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Yielding Estimates for Plane Stress
Crack Problems’

Fully plastic plane stress solutions are given for a center-cracked strip in lenston and
an edge-cracked strip tn pure bending. In the fully plastic formulation the material 18
characterized by a pure power hardening stress-strain relation which reduces at one
limit to linear elasticity and al the other to rigid/perfect plasticity. Simple formulas
are given for estimating the J-integral, the load-point displacement and the crack
opening displacement in terms of the applied load for strain hardening materials

characterized by the Ramberg-Osgood stress-strain relation in tension. The formulas
make use of the linear elastic solution and the fully plastic solution to interpolate over
the entire range of small and large scale yielding. The accuracy of the formulas ts8
assessed using finite element calculations for some specific configurations.

introduction

In reference [1]? a relatively simple procedure has been pro-
posed for estimating solutions to large scale yielding crack prob-
lems where the load is monotonically increased and the crack is
stationary. The method accounts for strain hardening and makes
use of two special solutions, the elastic solution and the fully
plastic solution, to interpolate over the entire range of yielding,.
In [1] the simple estimates were compared with full numerical
calculations for antiplane shear problems. For relations be-
tween quantities of primary interest in fracture mechanics (i.e.,
the applied load, the crack opening displacement, J, and the
load point displacement ), the simple formulas were found to be
quite accurate.

In this paper the study is extended to plane stress problems.
Numerical results are first presented for the fully plastic solu-
tions to two crack configurations: the center-cracked strip and
the single edge-cracked strip in bending. Using these solutions,
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large scale yielding estimates are made for each of the con-
figurations and, to assess their accuracy, they are compared with
full numerical calculations. The tensile behavior of the material
is taken to be characterized by the Ramberg-Osgood relation
and, in the full numerical calculations, J2 deformation theory is
used to generalize this relation to multiaxial stress states.

Center-Cracked Strip

Fully Plastic Solution. What is referred to here as the fully
plastic problem is the small strain problem for a nonlinear ma-
terial which behaves in simple tension according to the pure
power hardening law

e/e = a(o/oo)" 1)

where 0, and ¢ are reference values, « is a constant and 7 is the
hardening exponent. At one limit, n = 1, (1) represents linear
behavior and at the other, n — =, it gives rigid/perfectly plastic
behavior. The uniaxial behavior is generalized to multiaxial
states using J; deformation theory:

3
€;/€ = g a(o./00)* 8i;/00 with ¢, = J(é 8i38i; ) (2)

where s;; is the stress deviator. A general discussion of the fea-
tures of crack problems involving the above constitutive be-
havior is given in [2]. Here we consider a strip of width 2b with
a traction-free center crack of length 2a centered at the coordinate
origin with z; taken to be normal to the crack. The strip is
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subject to uniform stress gw — 0% for o] — «.

As discussed in {2], the solution io this houndary value prob-
lem has the property that all stress quantities are linearvly pro-
portional w0 ¢ aud all sirain and displacement quantities are
proportional to {¢®)*. One consequence of this property is that,
if o i3 monotonically applied, ibe solution iz also an exact
sohution for J: fow theory. Another consequence is the simple
functional relation between the quantities of interest. 1t is this
feature whicl makes these solulions attractive for use in estimat-
ing large scale ylelding behavior. For the quantities of primary
interest the [ollowing normalizalions have been found (o hbe
useful |1, 2]

J = agwa(l — a/blglasb, #)(P/ Pyt (3)
§ = oenga(a/b, n)(P/Po {4)
Ae = aeags(a/b, n)(P/Py)r (5)

where the g's are [unctions of /b and » alone. Hers 7 18 the total
load per unii thickness and Pq is a reference load per unit thick-
ness:

P = 2bo™, Py = 2(b — a)oe (6)

For the rigid-perfectly plastic limit (n — =), Pois the limit load.
Generally, P/Py = [¢®b/() — a)]/ce iz Lhe not section siress
divided by the reference stress g and this ratio enicrs naturally
in arriving at the normalizations (3)-(3) as discussed in [2). In
(3}, J is the J-integral |3] whose significance in the preseni con-
fext, is that it is a measure of the sirength of the deminant
singularity at the crack tip, In (4), & = w(0, 0F) — w(0, 07) i
the crack opening displacement at the center of the crack. The
residual load point displacement is denoted by A, and is defined
as follows. Tor a finite lengih sirip, —& < 2 < &, with 0 = 0%
preseribed on its ends, define A(R) as the load point displacement,

le.,
1 b
Bk = o ,L

The load point displacement for an uncracked strip of lengih 2k
8 Ang erack = 2™, where €7 {8 é» component of strain due to o®.
The residual load point displacement is defined as

A, = lim [A(h) — Ans crack] (8}

h =

[HQ(.TJ., h) - Hg(I;, - h)]dﬂ?l (7)

Thus, ior & strip of length 24,

A(h) = Ana erack + A= (9)

where the crror in (9) 1s small il h i3 sufficiently large compared
to b or, in certain instances, b — a.

Values of g1, 2, and g; have been caleulated for a wide range of
values of a/b and » {see Table 1 and Fig. 1) using a finite element
methed which emplovs a singular erack-tip clenent. The plane
stress calculations carvied oul here are similar in principle Lo the
anti-plane shear calculations discussed in some detail in [1].
Over the range 1/8 < a/b < 3/4 and 1 < n < 20, the finite
glement results for the analogous fullv plastic and anti-plane
shear problem were in almost all cases within 2 or 3 percent of
subsequently obtained exact results {7] and were never more
than 6 percent in error. The accuracy of the present resulis should
be comparable. For the linear case, n = 1, the results agres to
within 2 percent with the widely used results of [5) and [6). The
result of [6] which is claimed 1o be accurate to within 0.3 percent
can bo expressed in the present notation as

J = acea(l — a/bmla/b, 1)(P/P)3 (10)

where

alasb, 1) = 71 — 0.5a/b — 0.370(a/b)® — 0.044{a/bYP (11)

A linite length strip with 2 /b = 3 was used in all caleulations with
uniform @y preseribed o the ends,  In the linear ease (n = 1)
the choice of h/h = 3, by itsell, is thought to contribute an errov
of less than 1/2 percent in the quantities J, §, and A, compared
with the limit results for A/6 = o« [6]. In the nonlinear cases
(n > 1) the error due to this length truneation should be even
less due to the high degrec ol localization of the delormation
in the region ahead of the erack. TFor n — =, a diffuse “neck”
forms ahcad of the crack (see ahead to insert of Fig. 3). The
solid line portions of the curves in Fig. 1 are plois of the numerical
resulls irom Table 1 and the dashed line portions are obtained
by extrapolation in the manner discussed below.

While the normalizations in (3)-{5) are convenient for the
purposes of the next scetion, they do not provide much indica-
tion of the relations for n > 10, nor do they permit extrapolation
to the limiting cases a/0 = 0 and a/b = 1. The exact solution to
the analogous anti-plane shear problem solved by Amazigo [7]
suggests an alternative Lo (3) for normalizing J. A slab of width
2h with a cenler crack of length 2a is subject to an anti-plane
shearing stress 7™ at infinity. The material of the slab is governed
by J: deformation theory with the pure shear relation v/vye =
ai7/7o)". The anelog to (3) for the anti-plane problem is

Table 1
i/n =1 0.667 0.5 (.333 0.2 0.143 0.1
no=1 1.5 2 3 5 7 10
a/b =10 G 1.0 1.03 1.02 1.01 1.005 1.00 1.00
a/b = 1/8 g 2.800 3.231 3.543 4.00 4,518 4.761 4,861
£ 3.532 3.867 4.107 4.404 4.827 4,945 4.804
g 0.347 0.491 0.640 0.949 1.037 2.048 2.630
G 1.0 1.022 1.010 1.004 1.031 1.069 1.114
a/b = 1/4 g 2.544 2.820 2.972 3.140 3.195 3.106 2.896
g2 3.116 3.235 3.286 3.304 3.151 2,926 2.595
Es3 0.611 0.820 1.010 1.352 1.830 2.083 2.191
G 1.0 1.014 1.004 1.008 1.037 1.059 1.072
afb =1/2 g 2,211 2.242 2.195 2.056 1.811 1.643 1.465
L8 2,382 2.182 2.003 1.703 1.307 1.084 {.592
Ea 0.924 1.085 1.180 1.254 1.183 1.031 0.888
G 1.0 0.994 0.975 0.952 0.939 0.944 0.957
a/b =3/4 g 2.073 1.893 1.708 1.458 1.208 1.082 0.936
g2 1.611 1.215 0.970 0.685 0.452 0.361 0.202
Er 0.933 0.886 0.802 0.642 0.450 0.361 0.292
G 1.0 0.977 0.931 0.880 0.8060 0.875 0.895
a/b =1 G 1.0 (1.966 0.880 0.805 .30 0.83 0.86
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Fig.1 Plots of giand g; as delined in equatlons (3) and (4). Dashe d
line segments are extrapolated as discussed later in text.

J = areya(l — a/bigla/b, n){P/Po)"

where now P = 2br® and Py, = 2{b — a)1p and values of ¢ are
given in [7]. The exact result for n = 1 is

(12)

glash, 1) = (b/e — 1) tan (zwa/2b) (13)

The asymptotie results of {4, 7] for the large » behavior of g
indicate a nonuniform limit depending on whether a/b is zero
or not. For large n Amazigo’s results indicate

glo/d, 1) ~ cy/n/l1 + {{n — La/b]

where { = +/e = 1.6487 and ¢ = (7/20% = 1.9687. Consider
the function Q(a/b, ») defined in terms of 4 by the equation

14 {(n — a/b ] (L)

evnll — 1/n) + ¢la/b, 1)/:7

LEquation {15} is composed such that @{a/b, 1) = 1 for all a/b,
and, from (14), @la/b, n) — 1 asn o = for all g/l Curves of
Q against 1/n for fxed a/b have been caleulated from the exact
results of 17] and are shown in Tig. 2(2). The function € col-
lapses the anti-plane shear results to within a relatively small
variation from unity for all values of a/b and n. Given Q{a/b, n}
one can work backwards and obfain J from (12), (13}, and {13).

We now attempt to find a scaling function G{a/h, n) tor the
plane stress resulty under the unproven assumption that J de-
pends functionally on large # in the same nonuniform way as in
{14). Baszed on {13) we try

+ {n — Dafb

= gila/b, r) [ T /b, 1 /w:( (16)

v n(l = 1/n)
Now, { and ¢ are [ree constants to be chosen such that the
numerical results for &, caleulated from {16) using the values
of g1 [rom Table 1, extrapolate to unity for all ¢/b as n — o,
It was found that (16} ceuld indeed scale the plane siress mumer-
ical veaults of the table. The best choice of the constants was
fonnd to be { = 1.40 and ¢ = 3.853, and curves of ( are shown in

(14)

Qlash, v) = gla/b, n) |:

Gla/b, »)
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Fig.2 (a) Amazigo’s[?]exactresultsfor anti-plane shear normalized
using Q(a/b, n) as defined in equation (15), (56) Plane stress values
normalized using G(z/6:n} defined in equation (16).

Fig. 2(3). The close similarity in almost every detail, especially
for high n-values, with the anti-place shear vesults of Fig, 2(a)
suggests that (16) may embody the correct funefional behavior
of J for large . for plane stress as well as anti-plane shear. Dashed
line segments of curves in Fig. 2(b) are extrapolated. The curve
for a/b = 1 was obtained with no difficulty by cross-plolting for
fixed n and extrapolating the values for a/b = 1/4, 1/2 and 3/4
to 1. For n > 3 it is uol possible to extrapolate to a/b = 0 by
this samne process (as is also clear from the exact values for anti-
plane shear in Fig. 2(a)). In this case wo have drawn on the
striking similarity betwean the two fa-nilies of curves and have,
with no [urther justihication, drawn in the segment of the curve
for a/b = 0 above n = 3 in the same way as it appears in Fig.
2(a) for anti-planc shear. The values of (7 thus obtained were
used to calculate, from (16), values of ¢y fora/b = 0 and /b =
shown in Tig. 1.

Since ({0, n) as plotted in Fig. 2(b) differs from unity by no
more than 4 percent over the entire range of », we can, &s an
approximation, take it fo be unity and thus, from (3} and (18),
obtain the following relatively simple formula for J for the
finite crack in an infinite sheet

J = coenld385/n(l — L/m) + w/nl(e®/aa™ (17}

Scalings similar to these in (15) and (16) can also be constructed
for ihe erack opening displacement §. In deing so it is uselul
10 note the following limiting relation for a rigid/perfectly plastic
steip [8], valid for all a /b,
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J = 006 = UQA,, (18)

An approximation to 6 for a/b = 0, obtained in the same manner
as (17), is

8 = aea[3.85v/n(l — 1/n) + 4/n)(a®/ay)" (19)
—
24L
il
7 RIGID- ELASTIC- ///
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Fig. 3 Comparison of simple estimates based on formulas (21)-(23)
(shown as solid lines) and full numerical calculations (shown as
dashed lines) for center cracked strip with a/b = 1/2
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Finally, we note that the fully plastic solutions apply to a sta-
tionary crack in a material undergoing steady power law creep
as discussed in [2].

Simple Estimates for Elastic/Plastic Behavior and Comparisons
With Numerical Calculations. The formulas for estimating J, §,
and A, for large scale yielding of an elastic/plastic strip are similar
to those proposed in [1]. The formulas depend on the choice of
tensile stress-strain curve which is used to characterize ths ma-
terial. Use of both Ramberg-Osgood curves and piecewise power
hardening curves was discussed in [1]. Here only the former will
be considered where

€/ = a/aq + alo/ao)" (20)

With P and P, still defined as in (6), small scale yielding will
prevail as long as P is sufficiently small compared to P, i.e.,
the linear elastic formulas will be valid. At the other extreme,
when P is large compared to Py, the fully plastie solution can be
expected to be a good approximation. To interpolate over the
entire range of yielding, we take a sum of the linear and the
fully plastic contributions. In addition, to improve the accuracy,
the linear contribution is modified using Irwin’s idea of a plastical-
ly adjusted crack length. Some such modification is clearly
needed since, for example, for very large n the fully plastic con-
tribution is negligible for P < Py, yet the linear results start to
break down when P exceeds about P,/2, as is well known.

In an abbreviated notation the interpolation formulas are of
the form

with o9 = Ee

J = J(aa(f, n = 1) + J(ay n)

where the effective crack length g.s: is defined below. Using the
quantities defined in (3)-(5), the estimates have the specific

forms
J Qoft
eal —afp) ~ W9 [ b

a P st
+ay1|:b—,n:||:};o:| (21)

5 Qott a P |

Al Qptf P a Po n
a—\(’gﬂ [T;l]a—l'agﬂ[byn][ 0] (23)

where
am=a+r, , P<Po

= (Gott)P~py , P > Py (24)

po A[o=1[ET e[ b-a
vooom n+1 [| o ! a | b— Gt

In (24), Irwin’s empirical crack length adjustment r, for
plane stress [6] is taken as an explicit function of the elastic stress
intensity factor K;. Except for the factor (n — 1)/(n + 1),
which accounts for strain hardening [1], the above correction is
the same as used in the procedures of [8] and [9] for elastic/
perfectly plastic materials. In terms of the present notation 7y
can be expressed as

ry/a = (172m)l(n — 1)/(n + DI — a/bgi(a/b, 1)(P/Po}

The factor ¥ in the above formulas arises because of the extra
terms involving @ in the definitions in (3)~(5), including its pres-
ence in the definition of Pyin (6). Thus, in (21)-(24) all adjust-
ments have been accounted for and Py is still defined in terms
of the actual crack length a in (G).

Values of J/(gwea) and A/(ea) as functions of P/P, cal-
culated from (21), (23), and (9) are shown as solid line curves
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in Fig. 3(a, b) for a/b = 1/2, /b = 3, @ = 3/7 (the choice of
Ramberg and Osgood) and for n = 3, 10 and «. The solid
line curves in Fig. 3(c) for n 3 and 10 are obtained by sim-
ply replotting the curves of Figs. 3(a) and (b) as J/(oe€a)
against A/(ea). The curve for n = «in Fig. 3(c) is the limit result
of our procedure as n — «. It also coincides with, and is cal-
culated most easily using the procedure suggested for elastic/
perfectly plastic materials in [9) and, with a slight modification,
-in [8]. In each part of Fig. 3 the curves labeled n = 1 are the
unmodified linear elastic results or, in other words, the small
scale yielding predictions.

The dashed line curves in Fig. 3 for n = 3 and 10 are the re-
sults of a full finite element analysis of the identical strip with
g = 0 prescribed on z; + 3b. This calculation made use
of J; deformation theory fitted to (20) in simple tension with
a = 3/7. In the plane stress version of this problem J and A
can be shown to be independent of Poisson’s ratio and » = 1/2
is a convenient choice for making the calculation. Further de-
tails of this calculation are similar to those described for the
analogous anti-plane shear problem discussed in the Appendix
of [11.

As in the antiplane shear study, the simple formulas compare
favorably with the full numerical results. Judging from the suc- _
cess of the approximate formulas, at least in these examples, the
Irwin adjustment, although crude, is adequate for the present
purpose. In part this is because the influence of the adjustment
is relatively small in these examples, as will be discussed further
below. The trends revealed in Fig. 3 are similar to those found in
anti-plane shear [1]. The most important is the significant effect
of even relatively low strain hardening. For example, a harden-
ing exponent of n 10 results in a value of J, at a given A,
which is about 20 percent below the prediction for the elastic/
perfectly plastic strip (n ) over a significant part of the
large scale yielding range. Comparisons were also made for
a/b = 1/4 with similarly good agreement between the estimates
and the full finite element results.

Because of its fundamental importance, we separately list the
formula for the limiting case a/b — 0 corresponding to a crack
of length 2a in an infinite sheet. In this case P/P, o®/ a0,
gi(a/b, 1) = 7, K1 = 0°+/(wa) and ¥ = agetr/a. Equation (21)

specializes to
n-—1 3 o
n+1 0o

a®

To

1
L=1I’[1+—
ToE 2

Single Edge-Cracked Strip in Bending

Fully Plastic Solution. As depicted in Fig. 4, consider a strip
of width b with an edge-crack of length ¢ with an uncracked
ligament ¢ = b — a. A moment per unit thickness M is applied
to the strip; the load-point displacement is denoted by 6 and
is approximately the relative rotation of the ends of the strip.
Precisely, for a strip of length 2k which is free of shearing trac-
tions on its ends and any net load in the 2-direction,

M= —j;b:clam(:c,, h)dz, MO(h) = 21:,1’0'21(2:1, h)ua(zy, h)dz; (26)

The residual load point displacement is defined by

0¢ = lim [0(’!) - 0(h)no mk] (27)
h—o
so that for sufficiently large h
0(’!) = 0(h)no crack + 0¢ (28)

For the plane stress strip governed by the pure power hardening

law (1)
4athey 2n 4+ 1 n
b n

The limit moment for an edge-cracked, rigid /perfectly plastic
strip (n — =) is given by [10]

M, = 0.2679 o,

2M
ab?

O(h)no craox = (29)

(30)

as long as a/b is not too small. The associated slip line field is
indicated in the insert of Fig. 4. The moment quantity M, de-
fined by (30) is used as the reference value in the following
normalizations for the infinite edge-cracked strip in bending:

J = aaschi(a/bn)(M/Mo)nH (31)
8 = acwhi(a/b, n)(M/Mo)* (32)
0. = aehs(a/b, n)(M/Mo)* 33)

where § = (0, 0F) — (0, 0~) is the crack opening displace-
ment at the edge of the strip.
Values of hi, ks, and h; are given in Table 2 for the single

)z + g, n) (f )n+1
(]

o < oy

-1
+1

1
2

(: )] (%‘})’ + a0, n) (Z_:

(25)

"

a® > ae

where ¢1(0, n) may be calculated from (16) using the values of
G in the table or, from (17), ¢:(0, n) = [3.854/n(1 — 1/n) +
7/n). A similar formula can be written for §. At o oy the
contribution due to the Irwin adjustment in (25) amounts to
only about 15 percent of the total value when @ = 3/7and n = 5.
At higher values of ¢* its relative contribution is even less.

geometry ratio a/b = 1/2. If desired, ki, k2, and ks can be ex-
pressed in terms of approximate analytic formulas in [6] for
n = 1. We will argue below that, for n greater than about 3,
the values for a/b = 1/2 are accurate to within a few percent
for all more deeply notched specimens, i.e., for a/b > 1/2. For

Table 2
a/b=1/2 1l/n=1 0.5 0.333 0.2 0.143 0.1
n=1 2 5 7 10
h 1.104 0.957 0.851 0.717 0.653 0.551
he 5.129 3.640 2.947 2.255 1.953 1.606
hs 2.749 2.359 2.032 1.590 1.373 1.121

Journal of Engineering Materials and Technology
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J/(ogenQ)

Fig. 84 Comparison of simple estimates based on formulas (38)-(40)
(shown as solid lines) and full numerical calculations (shown as
dashed lines) for single edge cracked strip in bending with a/b = 1/2

the linear case, k:(1/2, 1) = 1.104 is already within 3 percent of
the deeply notched value k(1, 1) = 1.135 from [6). On the other
hand, hs(a/b, 1) and hs(a/b, 1) are equally good approximations
to the corresponding deeply notched values only for a/b greater
than about 3/4. Since the effect of n > 1 is to localize the de-
formation to the region ahead of the crack, one would expect
the case a/b = 1/2 should serve as a good approximation to the
deeply notched bend specimen if » is sufficiently large. An in-
dependent connection between J, M, and 6. for deeply notched
specimens provides a means of assessing how large n must be.
It has been shown in [9] that the integral,
1= @/onf" ma, (34)
/
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has the property that I — J as a/b — 1. That is, (34) is an
alternative expression for J for deeply notched specimens. Now,
we evaluate I using the present fully plastic results for a/b =
1/2 and see how closely I agrees with J for various n. With (33)
in (34),

I = 0.5358(n/n + 1)aoeechs(M /M) (35)
The ratio I/J is, from (35) and (31),
I/J = 0.5358 nhy/[(n + 1)ky] (36)

The plot of I/J against 1/n in Fig. 5 is obtained from the numeri~

L
“ELASTIC-
PERFECTLY

RIGID- PERFECTLY . PLASTIC i

PLASTIC

J/(06€40)

ELASTIC-
PERFECTLY E
PLASTIC

(8 .
(

|
0O 2 4 6 8 10 12 14 16 18 20
8/€,

Fig. 6 Effect of strain hardening and shape of stress strain curve on
relation between J and 0 for a plane stress bend specimen. (a) Based
on Ramberg-Osgood stress strain curve (20). (b) Based on piece-
wise power hardening curve (41). (Solid line curves based on estima-
tion formulas, dashed line curves based on full numerical calcula-
tions.)
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cal values of h(1/2, n) and h3(1/2, n) in Table 2. Forn >3 Iis
within 3 percent of J. We interpret this as indicating that the
strip can be regarded as deeply notched under fully plastic con-
ditions with n > 3if a/b > 1/2. Finally, note the rigid /perfectly
plastic limit result (n — «) from (34)

J = (2/c)MdD. (37)

which is otherwise independent of a/b, assuming a/b is not very
small.

Estimates for Elastic/Plastic Specimens and Comparisons With
Numerical Calculations. The formulas for estimating J, §, and
0., for a strip of material that has tensile properties (20), are
arrived at in the same way as discussed for the center-cracked
strip. They are

J Qett M\ a M\
a_o—=z[/3h1(7,1)( o) +ahx(bv”>(Mo> (38)
& Qett et M a M \"
— = ¢2 —a— h2<—b‘ ] 1 )n[o + ahﬁ (b ’n><Mo> (39)

b = Y,

a€ M, b’

Qett M \r
(%51) ) ()
where, now, ¢ = (b — a)/(b — a.rr) and aes is defined by (24)
with P and P, replaced by M and M, respectively. In the above
formulas M, is defined in terms of the actual uncracked ligament
length ¢ in (30).

Plots of J and 6, as functions of M /M, as calculated from (38)
and (40) are shown as solid line curves in Figs. 4(a), (b) fora/b =
1/2, & = 3/7 and n = 3 and 10. Curves of J against . are shown
In Fig. 4(c). The curves for n = 1 are the unadjusted elastic
results (i.e., the small scale yielding predictions) and those for
n = o are the limit of the present estimation procedure which
coincides with that of [9). Dashed line curves in Fig. 4 are
the result of a full finite element analysis of a specimen whose
material, as in the center-cracked case, is governed by (20) in
simple tension and is generalized using J. deformation theory.
In these calculations /b = 2 was taken and 6. was calculated
according to its definition in (27) using the approximation (28)
for a finite length strip.

For the bend specimen the comparison of the simple estimates
with the full numerical calculations is not quite as favorable as
in the case of the center-cracked specimen. Apparently this is be-
cause of the relatively larger contribution of the Irwin correction
in this problem. Significantly, however, the discrepancy for the
relation of J to 8. is almost negligible and evidently not strongly
affected by the approximate character of the Irwin adjustment.

Tor testing, the relation of J to 8 is of particular interest [11].

Mo o (5
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Given 0, as a function of M/M,in (40), 8 can be calculated using
(28), where now (k)0 orack must be calculated for the pure bend-
ing of the uncracked strip of length 2k composed of material
satisfying (20). The result in the form of J as a function of 6
is shown in Fig. 6(a) for /b = 2. As before the solid lines are
based on the estimates and the dashed lines are the results of
the full numerical calculation. Over the range shown the effect
of strain hardening is not unduly large in this relationship. To
obtain the curves of Fig. 6(b), we have used the estimation pro-
cedure for the piecewise-power hardening tensile curve given in
[1]. The tensile behavior in this case is

G/éo O'/O'o , O S Oo

(o0 = Ee) (41)

(a/a0)* , 0 > 0o

The curves in Fig. 6 illustrate the extent to which the shape of the
stress-strain curve can influence the relation between J and @
independent of the strain hardening exponent n. It is also in-
teresting to note that, at a given 0, J decreases with increasing
n as opposed to the trend for given A in Fig. 3(c).
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