /E.

Experimental results in the form of the buckling stress normalized by
G(t/b)* are plotted as a function of o, in Fig. 9. These experiments were
performed on specimens of 2024-T4 aluminum and the figure was taken
from Gerard and Becker (1957). The discrepancy between the two theories
for the cruciform column is more dramatic than occurs in most problems.
Nevertheless, it is generally agreed that bifurcation-load predictions for
plates based on J, deformation theory give reasonably good agreement
with experimental buckling loads while predictions based on J, flow theory
are consistently high.}

The cruciform column was discussed extensively in the literature by

G = (3.52)

* For flat plates the DMV equations reduce to the von Karmén plate equations.

1 A strong assertion to the contrary made by J. B. Newman [Inelastic column buckling of
internally pressurized tubes, Exp. Mech. 13, 265-273 (1973)], stems from the use of an incorrect
formula for the bifurcation load according to deformation theory.
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Drucker (1949), Cicala (1950), Bijlaard (1950), and Onat and Drucker
(1953). In part, this discussion centered on whether or not imperfections
could account for the discrepancy between the predictions of simple flow
theory and deformation theory. Based on a rather approximate analysis
Cicala (1950) concluded that small imperfections, which would inevitably be
present in any actual specimen, would reduce the maximum support load
calculated using J, flow theory to the level of the deformation-theory bifur-
cation load. Bijlaard (1950) refuted Cicala’s claim on the grounds that the
imperfection levels Cicala was considering would by no means inevitably be
present. Onat and Drucker (1953) carried out a more detailed, but still
approximate, calculation of the maximum support load based on J, flow
theory and found that extremely small imperfections did reduce the maxi-
mum load to essentially the level of the deformation-theory bifurcation load.
The imperfections required to bring about this reduction were so small that
they suggested that no significant scatter in the buckling loads should be
expected (as is usually the case when imperfection sensitivity is involved), as
the test data seems to indicate. If they are correct in asserting that the yield
surface should be taken to be smooth and if their conclusion regarding the
effect of small imperfections is also correct, the prospect of having to take
into account initial imperfections in this manner just to calculate an effective
buckling load is hardly a happy one. In any case, this example does lend
further credibility to the use of bifurcation-load predictions of deformation
theory for engineering purposes.

As discussed above the essential difference between the two sets of predic-
tions revolves around the question of whether the description of the yield
surface should allow for corners. Theoretical models based on single-crystal
slip (such as slip theory or the more elaborate models which followed it)
definitely indicate that corners should develop (Hill, 1967b; Hutchinson,
1970; Lin, 1971). However, experimental evidence on this question is contra-
dictory. Adequate direct evidence in the form of measured yield surfaces is
extremely difficult to obtain for these purposes since experimental probing
of the yield surface tends to obliterate any potential corner. Nevertheless,
many tests do show that a region of high curvature does develop at the
loading point on the yield surface. Biaxial tests or tension—torsion tests
which directly measure incremental stiffnesses are more likely to shed light
on this matter. But here too, the experimental evidence is contradictory with
some investigators finding evidence which suggests corners and others
finding none. A recent survey of the history of yield surface experimentation
is given by Michno and Findley (1972).

So far the evidence from basic stress—strain tests must be regarded as
inconclusive with regard to whether or not adequate models of the elastic-
plastic behavior of common metals should incorporate yield surfaces with
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corners. Fortunately, experimental work in this area is continuing and the
accuracy of the tests is improving so that there may be clearer evidence
available in the future. In the meantime there seems to be little doubt that for
engineering purposes bifurcation prediction based on deformation theory
should be favored over those based on incremental theories with smooth
yield surfaces. This should not be construed as an argument for the universal
application of deformation theory. In fact where deformation histories do
depart from total loading, as may be the case in the post-bifurcation regime,
for example, deformation-theory predictions must obviously be regarded
with suspicion.

We conclude this section with two additional examples which more
typically illustrate the discrepancy between the bifurcation predictions of
these two theories. Bifurcation results for these two examples will serve as
the starting point for post-bifurcation and imperfection-sensitivity studies
presented in Sections IV and V,

Consider a clamped circular plate of radius R and thickness r subject to a
uniform radial stress ¢. The elastic bifurcation stress for compressive loading
obtained from the DMYV criterion is

0. = —k2Er*/12(1 — v})R?, (3.54)
where k = 3.832 is the first zero of the Bessel function of the first kind of first
order (Timoshenko and Gere, 1961).

In the plastic range the fundamental solution continues to be the uniform
state of equal biaxial compression. The plane-stress comparison moduli
relating the inplane stress rates and strain rates must be isotropic at bifurca-

tion. Without any approximation we can introduce an instantaneous mod-
ulus E and contraction ratio v so that

Eflyy = (14 V)t — T2,,00p . (3.55)

Also without approximation the lowest bifurcation stress according to
DMV theory is given (3.54) using E and v instead of E and v, i.c.,

o, = —k2E3/12(1 — 32)R2. (3.56)
For J, flow theory E and v are given by
E/E =1 + (E/E, — 1)/4],
v = (E/E)lv — (E/E. — 1)/4}, (3.57)

where E, is the tangent modulus in simple tension which is regarded as a
function of J; as in (3.47). For J, deformation theory,

(EC '+ 3E')/4,
—[2(1 — 2E" " + E7! = 3E7 )4, (3.58)

-
% o
[
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where E_ is the secant modulus in simple tension and is also taken to be a
function of J,.

An example studied by Needieman (1973) to be discussed further in Sec-
tion V uses a uniaxial tensile stress-strain curve which has a definite yield
stress o, and yield strain ¢, = ¢,/E and a continuous tangent modulus where

ajo, for o¢<a,,

£fe, = nofo,f + 1 —n", for o> a,. (3.59)

This curve is shown in Fig 10 with a strain-hardening exponent of n = 12.
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F1i. 10, Stress -strain curve and bifurcation predictions for a clamped circular plate under
radial compression. Curve a, J, flow-theory predictions; curve b, J, deformation-theory
predictions; curve ¢ o/o, vs g/, Eq. (359), n=12: for (a) and (b) oo, vs
k2(1/R)*/12(1 — VZ)HJ,; v=14

Also shown in Fig. 10 are the predictions for the bifurcation stress from
(3.56) using (3.57) and (3.58) derived from this tensile stress-strain curve.
The bifurcation results are conveniently plotted as o,/o, against k*(t/R)*/
[12¢,(1 — v?)] so that in the elastic range the bifurcation curves plot on top
of the stress—strain curve. For bifurcation stresses which are not more than
about 209, in excess of the yield stress (and thus bifurcation strains not
exceeding about 23 times the yield strain) the difference between the two
theories is very small. For larger values of the abscissa the difference is no
longer insignificant.

A second example which can be analyzed in an equally simple manner is
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the thin spherical shell under uniform external pressure. The pre-bifurcation
solution is again the uniform state of equal biaxial compression. In terms of
E and v in (3.55) the stress in the spherical shell at bifurcation is

o, = —Et/[3(1 — ¥)]'"R, (3.60)

where now ¢ and R are the thickness and radius of the shell. This result also
comes from DMV theory as discussed by Hutchinson (1972); with E and v
assuming their elastic values, (3.60) is the elastic formula. Figure 11 has been

€ ! t )
B
€y V3(1-v3) (eyR

F1G. 11, Stress strain curve and bifurcation predictions for a complete spherical shell
under external pressurc. Curve a. flow-theory predictions; curve b, deformation-theory
predictions: curve ¢, &/e, = o/, + 0.1(a/a,)"; for (a) and (b): a fa, vs [3(1 — v*)]” Y*(t/e,R);

=1
V=3

plotted in the same way as was done for the corresponding plate curves.
Here, however, a Ramberg-Osgood-type tensile relation has been used
where ¢, and o, = Ee, are now an effective yield strain and yield stress, and
n = 6 was chosen as illustrative of relatively high strain hardening,
Bijlaard (1949) recognized that the elastic results for the above sphere and
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circular plate problems could be simply converted to give bifurcation loads
in the plastic range. His paper includes predictions based on the two simple
theories used above. A rederivation of Bijlaard’s result for the sphere has
been given by Batterman (1969) for J, flow theory.

Sewell (1963, 1964) studied the extent to which the orientation of the
normal to the smooth yield surface influenced the lowest bifurcation load. In
his study of rectangular plates under uniaxial compression which are simply
supported on all four sides he found that by allowing the normal to differ
from that of J, flow theory somewhat lower bifurcation loads could be
obtained. Justification for the different choice of normal requires an appeal
to initial plastic anisotropy. In a more recent study Sewell (1973) reexamined
this same plate problem using a plasticity theory based on the two loading
functions associated with the corner of the Tresca yield surface. Appreciable
reductions below the predictions of J, flow theory were found. However it
does not follow from these findings that the Tresca yicld surface is generally
suitable for bifurcation calculations. If the Tresca yield surface is used in the
analysis of the cruciform column one still obtains the elastic prediction
(3.51) since the corner associated with the Tresca surface does not lower the
effective shear modulus in question below its elastic value.

IV. Initial Post-Bifurcation Behavior for Donnell-Mushtari-Vlasov Theory

In this section behavior immediately following bifurcation is studied
within the context of DMV theory. Attention is focused on bifurcations
emanating from the lowest possible bifurcation point. Growth of the region
of elastic unloading is involved in an essential way in the determination of
the initial post-bifurcation behavior as has been previously brought out by
the continuous model of Section I1,B. The analysis will parallel that given for
the continuous model as well as a treatment of three-dimensional solids
given by Hutchinson (1973a).

One difficulty which must be faced immediately in the initial post-
bifurcation analysis is the choice of constitutive relation. A deformation
theory which incorporates elastic unloading is generally unsatisfactory in
that it violates continuity requirements, as is well known. This is in addition
to the loss of its justification once total loading can no longer be claimed,
which will often be the case in the post-bifurcation regime. On the other
hand, we have seen that where deformation theory predictions for the bifur-
cation load fall significantly below those of a simple incremental theory the
deformation-theory predictions are in better accord with experimental data.
We strike a compromise here by using the incremental theory based on a
smooth yield surface and by restricting consideration to specific examples
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where the bifurcation load is only slightly greater than the J, deformation-
theory prediction. In two column problems which will be looked at in some
detail this question does not even arise since the stress-strain behavior is
essentially unidirectional. However in the general situation this predicament
underlines the lack of a reasonably simple yet adequate constitutive relation
for common structural metals even for the restricted class of deformation
histories involved in plastic buckling problems,

The general constitutive relation (3.8)-(3.10) will be used; under the
assumption of approximate plane stress this relation has been rewritten in
terms of the in-plane stress and strain components in (3.37) to (3.39).
Although it is not crucial to the analysis we will make the simplifying
assumption that the body becomes fully plastic prior to bifurcation.

Let A be the single load parameter and let dead loads (and/or displace-
ments) be applied proportional to 4. Let the fundamental solution be asso-
ciated with monotonically increasing A prior to the occurrence of any limit
point of A and label the fundamental solution with a superscript or subscript
0. Attention is restricted to bifurcations which occur prior to a limit point of
A. With ¢ denoting the (positive) amplitude of the eigenmode associated with
the lowest bifurcation load 4., we will show that the initial post-bifurcation
expansion is of the form

A=A+ 4+ A8 (4.1)

where 0 < B < 1. Generally, 4, > 0;in the examples examined below, f = %
or2and A, < 0.

A. GENERAL THEORY

1. Equations for the Eigenvalue Problem and Determination of 4,
Denote the eigenmodal quantities associated with the lowest value 4, for
which F vanishes by
I (1) (1) (1) (1) (1)
{Uo( 3 Wa Ea[] 3 Kaﬂ k) nzﬁ s Naﬂv Mal]s Taﬂ}’ (42)

where the local quantities which vary through the thickness are listed along
with the quantities which are functions of just the two middle surface coor-
dinates x*. The first variation of F also vanishes at A, i.e.,

. (1) (1) (1)
| IMYSK,y + N¥SEy + NS W 0W,} d4 = 0, (4.3a)
“A

with
OBy = 3(0Uyp + Uy ) + buyoW + J(WOSW, + WSW,), (4.3b)
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which generates the equilibrium equations and homogeneous boundary con-
ditions for the eigenvalue problem. In addition, the eigenmodal quantities
satisfy:
(1) c (1) ¢ (1)
N = BV E,, + HEK,, .
x/l)aﬁ _ Iila/}xy(g) Caﬁk‘y(l)
= Hy E + HEK,, (4.3¢)
(1) (1)
ﬁ(aﬁ = - LI/,aﬂ s
(1) e (1) () (1) (1)
Ey =3Usy + Upy) + by W + S(WOEW ; + WEW L), (4.3d)

(1) W
= Py, (4.3¢)

and

(1) (n (1)
’7aﬂ = Eaﬁ + X3Ka/g . (43f)

A superscript or subscript ¢ denotes quantities evaluated at A.. The quanti-

ties L, and H;, were defined in Section 111,B and, in general, [, may vary
through the thickness as well as over the middle surface. Equations (4.3¢)
and (4.3f) are auxiliary to the eigenvalue problem but nonetheless are impor-
tant to the initial post-bifurcation analysis.

Attention is restricted to problems in which the eigenmode associated
with 4, is unique. The mode is normalized in some definite way. As defined
previously, ¢ is the amplitude of the eigenmodal contribution to the bi-
furcated solution. It is used as the expansion variable; ¢ is defined to be
positive and is increased monotonically in the initial post-bifurcation
regime. To analyze the opposite-signed deflection in the eigenmode we will
change the sign of the eigenmodal quantities (4.2).

It is assumed that the fundamental solution satisfies

mind = A >0, (4.4)

where for the remainder of the paper

’

( )=l ydi.. (4.5)
As already discussed, the bifurcated solution is of the form,
' (1)
U, U LU+ U,
{ }z’ O}+§[1 1}+-~, (4.6)
w lW / (1
¢ WO+ W
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with similar expressions for the other variables and where 4, was introduced
in (4.1). An equivalent form for the expansion is

e

where

(1)=d( ) (4.8)

and, for example, W is shorthand for (dW°/dA)(d4/d¢). The Shanley condi-
tion for no elastic unloading at bifurcation requires

’ (1)
A (i Hap + Nap) 2 0 (4.9)

at every point in the body which provides a constraint on A, which clearly
can be met if (4.4) holds.

Recall that two possibilities were encountered in the analysis of the
models of Section II. Either no elastic unloading occurred on the bifurcated
solution branch in some finite neighborhood of 4, or neutral loading oc-
curred at one point in the body at bifurcation and elastic unloading spread
from this point as the amplitude of the bifurcation deflection increased. The
same is true here. In the unlikely event that the structure possesses a
sufficiently large stabilizing geometric nonlincarity such that 4, is greater
than the smallest value needed to ensure (4.9), then no elastic unloading will
occur for some range of positive £. The criterion for identifying this possibil-
ity will be given later, along with the associated formula for 4,. The second
possibility is more typical and by far the more important. Then 4, assumes
the smallest value consistent with (4.9). This is the case which is analyzed
below.

2. Lowest-Order Boundary-Layer Terms

The instantaneous neutral loading surface separating the regions of elastic
unloading and plastic loading spreads from a point x. as & increases from
zero as depicted in Fig. 12. The initial neutral loading point is denoted by x!
and is the point where the equality in (4.9) is attained. In some problems
neutral loading at bifurcation may occur at more than one isolated point or
along a line of points, as for example in an axisymmetric bifurcation of a
shell of revolution. We will carry out all the details of the analysis for the
case where x! is an isolated point. In most problems x’ will liec on one of the
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/-
INSTANTANEOUS NEUTRAL
LOADING SURFACE

FiG. 12. Sketch of the initial neutral loading point, the subsequent instantaneous
neutral-loading surface and the local Cartesian triad.

two surfaces of the shell as in Fig. 12 and this will be assumed to be the case
here. Other variants can be analyzed with the same approach.

With 4, chosen such that the equality holds at x! in (4.9), the function on
the left-hand side of this inequality is greater than zero elsewhere in the
body. It enters into the initial post-bifurcation analysis in an essential way.
To display the behavior of this function in the neighborhood of x! introduce
a set of local Cartesian coordinates z, centered at x! as shown in Fig. 12 such
that z, is directed along the outward normal to the surface on which x! lies.
Using a Taylor series expansion about x’, write

(1)

WP (nds + ) = Cazy + Copzezy + -, (4.10)
where
a —af ’O (1)
CS - A [mc (llnnﬂ + r’a{i)] ’
CZy x of
10 0 ! M
_ B 0
Cpy = 53 o2, [P (A + 1ap)) 5 (4.11)

Since (4.10) attains its minimum in the body at x!, C, = C, =0 and
C; = 0. In the subsequent analysis it is crucial to distinguish between in-
stances where Cy < 0 and where C4 = 0. Tt will almost always be the case
that C, # 0 if the eigenmode involves bending. For example, suppose the
fundamental state is a uniform state of stress; then from (4.11) and (4.3f)

_ (1)
C3 = — |m:'BKaﬂ |

xd »
which will vanish only under exceptional circumstances. We will carry out

the analysis under the assumption that C, < 0 and later comment on the
case where C, = 0.
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Motivated by the simple model results, an expansion is attempted in the
form (4.1) so that

A=+ (1+ P& + 4, (4.12)

where the remainder satisfies (¢ #2) = 0 as & — 0. Using this relation to
expand the fundamental solution about A, gives for a typical quantity such
as the stress

defdr 7
= O A (1 P+ (4.13)

$id

T didé

As the region of elastic unloading spreads from x and engulfs a point, the
relation between the stress rate and strain rate changes from being

determined by the plastic moduli L to the elastic moduli ¥. A set of
*

stretched boundary-layer coordinates z; will be introduced such that the
equation of the neutral loading surface will be independent of £ to lowest
order when written in terms of these coordinates. These same coordinates
are the natural choice for use in the description of behavior in the vicinity of
the growing elastic unloading region.

Anticipating that the lowest-order correction to the bifurcation mode {4.7)
are of order & we can write quite generally that

(1) a
’.701 ’73? Hap ep ) Ha (C.Va x!
.Tajj} = {'fﬁ} oy & ) (4.14)F
0 T ,[’_zp(é’7 Xl)

To introduce the boundary-layer description two distinct limits of the last
terms in (4.14) are considered. In the first the point x' (x* # x{) is held fixed
so that the elastic-unloading region leaves x’ behind as it shrinks to the point
xias E—0, e,

@€

hm ’7aﬂ(§» X ) _

a
£—=0, xifixed Tlﬂ(é, Xi)

ey (') (4.15)

*
Next, take the limit with z; fixed so that the point in question stays at the
same position relative to the shrinking boundary-layer region as & — 0.
Define the boundary-layer quantities by

a a
" The quantities 1 and ¢ have no connection with quantities identified by an ¢ in th
uniqueness construction.
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a * *
lim ';'“”(5”‘.) | ez (4.16)
540.:ﬁxcd Tzﬁ(éq x') Tw(zi)

Having defined these limits we now proceed to obtain the lowest-order
equation for the instantaneous neutral-loading surface. The normal to the
yield surface in strain-rate space is regarded as a function of stress, and for
plastic loading

— - ) (’}mali -
L
T c
' m _om*
+f(l ‘L' L )’)K)’ 4o (417)

T

Thus the equation for the neutral-loading surface can be written as

’ (1) ’ a
0 = M, = mP(Ayng, + nap) + EL(L+ By iting, + mPn.,] + .

(4.18)

Noting the expansion (4.10) for the zeroth-order term in the above equation,
define the stretched coordinates according to

* *

P

zy=EPzy (L + B)A, and  z, = EPR 00— (1 + B)A}2, (4.19)

where it has been anticipated that A, is negative. Introduce the stretched
»*

coordinates into (4.18) and take the limit as & — 0 with z; fixed with the
result

* *
0 = i, = E[(1 + Blha f(z) + W) + o0 (420)
where

* ' * * %k
_f(Z,—) = ﬁ”lfﬁngp lxui — C3Z3 - Caﬂ ZaZﬂ . (4.21)
*
The boundary-layer strain-rate quantities 4,z are zero as a conqequence of

the kinematic assumptions which have been adopted. With Ea,,, and Kw
defined analogous to the definitions in (4.14), (3.28) gives

Mg () = Eug(6) + x7Kop (%), (4.22)

Since the strains are constrained to vary linearly through the thickness, the
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* * *

*
existence of boundary-layer terms E,z(z,) and K,4(z,) would result in the
*

quantities #,; varying linearly through the entire thickness. This possibility
is excluded by the situation envisioned in Fig. 12 where the region of elastic
unloading spreads into the shell in the z, direction as well as in the two
tangential directions. To proceed we must take

® * *

Ey = Kup = 15 = 0. (4.23)

At this point one might want to question the retention of the assumption

that the strains vary linearly through the thickness according to (3.28) once

elastic unloading sets in. We will take this matter up again in the discussion

of some specific examples. Here, however, it is possible to instill some

confidence in this assumption by noting that the full boundary-layer treat-
*

ment for a three-dimensional solid also gives #,; = 0 (Hutchinson, 1973a,
Section 6.2). Consequently, the lowest-order equation for the neutral-
loading surface (4.20) reduces to

*

f(z)=0 (4.24a)

or, in terms of the unstretched local coordinates,

Cyzy + Coyzozp = — (1 + P Emind, |- (4.24b)

Because of (4.4) and 'y < 0, (4.24b) implies that 4, < O if the neutral-
loading surface is to spread into the body as previously anticipated.
Within the region of elastic unloading,

_ . ’ {1 3 ’ a
= PPNA ol + Ny + (L4 B0l + Ene, + 0] (4.25)

Using (4.14), (4.3¢), together with

7 ’
Toa{i — Liﬂxvn,?y and _([alm' _ Ei[“‘"i — Z]; lmiﬁmr;v’
(4.25) can be rewritten as

a ’ (1) a
Fe = g i [ (G nl, + na)] + EZ,,
+ 8L+ Phags mEmInl, + o

*
Now divide by & and take the limit as ¢ -» 0 with z, fixed (thus remaining
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within the elastic unloading region as £ — 0). In this limiting process make
use of (4.10), (4.19), (4.21), and (4.23). The result is the lowest-order correc-
tion to the bifurcation mode for the stress rate within the elastic unloading
region:

= (1 + B)halge ') f (2) (4.26)

*
A similar analysis gives ™ = 0 outside the region of elastic unloading. Note
that the boundary-layer stress rate is continuous across the neutral-loading
surface f 0.

Let N“ﬂ and M“” be the contributions of boundary-layer stress rate to the
resultant inplane stress and bending moment tensors defined in accord with
(3.32) by

* L2 % * 2 o*
NP = ™ dx® and MY = 3 dx. (4.27)

2 Y —/2

Changing to the stretched coordinate for the integration variable,

* ¥ *
N* = —(1 + /f);ngﬁj 0 dz, +
* *
= (1 + PG W) [ f(z)dzs+ o (428)
and similarly,
*
M* = —(1 + B)?A2 f”[ L] A+1/2) ’ f dz3 -+, (4.28b)

where the integration extends from the edge of the elastic unloading region
to the shell surface in a sense consistent with that which z, = +(x*> F 1/2)
holds. Also, +1/2 pertains when x> = t/2 and —t/2 when x? = —1/2.

3. Determination of p and 4,

To evaluate f§ and 4, the lowest-order boundary-layer terms are displayed
explicitly in the initial post-bifurcation expansion, and in this form the ex-
pansion is substituted into the principle of virtual work. Following some
further manipulation of the virtual work equation, an examination of the
lowest-order nonvanishing terms in this equation permits us to identify by
inspection and provides a general equation for 4,.
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The bifurcated solution rate is written as

(1) b
U, US‘,, Uy, 0 U”,(ﬁ, X )
. » 5 0 b )
an ap x = l X L:’ 'x
S R O S - S S (4.29)
T T T i (&, xY)
. . 1) * b
D N N B O

with similar definitions for the other quantities. Since the lowest order
boundary-layer terms have been separated out it can be asserted that

b b b b
Iim g"_ﬁ{Uzvp; Haps T ETPNY = 0. (4.30)
*
£-0, z,fixed

The incremental form of the principle of virtual work (3.33) is

[ MK, + NPSE, + NYW W, dA = EVW,  (431)
YA

which is satisfied by both the fundamental solution and the bifurcated solu-
tion. Eliminate the right-hand side of (4.31) using the equation satisfied by
the fundamental solution and rearrange the resulting equation to the follow-
ing form:

.\‘A{(M’” — MPVK,y + (N — NFYoU,, + WOOW ) + N (W, — WOOW

+ NP (W, — WOOW, + (NP — N YW 0W,) dA = 0. (4.32)

Substitute (4.29) into (4.32) using (4.3a), (4.12), and expansions such as (4.13)
to obtain

N b b b
| IMK,y + N5 Eyy + NEW ,0W ) dA + &
IN .

.ox *
{MP?5K,, + N*5E,,) dA
A

. (1) ’ ’ 1y (1)
+ & | 20 NPWSOW, + 20, N + NT)W 0W,} dA + - =0,
YA

(4.33)

where 0°E is defined by (4.3b).

Equation (4.33) can be regarded as the variational equation of equilibrium
for the quantities with the superscript b. We will argue that all three terms
shown in (4.33) must be of order & and this will enable us to identify f.

In preparation for this argument we first digress to consider the initial
post-bifurcation behavior of a nonlinear hypoelastic comparison problem in
which the unloading branch of the constitutive relation is suppressed. That




Plastic Buckling 115

is ©* = L%y, for all strain rates where L will be taken as a function of the
stress. For the comparison problem the initial slope 4, 1s not constrained by
(4.9) but will be determined below. Since the boundary-layer region does not
develop the associated term in (4.33) must be deleted and the superscripted b
quantities are of order &. Introduce the limit

b b b b
m & NU,; mys 7705 N
&0, xifized
@ @ @ @
= 2{U,; nap5; T N}, (4.34)

where the multiplicative factor of 2 brings the notation into line with
previous work on elastic post-buckling expansions to be cited later. The
variational equation for the second-order quantities is

L@ ) @
2| (M™3K,5 + NP5Eyp + NEW ,0W,) dA
“A

R ST , (1 ()
+ 2| (A NTWOW, + (A NE + NP)W W) dA = 0. (4.35)
YA
One can also establish the connections

2) 2)
Ka/i = - W.aﬂ

and

2) 2) @) 2) 2) @) 1y (1
Egp = {Usg + Upa) + byg W + JWEW  + WEW )+ 3IW W,

(4.36)
Writing
[Py = Ez”’”‘ + (" — r’j")((?]:“”"”'/ﬁr“") ct o (4.37)
one can show
(2) 2
1% = Lj”"“"r],(., + D, (4.38)

where

1 ’ (:/)Eaﬁxjf (1) 1(1) (’/‘,E-‘lﬂ"“/' ’ (1)

Ddﬂ = 211,[‘.1(1;' ’0‘[,,; R ’/IK)’ + i T}l\‘ 78,[‘.7/;;7 (;“1’7)9)' + r’""y’)' (439)
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In addition, it follows that

(2) c (2) c (2) .12
N* = H{Y E, + HE Ky, + | D% dx?,
-2
2) 4 (2) ¢ 2) /2
M = HEEy, + HE K,y + [ D3 d (4.40)
C—1/2
(1) (1)

Now set U, = U, and 6W = W in (4.35) to get

(2) (1) (2) (1) ) (@)
2[ MK,y + NPEy + NEW W ) dA
YA

.M ' SN CIRNEY)
+ 2| (A NPWOSW , + (AN + NOW ,W 4} dA = 0. 441
N ap 2 g

An identity for the first term of (4.41) is

2) 1 (2y (1) 1y (2)
[ (M7 Koy + NTE,; + NEW W 4} dA
A

1)y (1 (1 Iy (D . (1)
- [A{%N"ﬂ W, W, + i NSWOW Y dA + [ D* y,, dV, (4.42)
- ‘v

where dV represents the volume element in the undeformed shell. This iden-
@) @)

tity is obtained by setting U, = U, and §W = W in the variational equa-
tion for the eigenmode (4.3a) and then by making use of (4.3b), (4.3¢), (4.36),
(4.40), and the property L = L. Eliminate the common term in (4.41)
and (4.42) to obtain the following equation for 4,:

o + 1B =0, (4.43)

where

(W (1) AfapR
4:/:[3N“"W1W,, dA+ | o
| E . Jy o™

A

(1) (1
Hap Hiy AV, (4.44a)

o s 1y (D)  »
B=| QNIW W, + ANTWOLW 4} dA
CA

o

01_;1/3;\'7
Ny Ny dV
c

) ’ ) ) prabxy
v _
+“V O o

1y

.+ T
. Hap My o

. (4.44b)

The expression (4.43) for 4, in terms of the eigenmode specializes to
formulas given by Budiansky and Hutchinson (1964), Budiansky (1969),
Cohen (1968), and Fitch (1968) for constant elastic moduli. When the var-
iable moduli are derivable from a strain energy density the result can be
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regarded as deriving from Koiter’s (1945, 1963a) general approach to conser-
vative elastic systems. The formula is more general, however, in that it
applies to the nonlinear hypoelastic comparison problem for which the
moduli are given by the loading branch of the elastic-plastic constitutive
relation and are not, in general, derivable from a strain-energy-density func-
tion. The initial slope of the comparison problem is denoted by 4%° to distin-
guish it from the slope of the elastic-plastic problem A, and in this notation
(4.43) is replaced by
o + B =0.

The symmetry of the eigenmode in many problems implies that ./ = 0

and thus 2% = 0. But if ¢ as given above is sufficiently large such that
: (1)

M (A0S + 1) >0 (4.45)
throughout the body, then no reversal in sign of the strain rate will occur in
some finite range of positive £. The behavior of the comparison problem will
coincide with that of the elastic-plastic problem in this range and, in particu-
lar, 4, = A%*. However as has been indicated, the typical and more inter-
esting situation occurs when strain-rate reversal occurs at bifurcation in the
comparison problem. In this case A, is the minimum value consistent with
(4.9) and 4, > 2%°.

We return to the analysis of the elastic-plastic problem in which elastic
unloading must be taken into account. The contribution of the boundary-
layer terms in (4.33) can be rewritten using the stretched coordinates and
(4.28) as

. * *
& JA{M“”(SKW + N6E,,} dA

)y 4 (4.46)

vV

= &1 + By A3lgc o,

*
The volume V' is the region of elastic unloading expressed in terms of the
stretched coordinates. It is enclosed between the two surfaces
* * * *

f(z)=0 and £2z5+ by |, 2,25 = 0, (4.47)

where the plus (+) holds if x} = ¢/2 and the minus (- ) if x> = —1/2.

By considering the three possibilities, 8> 4, <4, and g = 1, we will
show that # = 1 must hold implying a balance between the three terms listed
in (4.33). First, suppose f# > 3. Then by (4.46) the boundary-layer contribu-
tion to (4.33) would be of order larger than &. A balance between the first and
third terms in (4.33) would require the first term to be of order £ With the

limit for fixed x' defined as in (4.34), the subsequent analysis leading to (4.43)
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would pertain. That is, with >  the effect of elastic unloading would drop
out to this order requiring 4, to satisfy (4.43). But this is not possible because
A, > A5 by assumption.

If it is supposed that § < § then there must be a balance between the first

and second terms in (4.33), and in the limit ¢ — 0 for fixed x’ the quantities
b b

W and U, must be of order &3, Proceeding in a manner similar to that
outlined in Eqgs. (3.34)-(4.43), one can show that the only solution for these
limit quantities is some multiple of the eigenmode. Furthermore, f < 4 re-
quires the boundary-layer contribution (4.46) to be identically zero.
As already suggested, the proper choice is f = 4. Then all three terms in
(4.33) are of order & and (4.34) still pertains.¥ The boundary-layer contribu-
(1)

tion [(4.46) with én = 1] must be added to the left-hand side of (4.35) as
well as to (4.41). Equations (4.36)-(4.40) and (4.42) remain unchanged.
Equation (4.43) is replaced by

(1) * *

GV lG: T agls [, £(2) AV = (o + 4,), (4.48)
%

where .o/ and 4 are still given by (4.44). This equation is the general equa-
tion for A, . Note that it involves the eigenmode, the initial slope 4,, and the
derivatives of the instantaneous moduli evaluated at bifurcation.

%
The integral | fdV can be evaluated in closed form for most cases of
interest. With C,, = 0 and b, = 0 the general expression is

v * * ) 2
| flz)dv = T2 1= May 4 ay + by by) + bad + ad + b+ b)
y (—2C3)

+ 15(ayay + byby + ayby + ayby + 3ayby + 3ay by)] [ h9). ]

(4.49)
In this formula

Cy = (Cm i C3 baa/z)il 2, d, — (’fcm N ba = icfb” C3/2

(x = 1,2; no summation implied), where the minus (—) holds if x} = /2
and the plus (+)if x? = —t/2.

The analog of (4.48) for three-dimensional solids derived by Hutchinson
(1973a) can be specialized directly to (4.48) when the assumptions of DMV

hoooh

tEigenmodal contributions to (U,. W) of order lower than & are possible: however, it is
readily shown that such contributions do not influence the term 2, &' in (4.1). To carry the
expansion beyond this term it docs become necessary to require the higher-order terms in (4.29)
to be orthogonal to the eigenmode in some specific way.




Plastic Buckling 119

theory are invoked. An example will be given in the next subsection in which
neutral loading at bifurcation occurs along a line of points. In such cases two
coordinates rather than three are stretched and one finds an expression
similar to (4.48) but with # = 2.

When C; # 0, the unloading region is a thin sliver whose penetration in
the z; direction normal to the shell surface is O(¢#) and whose extent along
the surface is O(¢#/?). Thus, as will be seen more clearly in examples which
follow, the lateral extent of the unloading region will in general be on the
order of the lateral dimensions of the plate or shell before the normal pene-
tration is more than a small fraction of the thickness. It is therefore not
unreasonable to retain the assumption of approximate plane stress even
after elastic unloading sets in. For an unusual problem in which C; = 0 one
cannot necessarily still make this claim since a different choice of stretched
coordinates will have to be made. Such cases must be examined individually.

B. Two CoL.UMN PROBLEMS

1. Simply Supported Column with a Solid Circular Cross Section

Although the theory given above was derived for plates and shells it can
be converted by inspection to apply to one-dimensional column theory.
Tensor quantities become their counterpart scalars. For a column under
axial compression ¥ = E,m= —1,g ' = E — E,, and dL/dt = dE/dz. Tt
is well known that the approximate strain-displacement relations of DMV
theory are not adequate for an accurate analysis of the post-buckling beha-
vior of lincarly elastic columns, In the plastic range, however, the nonlinear-
ity associated with the material behavior dominates the initial
post-bifurcation behavior and more accurate strain-displacement relations
are not needed.

The tangent-modulus load for a solid cylindrical column of radius R and
length L is

P, = n?EI/L, (4.50)
where I = 1nR* The eigenmode and its associated stress and strain fields
are

(0 ()
U, =0, W = R cos(nx,/L),

(1) (1 (1)
n = (n*Rx,/L*)cos(nx, /L), and 1 = Efn, 4.51)

where the Cartesian coordinates x; are orientated as shown in Fig. 13a. With
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Fi1c. 13.  (a) Conventions for analysis of columns of circular and rectangular cross sections.
(b) Approximate maximum support load from (4.61) for the column with a circular cross
section and comparison with the reduced-modulus load for a column with a constant tangent

modulus equal to Ef; g = (rR/2L)*(dE,/d7),.
(1
this normalization an eigenmodal contribution ¢W corresponds to a one-
radius lateral deflection when & = 1.
Let
A=P/P.. (4.52)

Then #° = — (=R/2L)? and, with m, = —1,
7 {1)
ian® + 1) = GRILY[ — (sy/R)eos(mx /L] (4.53)
The requirement that A, be the smallest value such that (4.53) is non-
negative gives
A =4 (4.54)
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and x{ = (0, 0, R). From (4.11)
Cy = —(=R/Ly’R ", Cyy = 2(nR/L)*(n/L)?, Cpy=Cy, =0,
so that from (4.21)

* * *

f(z;) = (mR/L)*[ + (z3/R) — 4(nz/L)*]. (4.55)
The term .of of (4.44) is zero by symmetry as can easily be verified; and for

the one-dimensional column theory

r (1) r (1) (1) (D)
1B = 1y [ (20OW? 4 (dEJd0) (00 + T’ y)pdV  (456a)
Y

= —E{(nR/LY*nR*L(1 + q), (4.56b)
where ¢ = (tR/2L)*(dE,/dt).. In the stretched coordipates the lowest-order
*

*
equation for the surface of the column is 2z; + zZ/R = 0; and using the
general formula (4.49) one obtains

[8)] N * *

(@239 e L |, f2) AV = = (322 (E — E(nR/LYR2L/192.

(4.57)
Combining (4.56) and (4.57) according to (4.48) gives
Ay = =3[3nE{(1 + q)/(E — Ef)]'>. (4.58)
Thus the initial post-bifurcation expansion is
A=P/P,=1+ 48 + 2,8 4+ -] (4.59)

where & = 1 corresponds to a lateral deflection of one radius at the center of
the column. From (4.24b) the lowest-order equation for the instantaneous
neutral-loading surface is

(x3 — R)/R — 3(mx,/L)* = {2, &3, (4.60)

An alternative expression for 4, was obtained by Hutchinson (1973a)
within the context of the full three-dimensional theory by using the Euler-
Bernoulli approximations to obtain approximate eigenmode ficlds. That
expression agrees exactly with (4.58) when Poisson’s ratio is 4.

If the truncated three-term expansion (4.59) is used to estimate the maxi-
mum support load one finds

dijdé = 0= &3 = —3/3,
and

A = | 4 (E — E5)3rEN(L + q) = 1 4 0.106[(E — ESY/ES(1 + )] (4.61)
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From (4.60) the elastic unloading region has penetrated to the middle of the
column and along the length of the column to x|, = i\/2 L/n. Figure 13b
shows the approximate support load (4.61) as a function of E{/E for several
values of ¢. Included in this figure is the von Karman (1910) reduced-
modulus load calculated for a circular cross-sectional column with constant
tangent modulus E;. If the tangent modulus is constant the load should
approach the reduced-modulus load {neglecting nonlinear geometry effects)
and (4.61) is not accurate for this case. However, g is typically of order unity
or larger for relatively slender columns with a stress—strain curve representa-
tive of common structural metals and thus enters into (4.61) in a significant
way.

A further comparison of these approximate results with predictions based
on full numerical calculations will be made in Section V,A. The main point
to be made here is that the initial slope in (4.59) is reduced after extremely
small lateral deflections due to the term 4, ¢** which gives rise to an infinite
curvature to the A-¢ relation at bifurcation.

2. Simply Supported Column with a Solid Rectangular Cross Section

Let b and ¢ be the half widths of the cross section of the column as in
Fig. 13a. The tangent-modulus load (4.50) still applies with I = %$c*h. Now
we choose the following normalization for the eigenmode:

(1}

W = ccos(nx,/L). (4.62)
Proceeding as in the previous example one finds:
A =3, (4.63)
* * *
f(z:) = (re/L)[3 + (z5/¢) — 3(nz\/L)*], (4.64)
and
B = —4E{(rc/LY chbL(1 + q), (4.65)
where here
g = (nc/L)*(dE/dT), . (4.66)

The main difference between this example and the previous one is that
neutral loading occurs along a line (viz x; =0, x; = ¢ as depicted in
Fig, 13a) rather than at an isolated point. To evaluate the lowest-order
boundary-layer contribution to the principle of virtual work one now intro-

* *

duces only two stretched coordinates z; and z3 defined as before in (4.19).
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Instead of (4.46) one obtains

Lk *
& [ (M 6K,, + N* 8°E,,} dA
* * *

= =P —(1 + P)IA P [gs Map i .* fz;) dzy dzy dzy.
3

By the same argument made when the neutral-loading surface is isolated, it
follows that f = 3. The equation for A, becomes

(1) ® %

N *®
(—Z4,)2[g; "m* Naplei | f(2) dzy dzy dzy = o/ + 4B, (4.67)
Iy

Evaluating the left-hand side for the present case gives
—(—2A)*2[164/2/(1357/3)E — E{)(me/L)*beL.
Combining the above and (4.65) according to (4.67) gives
Ay = —(I5/T)[ISRELL + q)/dy/2(E — EO™.

Thus the initial post-bifurcation expansion for the column with the rectan-
gular cross section is

A=1+43E+ 4,877 4. (4.68)
The maximum value of 1 as predicted by the truncated series is
Amax — 1 4 8 /2(E — ES)/35rE(1 + q) = 1+ 0.103[(E — ESVE(L + g)],
(4.69)

which is almost identical to the cylindrical column result (4.61) except that g
is defined by (4.66).

C. CIRCULAR PLATE UNDER RaDIAL COMPRESSION

Bifurcation of a clamped circular plate of thickness t and radius R and
subject to compressive loading by a uniform radial stress ¢ was discussed in
Section IILI,C. The formula (3.56) for the lowest bifurcation stress o, involves
the instantaneous modulus E, and contraction ratio v, in (3.55); i.e.,

0. = —KE.2/[12(1 — v2)R?]. (4.70)

The difference between the predictions of J, flow theory and J, deformation
theory is illustrated by Fig. 10. In this section the coefficients in the initial
post-bifurcation expansion will be evaluated using J, flow theory which, of
course, is a special case of the plasticity theory employed in the general
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development of Section IV,A. We have already remarked that numerical
results will be presented only for the range of parameters where the flow-
theory predictions for the bifurcation load are very close to the deformation-
theory predictions.

The fundamental solution is characterized by the uniform state of stress
and strain (in Cartesian coordinates x; with x; normal to the undeformed
plate):

T;)l} = 0—(31/3 and )1;)” = 851[) . (471)

It is convenient to introduce the moduli T and T, for equal biaxial compres-
sion where ¢ = T for an elastic response and ¢ = T, i for a plastic response
where from (3.55)

T=E/(1-v) and T, = E/(1 — V). (4.72)
In the notation of Section 1V,A
miy = —38, and g, '=3(T— T (4.73)
The eigenmode associated with the lowest bifurcation stress is

(1) 1)
U,=0 and W = ai[Jo(kr/R) — Jo(k)], (4.74)

where
a '=1-—Jyk)= 1.4027, (4.75)

and r* = x? + x3. Here J, is the Bessel function of the first kind of nth order
and k = 3.8317 is the first root of J,(k) = 0. The normalization in (4.74)

mmplies that the maximum eigenmodal deflection occurs at + = 0 and is
equal to the thickness . Define the load parameter according to
A=oajo,. (4.76)

The function for determining 4, is found to be

/ (1 ‘
mip(Ainey + Nap) = —2418 — ak*(x3t/R*)Jo(kr/R),
where () = [d( )/dA], as previously defined and ¢ = ¢ /7. The minimum
of this function occurs at x{ = (0, 0, 1/2) and choosing A, such that its value
is zero at this point gives

Ay =3(1 +V)a, (4.77)
and thus

' (1)
Mep(A s + Nap) = (—20.41/T[L — 2(x3/t)do(kr/R)] (4.78)
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Using the definitions (4.11) and (4.21) one obtains

R R Tl A N S

* * *
where r = (x3 + x3)'? = £772r/{— (1 + B)A,}"/%. The boundary-layer con-
tribution to (4.48) can be evaluated using the general formula (4.49) for

*
j fdV and is found to be

41 3 . (1) *
(32) [(Jc llnr:i[} ”aﬁ].nr J* de

v

2 (4T - TN [+ e,
- ‘27(3) ( w) {(‘1—@75] R (50

The term .« in (4.48) is zero as a consequence of the symmetry properties
(1) ) (1) (1)
of the eigenmode. Using the facts 17 .5 = x 3K jgand 7 5= (12x y1*)M oy, #
defined by (4.44b) can be written as

. ro(1y (1) f3 al:aﬁw ) (1
% = ’ 2{1'3‘; W,a W’ﬁ + Tzfgv ;:)? = KaﬁK,(y
‘A tuy e
(1) @]:aK r (1)
+ M, B g, KW} dA. (4.81)
0Ty e

A fairly lengthy calculation using J, flow theory gives the derivatives of the
instantaneous moduli evaluated at the state of stress 1,5 = 6, d,4:

Ol o
771-:13\'}' c - l//I 51/3 OKY O‘“' +41- l//Z
. (51;1 (Sﬂv 51(}' + 51\' (sﬁll 5xy + 51[3 5)(;1 51/‘. + (Slﬂ 51(\' 5)’”)’ (4.82)
where
_ 1 1 (1 +v 7, dT,
vl S
and

Yo = =3(T = TO)(L = v)[(1 + v)or.

Here d1;/do denotes the derivative of the biaxial tangent modulus (4.72) with
respect to the biaxial stress ¢ introduced in (4.71).
Using standard identities for Bessel functions, # can be evaluated without
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approximation. The result is
L, Tilak )R wR%
6(1 +v,)

[ 3 =) =¥ )T =T K (1\?dT,
[T T ulr) 4ol @8
Thus (4.48) gives
_ T K2 (1) dT;
A, = —const(l + ‘c'll T — T 1+ 24\R) do|,
3= )1 = 7)(T - T ||
where
const = 3112]a*kJ o(k)])*}'/? = 4.3808. (4.85)F

The initial post-bifurcation expansion for the clamped circular plate is
A=+ A&+ L8+, (4.86)

where 4, is given by (4.77) and recall that ¢ = 1 corresponds to a deflection
at the center of the plate of one thickness. As an illustration, Fig. 14 shows a
plot of 4 as a function of & as given by (4.86) for an example for which a full

-a
L
/ t t
/
//
101 /
re Z .
A )
1.00
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AT £-0.001 FAT €+<0016 (MAX. LOAD)
099 Nt S
[ = |
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1

1 L I ]
0 00t 0.02 003 ¢ 004 005

Fis. 14, Initial post-bifurcation behavior of a clamped circular plate under radial
compression [sec (4.87) for a specification of parameters]. The thickness is exaggerated in the
insert. Dashed line: 2 = I + 1.730¢: solid ling with dot: A = | + 1.730¢ — 5.143¢%73,

1 am indebted to A. Needleman of MIT who independently derived these results and made
them available to me to provide a check on my own analysis.




Plastic Buckling 127

numerical analysis will be reported in Section V,B. The stress—strain curve
(3.59) for uniaxial tensiont is used in this analysis with a strain-hardening
exponent n = 12 so that the bifurcation results of Fig. 10 for J, flow theory
apply. The abscissa in Fig 10 was chosen to have the value k*(t/R)?/
[12¢,(1 — v*)] = 2 and Poisson’s ratio v was taken to be §. The associated
values of the quantities which enter into the evaluation of 4, and 4, are

ojo, =112, v,= —0191, E/E = 0607,
TY/E = 0510, and &, (dT/do), = 4.58. (4.87)

All the terms in 4, and 4, can be expressed in terms of these nondimensional
values and one finds

A = 1730 and A, = —5.14, (4.88)

and these were the values used in (4.86) to plot Fig. 14. Also shown there is
the neutral-loading surface at two values of £, where the larger value corre-
sponds to the maximum load point. According to these results the slope has
been reduced substantially from its initial value at £ = 0.01 corresponding
to a normal deflection at the center of the plate of only one-hundredth of its
thickness. The three term asymptotic expansion indicates the maximum load
1s less than 1% higher than the bifurcation load and is attained when the
normal deflection is approximately 1/50 the plate thickness. We will see in
Section V.B that these values are underestimated by the truncated initial
post-bifurcation expansion, although not by much. The rapid transition
from stable to unstable behavior under dead load (i.e., the transition from
increasing to decreasing load) in the plastic range as typified by this example
can be contrasted with the highly stable post-bifurcation of the plate in the
elastic range.

D. EFFECT OF INITIAL IMPERFECTIONS

No general treatment, analogous to Koiter’s (1945, 1963a) theory for
conservative elastic systems, is available for the effect of initial imperfections
on the maximum support load of a structure compressed into the plastic
range. The importance of accounting for the interaction of imperfections and
plastic deformation has long been recognized in the design of columns
against buckling where approximate ways for estimating the effect of imper-
fections, such as the Perry first-yield formula, are used [see, for example. the

+ In (3.59) o denotes « uniaxial stress while in this scction @ has been reserved for the applied
radial stress and the pre-bifurcation biaxial stress (4.71).
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monograph by Johnson (1966) and the recent paper by Calladine (1973)]. In
addition to the results already presented for the models of Section 11, some
selected numerical results for columns, plates, and shells will be given in the
next section. In this section two theoretical points will be made which have a
bearing on imperfection sensitivity in the plastic range.

1. Effect of an Imperfection on the Behavior in the Plastic Range Prior to the
Onset of Elastic Unloading

Assume the imperfection is an initial stress-free deflection of the middle
surface from the perfect configuration in the form W (x*), where ¢ is the
amplitude of the imperfection. For simplicity we will restrict consideration
to problems in which the stress histories are proportional at every point (as
in the column problem) or in which a deformation theory is used. In either
case the constitutive relation can be regarded as being nonlinear elastic prior
to elastic unloading and Koiter’s general theory for elastic systems can be
applied. The general case where the loading is not proportional is somewhat
more complicated than that which will be presented below but may still be
worked out along the lines given by Hutchinson (1973b) for the three-
dimensional theory.

The result of applying the Koiter approach is an asymptotically exact
relation involving the load parameter 4, the amplitude & of the eigenmodal
contribution to the deflection, and the lowest-order contribution of the im-
perfection &:

(A=A + A&+ 4383+ = ApE, (4.89)
where

o (1) _
p=(34A) [ INBW. W, + NTWOW 5} dA. (4.90)
CA
The superscript e is used to emphasize that this result holds for nonlinear
elastic solids but not for hypoelastic solids; 45 = —.o//4, where .« and 4
are still given by (4.44). Associated expansions for other quantities such as
the strains are of the form
eh @

Map = NMs(A) + ENap + E oy + -+ (4.91)
() @)
Map + &g + (4.92)

where terms of order (4 — A.)* and higher-order terms involving & are not
needed in the subsequent analysis and are not shown.

The above results apply to the elastic-plastic structure (under the restric-
tions mentioned) prior to the onset of elastic unloading. Reversal in sign of

=+ (A=Al + &
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the strain rate occurs for the first time when m*#,; = 0. Using (4.17), (4.92),
and (") =d( )/d¢ we find

di ', -
&n&+nw)+ou—1”@a. (4.93)

The initial slope 4, of the perfect structure, required for bifurcation to occur
at 4, is the smallest value consistent with (4.9). From (4.93) it follows that in
the slightly imperfect structure the onset of elastic unloading occurs when
dA/dE is reduced to the value A4, i.e.,

dJ.
d¢

where () identifies quantities evaluated at the onset of strain-rate reversal,
Using (4.89) and the condition (4.94) one finds

&= [4epl/(By — 2N + -, (4.95)
Mhe=1—[(Ay = 228)2[2ep&/ Gy = IOV + -+, (4.96)

generalizing the simple-model results (2.54) and (2.55).

The maximum load occurs following the onset of elastic unloading when
di/dé = 0. If the destabilizing nonlinearities are large the maximum load
will be attained shortly after the onset of elastic unloading; and (4.96) is
suggestive of the effect of very small imperfections on the maximum load, as
discussed in conjunction with the simple model. In general, however, it is not
possible to predict the effect of an imperfection on the maximum support
load by developing a perturbation expansion about the bifurcation point, as
in the elastic range. For the discrete model of Section II,A it was possible to
obtain a closed-form formula, (2.19) or (2.20), for the effect of an imperfec-
tion. The reduction in the maximum load was proportional to the square
root of the imperfection. Although no explicit formula could be obtained for
the continuous model, the expansion (2.57) as well as the approximate for-
mula (2.58) suggests that the imperfection enters through the square root of
its amplitude in this case too.

wm=w(

=+ 0@ — 2, &7, (4.94)

2. Effect of an Imperfection on First Yielding When Bifurcation of the Perfect
Structure Occurs in the Elastic Range

We turn now to the complementary situation where the bifurcation load
of the perfect plate or shell occurs in the elastic range at stress levels only
slightly below the initial yield stress. Using the asymptotic initial post-
bifurcation expansions for the response prior to plastic yielding, we examine
the condition for the first occurrence of plastic yielding when imperfections
are present. It is assumed that there is a smooth initial yield surface
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F (t*¥) = 0 such that for stresses within the surface (i.€., # < 0) the material
response is linearly elastic. If at any point the bifurcation stress of the perfect
structure is just within or on the yield surface then the first-yield condition
can be approximated by

F o+ () oF o), = 0, (4.97)
where 7, = # (¢3%) < 0.

Prior to first yielding the expansion (4.89) to (4.92) applies with the
moduli taken to bc the constant elastic moduli. The solid-line curves in

I (a) { (b)
| — |
A £=0 A
1 / 1
by L_/\’ ___‘_‘_\\ by z -
G _:::\\\ c'\/\\/f (¢}
\\ ~ \\
E>O \:\:\
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ELASTIC: CONTINUED
YIELDING |
3 3

Fi. 15. Sketches of the initial post-bifurcation behavior and imperfection sensitivity
where the bifurcation stress of the perfect structure falls just below the initial yield stress. (a)
Symmelric bifurcation point. (b) Asymmelric bifurcation point.

Fig.15 depict the elastic load-deflection response; the slash indicates first
vield and thereafter the curve is dashed to indicate further yielding. Using
the expansion for the stresses which is similar to (4.92) the first-yield condi-
tion can be rewritten as

’ (1) (2)
FoAA =2+ 2% - 0F jo0h), = 0. (4.98)

Multiply (4.98) by ¢ and use (4.89) to eliminate (4 — 4.) thereby obtaining
the first-yield condition in terms of ¢ and ¢&:
()

’

EF o+ T+ S F o) — EpAF o+ - =0, (4.99)
where
y (n , /
F o= r“”(("//”f /Rr"”)‘. and #, = (07 jo),. (4.100)

Equation (4.99), together with (4.89), provides a set of equations for obtain-
ing the values of 4 and ¢ at which yielding will first occur.
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To simplify the discussion assume that the fundamental solution is a
uniform state of stress and that for £ == 0 bifurcation occurs on the verge of
yield so that %, = 0. Thus the fundamental solution has the property that

’ (1)
F o Is a positive constant; in general, # will be positive over part of the
structure and negative over the rest. Let
(1) '
w = maximum value of (¥ + A{F ). (4.101)

If w > 0, then from (4.99) first yield occurs at the point (or points) in the
structure where the maximum in (4.101) is attained and

éfirsl yield = (Ep).(.:yo/a))l/z + - (4.]02)

Here 4, has been substituted for 4 by neglecting terms of order \/?(/1 — A).
Note also from (4.89) that &p > 0 implies ¢ > 0; the opposite-signed
deflection in the eigenmode corresponding to {p < 0 can be treated sim-
ilarly. Equation (4.102) is asymptotically exact for small imperfections. If
the bifurcation point is symmetric so that A = 0, it is readily verified from
(4.89) that a maximum load for the elastic structure occurs in the neighbor-
hood of A, only if 25 < 0. It is attained at a value of & = O(E'?), which is
inherently larger than (4.102) for sufficiently small imperfections. Thus if a
perfect structure has a symmetric bifurcation point and undergoes bifurca-
tion just.on the verge of yield, the maximum load of a slightly imperfect
version of the structure will always be attained after plastic yiclding has
occurred, whether or not the bifurcation point of the elastic structure is
stable or unstable. Using (4.89) and (4.102), the asymptotic equation for the
effect of small imperfections on the first yield of a structure with a symmetric
bifurcation point is

Atiest yietd = Ao — (pEA/F o)12 + -+~ (4.103)

Thus when # , = 0 the imperfection reduces the first-yield load in propor-
tion to the square root of the imperfection as has been noted for columns on
the basis of the Perry first-yield formula by Thompson and Hunt (1973) and
Calladine (1973).

If the bifurcation point is asymmetric it can be possible for the maximum
load to be attained before first yielding occurs in the imperfect structure even
when the perfect structure buckles just at initial yield. If 19 < 0 the maxi-
mum load of the elastic structure calculated from (4.89) occurs when
&% = Ap&/(—2%). Substituting this value into (4.99) (still with # . = 0) gives
pli[w + A5 .7 4] for the point where the stress is nearest the yield surface. If
this quantity decreases with increasing , then the maximum load will occur
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before first yield for sufficiently small imperfections. The significance of this,
of course, is that the maximum load can be obtained from the elastic
analysis. Using (4.101), the condition that yielding occur following attain-
ment of the maximum load in the slightly imperfect structure, when the
perfect structure bifurcates just at the yield stress, is that A be sufficiently
negative such that

{1y '
maximum value of (F + 2454 ,) < Q. (4.104)

The long cylindrical shell under axial compression is one of the best
known examples of a structure with a highly asymmetric bifurcation point.
This problem has a multiplicity of eigenmodes associated with its bifurca-
tion stress and is not described by the one-mode expansion (4.89). However
the generalization of (4.104) for the multiple-mode case can easily be ob-
tained. Using Koiter’s (1945, 1963a) solution to this problem we have found
that for the case of an axisymmetric imperfection in the shape of the axisym-
metric eigenmode the condition analogous to (4.104) is not satisfied. In other
words, if the perfect shell buckles just at the initial yield stress, the buckling
load of the slightly imperfect shell will not be given by the elastic analysis but
undoubtedly will be somewhat lower. Further results on this problem will be
given in Section V,C. There it will be shown that, if the yield stress is just 5%,
above the bifurcation stress of the perfect cylinder, buckling of the imperfect
shell will be elastic over the entire range of imperfection levels of interest, at
least for this particular imperfection.

V. Numerical Examples

A. COLUMN UNDER AXIAL COMPRESSION

Consider a simply supported column of length . with a solid circular
cross section of radius R. The elastic-plastic material comprising the column
is taken to have a Ramberg-Osgood uniaxial stress—strain curve, as in
Section IV B, ie.,

¢fe, = ofo, + 3o/o,), (5.1)

where ¢, is the effective yield strain and o, = Es, is the effective yield stress.
The tangent-modulus load P, is given by (4.50) and the bifurcation stress o,
is given in terms of the single geometric parameter (nR/2L)%, ', by

(R2LPs; T = (o) + (oo, (52)

This relation is plotted in the form most often used for displaying column-
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buckling results as a solid-line curve in Fig. 16 for n = 10, where P, = nR%0,
and P, = nR%q,.

(=)
9y lelastic

%
Doat
or
pmax gl
PY
4L = TR,

o (2

7R

F1G. 16. Bifurcation stress of perfect column and maximum support load for two
imperfection levels for a circular cylindrical column under axial compression.
W™ — £R cos{nX/L). (Ramberg-Osgood stress-strain curve with n = 10.)

Included in Fig. 16 are the results of an accurate numerical analysis for the
maximum support load (normalized by P,) of the column with two levels of
imperfection, where the imperfection is in the shape of the buckling mode

WimP = ER cos(mx/L). (5.3)

The results are based on a column theory which is a one-dimensional ver-
sion of the plate and shell theory used in Sections III and 1V; details of the
numerical calculations are similar to those reported for the axisymmetric
deformation of shells by Hutchinson (1972) and to those employed in a
recent paper on column buckling by Huang (1973). The influence of imper-
fections is most marked in the region where the elastic predictions break
down. Results such as these are well known and have been incorporated into
column design procedures. The monograph by Johnson (1966) reviews
many of the column-buckling studies, both theoretical and experimental,
and discusses design criteria. A recent contribution by Calladine (1973)
considers the application of a Perry first-yield-type formula for imperfect
columns comprised of strain-hardening metals. The papers by Malvick and
Lee (1965) and Huang (1973) discuss additional aspects of plastic column
buckling.

Figure 17 displays these same results replotted in the manner of Duberg
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(1962) and the simple-model results of Fig. & Here the maximum support
load is normalized by the tangent-modulus load P, of the perfect column
and is plotted as a function of the bifurcation strcss of perfect column o,
normalized by o,. These curves bring out the fact that even when the bifur-
cation stress is substantially below the effective yield stress the effect of a
small imperfection can be appreciable due to plastic deformation. These

E-000 =T - =
|_0—£ /

phes =0.01
P 9F
P \—/ -
=0.1
8F Ay
Ty
ar
1 s/sy
L L L | L ST
0 ? 4 6 8 10 1.2

0 2 4 5 8 10 12
o'c/o_y
Fi6. 17.  Effect of imperfections on the maximum support load as a function of the
bifurcation stress of the perfect column ¢, normalized by the effcctive yield stress . Dashed

curve is the approximate maximum load (P™/P ) for the perfect column as predicted by the
initial post-bifurcation analysis [Eq. (4.61)]. (a) n = 3: (b) n = 10, W™ = ZR cos(nX/L).

curves are quantitatively similar to Duberg’s (1962) curves for a two-flanged
column model, as well as to those for the continuous model of Fig. 8. Also
shown in Fig. 17 are the predictions of P™/P, for the perfect column cal-
culated using the approximate formula (4.61) of the initial post-bifurcation
analysis. The values of E{/E and ¢ needed in this evaluation can be expressed
in terms of the tangent modulus and its derivative evaluated at o, together
with the geometric parameter of (5.2). The approximate predictions appear
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to underestimate the maximum support of the perfect column slightly as
would be expected from the discussion given previously in connection with
Fig. 13. Recall that the asymptotic equation (4.60) for the neutral-loading
surface predicts that the elastic unloading region penetrates to the middle of
the column at its midpoint at maximum load and along the column to a
distance V/Z L/m on either side of its midpoint. The numerical analysis indi-
cates that asymptotic results at maximum load somewhat overestimate the
penetration on the midplane and underestimate the distance attained along
the column. :

B. CIRCULAR PLATE UNDER RaDIAL COMPRESSION

Bifurcation results for a clamped circular plate under radial compression
were discussed in Section IL,C and the initial post-bifurcation expansion
was given in Section IV,C. Needleman (1973) has carried out a full numeri-
cal analysis of the post-bifurcation behavior and imperfection sensitivity of
clamped and simply supported circular plates using a finite element method.
A few of his examples will be presented here.

Needleman (1973) used J, flow theory together with the tensile stress—
strain relation (3.59) which has a distinct yield stress and a continuous
tangent modulus. The first example is the one considered in Section 1V,C.
The strain-hardening exponent is taken to be n = 12 with v = , and the
bifurcation curves of Fig. 10 apply. The geometric parameter is chosen to be

K2(e/R*12(1 — v3)e,] = 2, (5.4)

At this value the flow-theory and deformation-theory predictions are essen-
tially identical; ¢ /o, = 1.12 and other parameters are given in (4.87). In
Fig.18 curves of the applied edge stress ¢ normalized by the bifurcation
stress of the perfect plate o, are plotted as a function of ¢ = W(0)/r, where
W(0) is the additional deflection at the center of the plate. The imperfection
is taken as an initial stress-free normal deflection in the shape of the buckling
mode and its amplitude at the center of the plate is denoted by W(0).
Responses for two slightly imperfect plates are shown; the curve for the
“perfect ” plate was calculated for a plate with an extremely small imperfec-
tion, & = W(0)/t = 10™*.

The maximum support load of the “perfect™ plate is only about 1.5%
higher than the bifurcation load and the maximum load is attained at a
lateral deflection of about 0.065:. Comparing these values with the corre-
sponding values from the initial post-bifurcation analysis shown in Fig. 14
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F1G. 18.  Post-bifurcation behavior and imperfection sensitivity of a circular plate radially
compressed into the plastic range. Solid line «» initial yield; ¢ «+» maximum load: A « onset of
strain-rate reversal. (From Needleman, 1973.)

indicates that the initial post-bifurcation analysis in this case underestimates
both the increase above the bifurcation load and the value of the deflection
at which the maximum load is attained. At deflections beyond the maximum
load the initial post-bifurcation curve turns down rapidly while the actual
curve remains quite flat. This is characteristic of the behavior of a truncated
(asymptotic) series beyond its range of validity. The importance of the initial
post-bifurcation expansion is that it explains how the stable region (for dead
loading) can be as extremely small as it is in spite of the substantial initial
slope of the load-deflection curve. Coupled with this is a definite imperfec-
tion sensitivity which is completely absent in the elastic range. The size of the
elastic unloading region at maximum load predicted by the asymptotic
analysis of Section 1V,C is in reasonably good agreement with the numerical
predictions (Needleman, 1973), although the penetration of the region into
the plate at its center falls slightly short of the asymptotic prediction.
Figure 19a shows load-deflection curves for a simply supported plate
which bifurcates just outside the elastic range [0 /o, = 1.02, n = 12; the
stress—strain curve (3.59) is still used]. As the first-yield analysis of Section
IV.D would suggest, the imperfection sensitivity is about as pronounced as
for a compressed column. The significant difference between the column and
the plate shows up when the bifurcation stress of the perfect plate is some-
what below the yield stress. Then, as can be seen from the curves of Fig. 19b,
the imperfection has relatively less effect in reducing the maximum load
below the bifurcation load. This is related to the fact that in the elastic range
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Fi1G. 19. (a) Post-bifurcation behavior and imperfection sensitivity of a circular plate under
radial compression where the bifurcation stress of the perfect plate is nearly equal to the yield
stress. Solid line « initial yield; « <> maximum load. (b) Maximum support stress for several
levels of imperfection as a lunction of ¢,/g,. (From Needleman, 1973.)

the plate has a highly stable post-bifurcation behavior and undergoes much
smaller lateral deflections at loads above the bifurcation load than does the
column. Consequently it is subject to far smaller bending stresses.

Graves Smith (1971) has studied the effect of imperfections on the buck-
ling of thin-walled box columns which are built up of flat plates. He also has
shown that the effect of imperfections on plate buckling can be significant
when the yield stress is not sufficiently in excess of the bifurcation stress.
Tests and calculations of Dwight and Moxham (1969) and Dwight (1971)
definitely show that imperfections of various kinds can have an important
influence on the buckling of flat plates in the plastic range.

C. SPHERICAL AND CYLINDRICAL SHELLS

The two-shell structures discussed below are characterized by highly
imperfection-sensitive behavior in the elastic range as opposed to the
columns and plates discussed above which are relatively insensitive to
small imperfections in the elastic range.

The bifurcation stress for a thin, perfect spherical shell under external
pressure is given by (3.60), and predictions for a shell whose material is
characterized by a Ramberg-Osgood-type tensile stress—strain relation
(2.50) with o = 4 and n = 6 are shown in Fig. 11. Full numerical calcula-
tions for the axisymmetric post-buckling behavior of the sphere were
reported by Hutchinson (1972) for J, flow theory and a J, deformation
theory with elastic unloading incorporated. In Fig. 20a curves of applied
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FiG. 20. (a) Plastic post-bifurcation behavior and imperfection sensitivity of a spherical

shell under external pressure. (b) Imperfection sensitivity of spherical shell. From Hutchinson
(1972) J. Appl. Mech. 39, 155-162, with permission.

pressure are shown as a function of the amplitude of the buckling deflection
& (corresponding to the inward dimpling at the poles of the sphere nor-
malized by the shell thickness t). The geometric parameter of the sphere is

[3(1 — v*)]” "2t/e,R = 3, (5.5)
and J, flow theory was used for the calculations of Fig. 20a. From Fig, 11 it
is seen that the bifurcation stress of the perfect shell is 1.5 times the effective
yield stress o, and is about 79, above the prediction of J, deformation
theory. The imperfection was taken in the shape of the eigenmode and its
amplitude is denoted by &, corresponding to the inward initial deflection of
the dimples at the poles of the sphere normalized by 1. Additional details are
given in the above-mentioned reference.

Imperfection-sensitivity curves are shown in Fig, 20b in the form of the
maximum pressure normalized by the maximum pressure of the perfect
sphere. Results for flow theory and deformation theory are shown; the maxi-
mum load of perfect shell calculated using J, flow theory was used for the
normalization in both cases. Significant imperfection sensitivity is indicated.
Very small imperfections reduce the discrepancy between the two sets of
predictions. Similar behavior has been noted for the cruciform column by
Cicala (1950) and Onat and Drucker (1953) where, as discussed in Section-
IILC. the disparity between simple flow and deformation theories for the
perfect structure is considerably larger.

Highly unstable post-buckling behavior in the plastic range was observed
by Leckie (1969) in a series of tests on hemispherical shells subject to con-
centrated loads applied through rigid bosses of various diameters. A large
variation in the maximum support load as a function of the boss size was
found and was correlated approximately with a rigid-plastic post-
bifurcation analysis.
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The thin monocoque cylindrical shell under axial compression provides
an interesting illustration of the phenomena brought out by the simple
model in Fig. 4 where, due to high imperfection sensitivity, the buckling of
an imperfect version of a structure may be less influenced by plasticity than
is the perfect structure. Recall from Section IV,D,2 that when the perfect
cylindrical shell bifurcates just at initial yield, the asymptotic analysis indi-
cates that a slightly imperfect shell will start to yield plastically before the
maximum load is attained. A closer look at this problem shows that for even
larger imperfections the opposite will happen. We make use of Koiter’s
(1963b) special solution for the effect of an axisymmetric imperlection on the
elastic buckling of a long cylindrical shell under axial compression.
The imperfection is in the shape of the axisymmetric eigenmode associated
with the bifurcation stress, and an exact, relatively simple nonlinear solution
for the axisymmetric pre-buckling deformation is available. Koiter’s (1963b)
upper bound to the buckling load of the imperfect shell P* is plotted in
Fig.21a as P*/P, as a function of &, where &t is the amplitude of the imperfec-
tion and ¢ is the shell thickness.t

Using the axisymmetric pre-buckling solution for the elastic shell the
maximum value of the effective stress, oo = (35;;5,;)!/%, occurring in the
shell can be calculated. With P denoting the axial load and A = P/P,, this
value is given by

(Ue”/a(,)z =A%+ E)Lz(l — )" 1(6 + ¢ —3v)
+ 8200 =27 = v+ v+ + 3 —60v],  (56)

where ¢ = [3(1 — v*)]"'? and o, is the bifurcation stress of the perfect cylin-
der. Furthermore, the maximum value of (5.6) to be attained prior to buckl-
ing does occur at P*. Figure 21b shows a plot of (6./0.)* as a function of &
calculated using A* = P*/P, from Koiter’s upper bound with v = 4. For
small & one can use the asymptotically exact result A* = | — (3¢&)*2 + -
in (5.6) to obtain (with v = })

(O-efl'/o—c)* = 1 + 0'5521/2 + T, (57)

consistent with the result mentioned in Section TV.D,2. However (5.7) holds
only for very small &; and in an intermediate range of &, (6.¢/0,)* drops
below unity as seen in Fig. 21b.

If the perfect shell bifurcates just at yield (i.c., ,/0, = 1), then for P*/P,
greater than about 0.5 the maximum load is attained after plastic yield

tThe buckling load P* in this context is defined to be the load at which bifurcation from the
axisymmetric state occurs. Budiansky and Hutchinson (1972 have shown that this bifurcation
load is actually the maximum support load of the elastic shell for all values of P*/P_ greater
than about §.
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FiG. 21. (a) Imperfection-sensitivity curve for the elastic buckling of a long circular
cylindrical shell with an axisymmetric imperfection and subject to axial compression. From
Koiter (1963b). Also shown is the range of validity of the elastic results for two values of o, /0,.
(b} Maximum effective stress occurring prior to buckling as predicted by the elastic analysis of
the imperfect shell.

occurs, assuming the Mises yield condition applies. But in the intermediate
range 0.2 < P*/P_. < 0.5 the buckling load is attained before plastic yielding
sets in and thus the elastic analysis is strictly valid in this range. For thin
cylindrical shells with typical imperfection levels this is the range in which
many shells buckle. Since the elastic analysis is valid for the perfect shell and
in the intermediate range. presumably it cannot be far off for 0.5 <
P*/P. < 1. In fact if 6,/5, > 1.05, the elastic analysis holds over essentially
the entire range of interest as indicated in Fig. 21a.

Although some experimentalists have drawn attention to the possibility of
interaction of plastic deformation and imperfections in their buckling tests
on thin cylindrical shells, most thin monocoque cylinders of structural
metals are reported as having buckled elastically. The present observations
suggest that this is not to be unexpected as long as the yield stress is some-
what above the bifurcation stress of the perfect shell, but other imperfection
shapes and boundary effects may alter this conclusion to a certain extent.
Mayers and Wesenberg (1969) and Wesenberg and Mayers (1969), have
carried out detailed numerical calculations for the interaction of imperfec-
tions and plastic deformation in stiffened and unstiffened cylindrical shells
under axial compression. They have delineated the range of thickness to
radius in which this interaction will be important for several stress—strain
curves of metals used in cylindrical shell construction which have rather
ill-defined yield stresses.




Plastic Buckling 141
ACKNOWLEDGMENTS

This work was supported in part by the Air Force Office of Scientific Research under Grant
No. AFOSR-73-2476, in part by the National Aeronautics and Space Administration under
Grant No. NGL 22-007-012, and by the Division of Engineering and Applied Physics, Harvard
University.

REFERENCES

AugusTl, G. (1968). Buckling of inelastic arches: a simple model. Meccanica 2, 102 105.

BATDORF, S. B. (1949). Theories of plastic buckling. J. Aeronaut. Sci. 16, 405-408.

BATDORF, S. B., and BUDIANSKY, B. (1949). A mathematical theory of plasticity based on the
concept of slip. NACA TN No. 1871.

BATTERMAN, S. C. (1964). Load-deformation behavior of shells of revolution. J. Eng. Mech. Div.,
AS.C.E. 90, No. EM6, 1-19.

BATTERMAN, S. C. (1969). Plastic stability of spherical shells, J. Eng. Mech. Div., A.S.C.E.
95, EM2, 433-446.

BatrERMAN, S. C. (1971). Plastic stability of arches: reconsideration of a model. Isr. J. Technol.
9, 467-476.

BazaNT, Z. P. (1971). A correlation study of formulations of incremental deformation and
stability of continuous bodies. J. Appl. Mech. 38, 919-928.

BULAARD, P. P. (1949). Theory and tests on the plastic stability of plates and shells. J. Aeronaut.
Sci. 16, 529-541.

BuLaarD, P. P. (1950). On the plastic buckling of plates. J. Aeronaut. Sci. 17, 742- 743.

BOLOTIN, V. V. (1963). “ Nonconservative Problems of the Theory of Elastic Stability " (G.
Herrmann, ed.). (English transl.) Macmillan, New York.

BUDIANSKY, B. (1959). A reassessment of deformation theories of plasticity. J. Appl. Mech. 26,
259-264.

BUDIANSKY, B. (1968). Postbuckling behavior of cylinders in torsion. Proc. IUTAM Symp.
Theory Thin Shells, 2nd Copenhagen, 1967, pp. 212-233.

BUDIANSKY, B. (1969). Remarks on theories of solid and structural mechanics. In “ Problems of
Hydrodynamics and Continuum Mechanics,” pp. 77-83. Soc. Ind. Appl. Math., Philadel-
phia, Pennsylvania.

Buniansky, B., and HUTCHINSON, J. W. (1964). Dynamic buckling of imperfection-sensitive
structures. Proc. Int. Cong. Appl. Mech.. 12th, Munich, pp. 636-651.

Bubpiansky, B., and HurcHINsoN, I. W. (1972). Buckling of circular cylindrical shells under
axial compression. In “ Contributions to the Theory of Aircraft Structures,” pp. 239-259.
Delft Univ. Press, Holland.

CaLLaping, C. R. (1973). Inelastic buckling of columns: the effect of imperfections. Int. J. Mech.
Sci. 15, 593-604.

CicaLa, P. (1950). On the plastic buckling of a compressed strip. J. deronaut. Sci. 17, 378-379.

CoHEN, G. A. (1968). Effect of a noulinear prebuckling state on the postbuckling behavior and
imperfection sensitivity of elastic structures. AI44 J. 6, 1616-1620; see also 7, 1407 1408.

CONSIDERE, A. (1891). Resistance des pieces comprimes. Congr. Int. Proc. Construction, p. 371.

DRrUCKER, D. C. (1949). A discussion of theories of plasticity. J. deronaut. Sci. 16, 567 568.

DuBerG, J. E. (1962). Inelastic buckling. In “Handbook of Engineering Mechanics” (W.
Flugge, cd.), Chapter 52, McGraw-Hill, New York.

DUBERG, J. E., and WILDER, T. W. (1952). Inelastic column behavior. Nat. Adv. Comm. Aeron-
aut. Rep. 1072,




142 John W. Hutchinson

DwicHrt, J. B. (1971). Collapse of steel compression panels. Proc. Conf. Devel. Bridge Design
Construction, (1971). Cardiff University. Crosby Lockwood. London.

DwIGHT, J. B., and MoxHAM, K. E. (1969). Welded steel plates in compression. Struet. Eng. 47,
49 66.

ENGEssER, F. (1889). Ueber die knickfestigkeit geradu strabe. Z. Architek. Ing. 35, 455.

Frrcit, J. (1968). The buckling and postbuckling of spherical caps under concentrated load. Int.
J. Solids Struct. 4, 421-446.

GrrarD, G., and BECKER, H. (1957). “ Handbook of Structural Stability: Part [—Buckling of
Flat Plates,” Nat. Adv. Comm. Aeronaut. Tech. Note 3781.

GRrAVES SMITH, T. R. (1971). The effect of initial imperfections on the strength of thin-walled box
columns. Inr. J. Mech. Sci. 13.911-925.

GrEEN, A. E., and ZerNA, W, (1968). “ Theoretical Elasticity,” 2nd Ed. Oxford Univ. Press,
London and New York.

HiLL. R. (1956). On the problem of uniqueness in the theory of a rigid/plastic solid. J. Mech.
Phys. Solids 4, 247 255.

HiLL, R. (1958). A general theory of uniqueness and stability in elastic/plastic solids. J. Mech.
Phys. Solids 6, 236-249.

HiL, R. (1959). Some basic principles in the mechanics of solids without a natural time. J.
Mech. Phys. Solids 7, 209-225.

Hir, R. (1961). Bifurcation and uniquencss in nonlinear mechanics of continua, pp. 155-164
(Muskhelishvili Volume). Soc. Ind. Appl. Math., Philadelphia, Pennsylvania.

Hiwr, R. (1966). Generalized constitutive relations for incremental deformation of metal crystals
by multislip. J. Mech. Phys. Solids 14, 95 -102.

HiLr. R. (1967a). On the classical constitutive relations for elastic/plastic solids. In “ Recent
Progress in Applied Mechanics,” the Folke Odqvist Volume, pp. 241 249. Almqvist and
Wikscell, Stockholm.

Hict, R. (1967b). The essential structure of constitutive laws for metal composites and polycry-
stals. J. Mech. Phys. Solids 15, 79 95.

HiL, R., and Ricg, J. R. (1972). Constitutive analysis of clastic-plastic crystals at arbitrary
strain. J. Mech. Phys. Solids 20, 401 413.

Huane. N. C. (1973). Inelastic buckling of cccentrically loaded columns. A1AA J. 11, 974-979.

HutcHInsoN, J. W. (1970). Elastic/plastic behavior of polycrystalline metals and composites.
Proc. Roy. Soc. London A 319, 247-272.

HuTtcninson, J. W. (1972). On the postbuckling behavior of imperfection-sensitive structures in
the plastic range. J. Appl. Mech. 39, 155 162.

HurcHINSON, J. W. (1973a). Post-bifurcation behavior in the plastic range. J. Mech. Phys.
Solids 21, 163 190.

HutcHINsoN. J. W. (1973b). Imperfection sensitivity in the plastic range. J. Mech. Phys. Solids
21, 191-204.

Jonnson, B. G. (1966). “Guide to Design Criteria for Metal Compression Members,” 2nd Ed.
Wiley, New York.

Jones, R M. (1967). Plastic buckling of eccentrically stiffened circular cylindrical shells, 4744
J. S, 1147-1152,

Korrr, W. T. (1945). Over de stabiliteit van het clastisch evenwicht. Delft thesis, H. J. Paris,
Amsterdam; (English transl.) Nat. Aeronaut. Space Admin. Rep. TTF-10, 1967.

Korrer, W. T. (1953). Stress—strain relations, uniquencss. and variational theorems for elastic-
plastic materials with a singular yield surface. Quart. Appl. Math. 11, 350-354.

Koiter, W. T. (1963a). Elastic stability and postbuckling behavior. Proc. Symp. Nonlinear
Problems, pp. 257 275. University of Wisconsin. Madison.




Plastic Buckling 143

KoITer, W. T. (1963b). The ellect of axisymmetric imperfections on the buckling of cylindrical
shells under axial compression. Proc. Kon. Ned. Akad. Wetensch. Ser. B 66, 265-279.
Kortrr, W. T. (1966). On the nonlincar theory of thin elastic shells. Proc. Kon. Ned. Akad.

Wetensch. Ser. B 69, 1-54.

Lecki:, F. A. (1969). Plastic instability of a spherical shell. In ** Theory of Thin Shells” (F. 1.
Niordson, ed.). Springer-Verlag, Berlin and New York,

Ler, L. H. N. (1961). Inelastic buckling of cylindrical shells under axial compression and
internal pressurc. Devel. Mech. 1, 190-202.

Leg, L. H. N. (1962). Inelastic buckling of initially imperfect cylindrical shells subject to axial
compression. J. Aeronaut. Sci. 29, 87-95.

LiN, T. H. (1971). Physical theory of plasticity. Advan. Appl. Mech. 11, 255 311.

MALVICK, A. J., and Lee, L. H. N. (1965). Buckling behavior of an inclastic column. J. Eng.
Mech. Div., A.S.C.E. 91. EM3, 113 127,

MANDEL, J. (1965). Generalisation de la theorie de plasticite de W. T. Koiter. Int. J. Solids
Struct. 1. 273-295.

MAaYERs, J., and WESENBERG, D. L. (1969). The maximum strength ol initially imperfect axially
compressed circular cylindrical shells. Dept. Aeronaut, Atronaut. Rep., Stanford Univer-
sity, Stanford, Calilornia.

MicHNo, M. J., and FINDLEY, W. N. (1972). An historical perspective of yield surface investiga-
tions for metals, Brown University Report. Int. J. Nonlinear Mech. (to be published).

NEEDLEMAN. A. (1973). Post-bilurcation behavior and imperfection sensitivity ofl clastic-plastic
circular plates. Inr. J. Mech. Sci. To be published.

Onat, E. T, and Druckir, D. C. (1953). Inclastic instability and incremental theories of
plasticity. J. Aeronaut. Sci. 20, 181-186.

SanDERS. J. L. (1954). Plastic stress—strain relations based on linear loading lunctions. Proc.
U.S. Nat. Congr. Appl. Mech.. 2nd, (1954) pp. 455-460. University of Michigan, Ann Arbor.

SANDERS, J. L. (1963). Nonlinear theories for thin shells. Quart. Appl. Math. 21, 21-36.

SEwELL, M. J. (1963). A general theory of elastic and inelastic plate failure: Part I. J. Mech.
Phys. Solids 11, 377-393.

SEWELL, M. J. (1964). A general theory of elastic and inelastic plate failure: Part II. J. Mech.
Phys. Solids 12, 279-297.

SEWELL, M. . (1965). The static perturbation technique in buckling problems. J. Mech. Phys.
Solids 13, 247-264.

SEwELL, M. I. (1972). A survey of plastic buckling. In “Stability,” (H. Leipholz, ed.), Chapter 5,
pp- 85-197. Univ. of Waterloo Press, Ontario.

SEWELL, M. J. (1973). A yield surface corner lowers the buckling stress of an elastic-plastic plate
under compression. J. Mech. Phys. Solids 21, 19-45.

SHANLEY, F. R. (1947). Inelastic column theory. J. Aeronaut. Sci. 14, 261 267.

StoweLL, E. Z. (1948). Critical shear stress of an infinitely long plate in the plastic region. Nat.
Adv. Comm. Aeronaut. Tech. Note; See also: A unified theory of plastic buckling of col-
umns and plates. Nat. Adv. Comm. Aeronaut. Rep. 898.

Taompson, J. M. T, and Hunt, G. W, (1973). “A General Theory of Elastic Stability.” Wiley,
lLondon.

TIMOSHENKO, S. P., and GERE, J. M. (1961). * Theory of Elastic Stability,” 2nd Ed. McGraw-Hill,
New York.

voN KARMAN, Th. (1910). Untensuchungen uder knickfestigkeit, mitteilungen Gider forschung-
sarbeiten. VDI (Ver. Deut. Iny.) Forschungsh. 81.

vON KARMAN, Th. (1947). Discussion of “Inelastic column theory.” J. Aeronaut. Sci. 14,
267-268.




144 ‘ Joh:r; W. Hutchinson

vON KARMAN, Th, DunN, L. G, and TsieN, H. S. (1940). The influence of curvature on the
buckling characteristics of structures, J, Aeronaut. Sci. 7, 276.

WESENBERG, D. L., and MaYERSs, J. (1969). Failure analysis of initially imperfect, axially com-
pressed, orthotropic, sandwich, and eccentrically stiffened, circular cylindrical shells. Stan-
ford Univ. Rep., Stanford, California.






