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Abstract—The influence of matetial strain-rate dependence on necking retardation is studied. A rela-
tively small amount of strain-rate dependence is known to lead to substantially increased straining
prior to necking, Criteria based on linearized stability analyses do not reveal this behavior. A nonlinear

4 analysis for long-wavelength nonuniformities does reproduce the essential details of the phenomenon.
Limitations of the analysis are discussed.

Résumé—On étudie Pinfluence de la variation de la vitesse de déformation sur le retard 2 Ia striction.

% On sait qu'une sensibilité 4 la vitesse de déformation relativement faible conduit 4 une augmentation
de la déformation avant la striction. Les critéres qui reposent sur des analyses linéarisées de la stabilité
ne rendent pas compte de ce comportement. Une analyse non lindaire des hétérogénéités de grande
longueur d'onde permet par contre de reproduire les traits principaux de ce phénomeéne. On discute
les limitations de cette analyse,

Zusammenfassung—Es wird der Einfluf der Dehngeschwindigkeitsabhingigkeit eines Materials auf die
Verzigerung der Einschniirung untersucht. Es ist bekannt, daB eine relativ kleine Dehngeschwindigkeit-
sabhdngigkeit zu betrichtlich vergréBerter Dehnung vor der Einschniirung fithrt. Auf linearisierten
Stabilititsanalysen aufbauende Kriterien zeigen diescs Verhalten nmicht. Eine nichtlineare Analyse fiir
langwellige UngleichméBigkeiten ergibt aber die wesentlichen Einzelheiten der Erscheinung. Die
Grenzen der Analyse werden diskutiert.

1. INTRODUCTION “ illustrated by Fig. 1. It is argued that the behavior

S S . is inherently nonlinear and a relatively simple, ap-
Among the factors which influence necking or strain- . Y B . vey P b
proximate nonlinear analysis is carried out for bars

localization in metals-under tension are the work- o
hardening properties of the material and its strain-
_ tate characteristics. For a simple bar under axial ten-
sion, the well-known construction of Considére [1] - 4K STEEL =
gives a reasonably good estimate of the critical strain HSLA STEEL ; ‘
for the onset of necking if the material is strain-rate SQ_,;Q'#”L“,‘_{’,T,.,‘;‘J’&?’ !
insensitive. However, when the material response is 3002-0 ALUMINUM
strain-rate sensitive, a considerable delay in necking Slesg Ao ] :
may occur {2-41. This behavior is particularly evident 70-30 BRASS
“for the so-called “superplastic” materials {5]. T aLLor
Figure 1, taken from Ghosh [3], collects together
data from tensile tests on flat strip specimens of a
number of metals with small, but varying, degrees of
strain-rate dependence. Each data point represents
the amount of overall strain attained in a. test beyond
maximum Joad (post-uniform eclongation) plotted 10
against a strain-rate sensitivity parameter m which
will be introduced in a later section. Tt is this strong

dependence on relatively small strain-rate sensitivity o | |
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which is studied in this paper. We start by discussing ) 0.(‘)2 o_cl)4 0.06

the implications of the several linearized stability ana- m

lyses existing in the literature. Criteria based on these Fig. 1. Collected daté by Ghosh [3] showing relation
linearized analyses completely miss the phenomenon between delay in necking and strain-rate index m. -
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Fig. 2. Values of G{n,g} in {2.7).

in tension which does reproduce the essence of the
phenomenon. Results are also presented covering
essentially the entire range of material parameters, in-
cluding a comparison with data on the effect of large
amounts of strain-rate dependence on total elonga-
tion prior to necking.

2. DISCUSSION OF STUDIES BASED
ON LINEARIZED ANALYSES*

As background to discussing the linearized analyses
of the type employed by Hart[6], Campbeli[7],
Jonas er al. [8] and Argon [9], we first briefly sum-
marize some details of an exact, linearized three-
dimensional solution for power law creeping mater-
ials. . \

Consider an infinitely long axisymmetric bar whose
current cross-sectional area varies along ifs axis z
according to '

A = Ap[l — 5 cos(2nz/A)], 2.1)
as depicted in the insert of Fig. 2. The bar material
is taken to be incompressible and nonlinearly viscous
such that in simple tension the relation between the
{ndatural) strain-rate and (true) stress is € = a¢”. Under
3 multi-axial true stress state g;; the strain-rate is
taken as

€y = 30y 13:‘;" g, = (%Sijsij)uza (2.2)
where s;; is the stress deviator and o, is the eflective
stress. :

In [10], the linearized problem for the stresses and
strain-rates in the slightly nonuniform bar (ie. |4} <€ 1)
under load P is solved exactly. Of primary interest
here is the result for the rate of growth of the relative
size of the nonuniformity of cross-sectional area. Let
Aq(t) denote the evolving cross-sectional area of the

* This section is abstracted from {10].

T The results here are presented in a slightly different
form from [10]. There, values of f(ng) were given where
AA = (n — )&y fA. Using {2.19), this expression can be

_transformed to (2.7) where nG =(n — 1)f + L
{

perfect bar, # =0, and let A(t,z) be the area of the
nonuniform bar at z. Define the nonuniformity in
area as

AA(tz) = Altz) — Ao(t). (2.3}

Define the measure a of the size of the nonuniformity
relative to the evolving cross-sectional area of the per-
fect bar as

a(t,z) = AA(Lz) Aol (2.4}
From {2.1}, the current g is taken as
a = —n cos(Znz/A). (2.5)

The result of the analysis of [10] for the rate of
change of a can be expressed as

a = —nnéy G(r,g) cos(Zrzf), (2.6
or, from (2.3), as
a = néq Glng)a. 2.7
"Here
€o = alP/Ao)' 2.8y
is the strain-rate of the perfect bar and
i g = 2aRy/4, 29)

where R, is the radius of the perfect bar. Curves of
G as a function of g for various » are shown in Fig.
2% For small g,

L 11

— i g 2 _ A
Glng) =1 1 87Gn(n +3n—9g*t +

(2.10)

The limit of {2.7) for long-wavelength nonuniformi-
ties, g-— 0, is .

(2.11)

This limiting result is precisely the result obtained

by assuming the stress ‘over each cross-section is uni-

axial and uniform with resultant P. This assumption
is often invoked in the analysis of the growth of

dznéoa_
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nonuniformities in tensile bars and will be referred
to hete as the long-wavelength approximation. From
(27) and Fig. 2 it is clear that the relative size of
the nonuniformity, a, always increases for the viscous
material (2.2), albeit possibly very slowly. If g < 1,
ie if 1> 2zR,, the long-wavelength approximation
(2.11) 1s reasonably accurate. Since G is a monotoni-
cally decreasing function of g for each n, the long-
wavelength nonuniformity characterized by (2.11) has
the fastest growth-rate.

Lincarized, long-wavelength analyses have been
carried out for more general materials by a number
of authors [6-91. As an illustration, consider axisym-
metric bars of incompressible matetials characterized
in simple tension by

o = Fleg), {2.12)

where o is the true stress, € is the natural strain and
a dot denotes time rate of change. The bar is subject
to a load history P(z). It is considered to be long
compared to its single long-wavelength nonunifor-
mity, as depicted in Fig. 3. Far from the nonunifor-
mity, the bar is assumed to be essentially uniform
with cross-sectional arca Ayl [Equivalently, Af)
can be regarded as the area of the perfect bar under
the same load history.] Denote the area of the
smallest cross-section in the nonuniform region by

A(t) and let
AA(R) = A(D) — At (2.13)

Let 4 measure the initial fractional nonuniformity in
" area according to

7= —AA0) 4,{0),
where 1 > 0 since we will take AAD) < 0.

(2.14)

Denote by a subscript or superscript 0 all quantitics

associated with behavior in the essentially uniform
sections far from the fionuniformity or, equivalently,
. with behavior in the perfect bar. The long-wavelength
approximation of a uniform, uniaxial stress state over
each cross-scction is now invoked Linearization
about the solution for the uniform bar under the
assumption |g| < 1 leads to a linear equation for the
growth of A4 of the type found by Hart[6]:

AA + hHAA = (y/m)don, (2.15)
where
W0) = (OFf2e)o 03, m(t) = (2F Gelo éofy (2.16)
and )
he) = E/m[—1 + 7 + m]. 2.17)
The partial derivatives in (2.16) are functions of ¢ and
are to be evaluated at e{t) and &q(z). Hart [6] does

Ao

P / y/ /

)

Fig 3. Geometry of imperfect bar.
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not explicitly incorporate the initial imperfection 5.
into his analysis, so his equation does not include
the non-homogeneous term in (2.15)—see [107 for the
derivation of (2.15).

It is revealing to cast (2.15) into a different form
involving the relative size of the nonuniformity

a(t) = AA(D/Aq2) (2.18)
Since -
a=AA/Ay — AAAy/ A = a(AA/AA + &),
(2.19)
equation (2.15) can be written as
+ kit = —(y/mkqn, (2.20)
where
h() = eo/m) [—1 + 1. (2.21)

Using the absolute size A4 as the measure of the
nonuniformity, Hart [6] notes that a positive value

of h, 1e. assuming m > 0,
—1+y+m=>0 (2.22)

implies that the homogeneous solution to (2.15) for

AA is associated with exponential decay, Hart defines

a state in which (222} is satisfied as being stable.
Other authors prefer to measure the nonuniformity
using its relative size a. Indeed, when large straining
oceurs prior to necking, as in the tests of Sagat and
Taplin [5] discussed below, the relative size g is
clearly a more meaningful measure than A4, From
(2209, exponential decay of the homogeneous solution
for a requires k& > 0, i.e.

—1 470 (2.23)

Condition (2.23) is favored over (2.22) as a stability
criterion by Jonas et al [8]. They use the difference
between the axial strain at the narrowest cross-section
and that away from the nonuniformity, Ac = € — &,
as their measure of nonuniformity. But it is readily
shown that in the long-wavelength approximation
Aé¢ = —4, and thus a criterion based on growth or
decay of Ae is identical to that based on 4, ie. (2.23).

It has been suggested that a transition from h = 0
to h< 0 (or from A > 0 to & < 0) could be used as
a criterion to predict the effect of strain-rate depen-
dence on tensile instabilities. Recent work indicates
that neither criterion is useful for this purpose. In
addition to the data of Fig. 1, which will be men-
tioned again in the next section, Sagat and Taplin [5]
conducted uniaxial necking tests on a class of metals
with strong strain-rate dependence (m being as large
as 0.4). They found that the transition criterion k = 0
predicted overall strains at necking which were not
even qualitatively correct. For example, in one case
in which experimentally measured values of m and
y implied that h became negative at an axial strain
of about 0.02, nonuniformities could not be detected
by eye until strains of about 0.7 were atfained. That
such behavior should be expected is actually apparent
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from either (2.15) or (2.20), as noted in[10]. Since
the magnitude of & (or £ is proportional to &, the
characteristic time for exponential growth will be on
the order of the time scale associated with develop-
ment of strains of order unity in the uniform sections
of the bar if m is not small. In other words, even
if k<0 {or k <0}, the rate of exponential growth
can be exceedingly slow, and a sign change of h or
h positive to negative has no immediate significance
as far as observable behavior is concerned.

Nonlinearity, whether it be geometric, material or
both, is inherently a part of the necking process.
While linear analyses such as those discussed above
‘can provide the very early development of small
nonuniformities, it appears they cannot be used to
estimate the influence of imperfections or material
parameters on rupture times or on the amount of
aftainable strain.

3, NONLINEAR LONG-WAVELENGTH
ANALYSIS

As emphasized in the previous section, it is essential
that nonlinearities be properly accounted for in an
analysis of the necking process. Here, a nonlinear
analysis based on the long-wavelength approximation
referred to above is applied to study the growth of
geornetric nonuniformities in a strain-rate sensitive
material. The approach is essentially a one-dimen-
sional version of the analysis introduced by Mar-
ciniak and Kuczynski[ll, 12]. We consider a long
cylindrical solid bar (Fig. 3} subjected to a time-
dependent axial load P(t), and examine the growth
of the nonuniformity AA(f) = A(f) — Ag(t). As pre-
viously indicated; A(t) denotes the area at timer ¢ of
the cross-section where necking eventually occurs,
and At} refers to the corresponding area in the uni-
form sections or-of .the perfect bar.

: According to the long-wavelength simplification

P P

g=—, 0= —
A7 4,

{3.1)
represent the values of true stress at the “local” section
A and “uniform” section 4, respectively. Furthermore,
for an incompressible material, the conventional de-
finition of natural or logarithmic strain gives

A 0
€= —ln—— ¢ = —In (3.2)
Ay Ao()
and
A Ao
E= — —, €y = — —. 1.3
€ A €0 A, 3.3)

As a result of (3.2), the relative nonuniformity intro-

duced in (2.18} is given by

AA(t)
= ——=(1— —¢—1, (34
a0 === newle—9 -1, (4
where 1 is the initial geometric nonuniformity defined
“by (2.14). It is clear from the above relation that the

relative values of the “local” strain e(t) and the “uni-
form™ strain ey(t} also provide an adequate measure
of geometric nonuniformity. Since we shall be primar-
ity interested in the amount of strain, €;, attainable
in the uniform sections, we shall therefore work with
the growth of € and €, in the following and identify
the critical state for necking in terms of the relative
values of these quantities. A more precise definition
of this critical condition will be given shortly.

Although three-dimensional effects are obviously
being neglected here, it might be argued that the long-
wavelength approximation will under-estimate the
actual total elongation of the bar required for neck-
ing. For example, a Bridgman-type analysis [13] for
the three-dimensional stress state in a neck under
time-independent plastic conditions indicates that the
effective stress there would be less than the average
stress ¢ given by (3.1). This implies that the actuai
strain in the neck is also less than the strain € caleu-
lated in the present analysis. Thus, necking proceeds
more rapidly when the long-wavelength simplification
is invoked and the critical state should be attained
earlier than in an analysis where three-dimensional
effects are included.

To describe time-dependent material response
under uniaxial tension, the following constitutive
law [3, 4] will first be employed

g = K™ 64 = Kelél, {3.5)

Here K is a constant, and N and m denote the strain
hardening and strain-rate hardening exponents, re-
spectively. The parameters P and X can now be
readily eliminated from (3.1} and (3.5). This, together
with (3.2) and (2.14), furnishes the desired relationship
between the increments {or rates) of local and uniform
strain:

e %P de = - e *%f deg, (3.6)

1
-
in which p = N/mand s = 1/m. With initial conditions
€(0) = €,(0) = 0, the integrated form of (3.6) becomes

13 1 €0
J. e~ P dt = m j e %P dt. 3.7

v o i}

This resuft brings out an interesting feature of our
analysis, namely that the relationship between ¢ and
€ is independent of the load history P{#) experienced
by the bar and, in particular, is independent of the
rate at which the bar is being deformed. -

For time-independent material behavior (m = 0),
the long-wavelength analysis presented above gives

—e N __ 1 —ea N
e ‘e (1—?1)6 €q - (3-8
The above expressions (3.7) and (3.8} were applied
to some specific examples in order to illustrate the
strain-localization process in the bar and to assess
the influence of strain-rate sensitivity. Typical results
are shown in-Fig. 4, where curves of /¢, are plotted
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Fig. 4. Ratio of strain at necking region to strain in uni-
form section 2s a function of normalized strain in uniform
section.

against the normalized uniform strain €,/N for an in-
itial geometric nonuniformity n = 0.005.

For the case m = 0, the curves of Fig. 4 were deter-
mined from a direct numerical solution of the trans-
cendental relation (3.8). The solid dots on these curves

indicate the maximum value of €,, which, in view of*

{3.8), is given by

€
_exp _—

N (3.9)

& -
(N—": 71) = (1= i,
This occurs when the local strain satisfies € = N and
the corresponding load on the specimen reaches a
maximum. The dashed portion of the curve is also
obtained from {3.8), but is no longer valid since un-
loading occurs in the uniform sections. The important
point, however, is that &, given by (3.9} is the maxi-
mum value of the strain attained in the uniform sec-
tions. Note that the classical result for time-indepen-
dent behavior, & = N, is retrieved from (3.9) when
7=

For the case m # 0, the curves of Fig. 4 were deter-
mined by integrating (3.7) in a straightforward in-
cremental fashion. It can be seen from these results
that a very small nonuniformity grows slowly from

the onset of loading, but that extremely rapid growth -

or localization eventually occurs. The value of ¢, also
attains a maximum for this case; however, in contrast
to the response when m =0, the uniform strain e,
now reaches a maximum when € — co.

The above results suggest that instability be identi-
fied with «§, the maximum value of ;. Consequently,

Am. 25/8—n

843

we define the critical state for necking as that for
which deg/de = 0. This provides a unified criterion
for both time-dependent and time-independent behav-
ior; but we will use the special symbol & to denote
the value of ¢§ for m = 0. For time-dependent mater-
ial behavior (m # 0), the critical value € is obtained
by inserting the limits €, = €}, and € = w in the inte-
gral (3.7). It is perhaps interesting to note that, for
integer values of p, (3.7) can be integrated analytically
and that the above stability criterion furnishes the
following expression for the critical strain f:

2, (se5)*
o M

BK?(—SG‘o)k =[-01-77] (@10
We emphasize again that the present analysis is
concerned mainly with the strain parameter €§. In a
finite length test specimen, however, it is the combined
contributions from €, and € which produce the total
elongation. Consequently, the distinction between ¢,
and a measured overall average axial strain must be
properly accounted for in any correlation with test
data.

The curves of Fig. 4 clearly indicate that time-
dependent effects greatly influence the strain € that
can be achieved prior to necking. Figure 5 iHustrates

_the delay in necking for small values of strain-rate
exponent (m < 0.05). Here,

o€ =€ — &) (3.11)

is the increase due to strain-rate dependence of the
maximum strain attainable in the uniform sections
above the corresponding strain for the time-indepen-
dent material (m = 0). Very small values of m lead

1.0
— N =0
gk -=—= 04
B
uw& 8k
M /.00|=1?
7t 4
2‘6’[% s
/
6 s
7 Ae005
5 S S Lo
’ e a
4l // e
7
// o
e
3 iy Ad
G
/4 v
2F 4
/
-
O ] 1 I | 1
0 £ 02 03 04 05
m

_Fig. 5. Additional maximum strains in uniform secfions
as a function of strain-rate index m
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to relatively large increases in <}, similar to the trend
of Ghosh’s plot for thin strips in Fig. 1. It is also
evident that J¢ decreases with increasing initial
nonuniformity 5, and increases with tncreasing strain-
hardening exponent N. In fact, the numerical results
depicted in Fig, 5 indicate that d¢ is nearly propor-
tional to /N for small m, as suggested by the asymp-
totic analysis discussed in the next section.

The above analysis, which is based on the constitu-
tive law (3.5), leads to the interesting conclusion that
€ is determined solely by the parameters m, n and
N. Thus, according to this model, the strain rate &,
experienced by the bar has no effect on the eventual
necking strain. This conclusion is not exactly true,
however, for an alternative constitutive law recentiy
proposed by Ghosh [4]:

= K|:€" + mln(f)] (3.12)

Here, N and m again represent strain hardening and
strain-rate hardening constants, respectively, and the
additional parameter & is a reference strain-rate.
When this law is employed in the previous long-wave-
length analysis, the following expression, analogous
to {3.6), is obtained

2 N 2 N
1u(§) - e—xg(‘—_e—")[f—" + 1n(i°)] - @31y

€, l—n |m € m
in which the strain-rate is inherently present. Here,
again, the critical strain €§ for which dey/de =0
occurs when €— oo, A straightforward incremental
technique was employed to numerically solve (3.13)
for the critical strain e} for the case N =01,
# =0.005 and various values of m and imposed
strain-rate €, The resulis of these calculations are

N=01
n =005 .
£
7+ TE=] /
i
7
/s
6 A/
L g Ve
e = st 4
ub,? ///
[ L ey
%“i 4 /4
Ie/
L I
.3 y
) //// based on {3-5)
2 Vs —— — bosed on (3-12)
Vs
Vi
RN
0 L 1 1 1 |
o] o1 o2 Q3 04 05

Fig. 6. Comparison of the additional maximum strains in
uniform sections for two uniaxial constitutive laws.

shown in Fig. 6 where they are compared with those
obtained previously using the law (3.3). Very little dif-
ference between the predictions of both laws can be
observed. Furthermore, although there is some depen-
dence on &, with Ghosl’s constitutive law, it can be
seen that an increase in the imposed strain-rate by
a factor of 4 has only a very minor effect on €.

In contrast to the results of the nonlinear long
wavelength analysis just discussed, predictions based
on the criterion k = 0 (or i = 0) derived from the
linearized analyses indicate no strong dependence of
€5 on m. For example, using (2.16) and (2.17) and
the law (3.5} one finds that # changes sign from posi-
tive to negative, implying loss of stability according
to [6], when

€ = NAl — m).

Not only does this result fail to reveal any depen-

_dence on #, it implies a weak strain-rate effect com-

pared to the results of either Figs. 1 or 5. The analo-
gous prediction based on (2.21) gives ¢ = N when
I becomes negative, implying no strain-rate depen-
dence.

4. ASYMPTOTIC ANALYSIS FOR THE
EFFECT OF SMALL m

The numerical results of the previous section indi-
cate that very smail values of the strain-rate exponent
m can substantially increase the strain €§ beyond its
time-independent value &;. This suggests that an
asymptotic expansion about & might be carried out
to determine an approximate relation for the in-
fiuence of small m on €§. Such an analysis is per-
formed in this section for the case where the material
response is described by (3.5). The approach consists
of applying Laplace’s method [14] to obtain approxi-
mate expressions for the integrals (3.7). We pote first,
however, that in the time-independent case {m = 0)
an asymptotic expansion of & about N for small #
using (3.9} gives

& 2
—=1 = = 4.1
N N 4.
As discussed previously, the criterion introduced in
the present analysis implies that € — oo as the critical
strain ¢ is attained. Consequently, from (3.7)

[ ewt- 0l = o |, e-sanar

4.2)

determines &, where
gity=t — Nlnt. 4.3)

Consider first the integral on the left of the equal
sign in {4.2). Since g(f) has a minimum on the
interval 0 < t < co at t = N, when s(= 1/m) is large,
the major contribution to the integral is from the
neighborhood of t = N. A straightforward application
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of Laplace’s method gives
f exp[—sg(t)] dt = exp[~Ns{l — In N}]
0

x [2rN/s1Y2, (4.4

Next, to evaluate the other integral in (4.2) it must
be noted that as m — 0, § — &5, which is less than
N when # > 0 from (4.1). Therefore, for sufficiently
small m, the point ¢t = N where ¢’ = 0 lies outside
the range of integration 0 < ¢ < €. In this case, for
large s, the major contribution to the integral comes
from the neighborhood of €. Applying Lapiace’s
method here gives

€& -1
J; expl —sg()]dt = l:s(% - 1):|

xexp[—s(ef, Nineg) (4.5

valid for large s and € < N. _ ,
When the above asymptotic approximations are
substituted into {4.2), an explicit algebraic expression

relating €§, m, # and N is obtained. As m— 0, this
expression reduces to the time-independent result (3.9)
for €. Thus with

€ =& + &, 45)

“an asymptotic expression for de in terms of large s

{small m) can be obtained. The result is

b m (4my) @7

N2 /m

In deriving (4.7), the relation (4.1) is used so that it
is assumed that n < 1. Furthermore, (4.7) is restricted
to values of m and y satislying m < 2y, which ensures
that € is less than N. The higher-order terms neg-
lected in the analysis indicate that m/N should be
small as well.

It is the above relation (4.7) which suggested that
de be normalized by ./N in Fig. 5. Note also that
the slope of the d — m relation is infinite at m = 0,
already indicating an unusually strong dependence on
m.
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Fig. 7. (a) Relation between strain-rate index and total elongation as calculated from {3.7). (b) Collected
data from Woodford [16].
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5. NUMERICAL RESULTS FOR
FULL RANGE OF m

Using the relation (3.7) with € = co and €, = €5,
numerical results for the critical strain €} were gener-
ated for a wide range of material parameters m and
N in the constitutive law (3.5). Typical results are
shown in Fig. 7(a) where the total elongation at neck-
ing is plotted against m for 5 = 0.005 and N = 0, 0.05
and 0.2. Here, to draw comparison with previously
published data in Fig. b}, the total elongation is
measured as (percentage of) engineering strain, ie.
exp [{€§) — 1]. The curve corresponding to N = 0 was
obtained from the relation

€= —mn[1— (1l —m'], (.1)

which follows immediately from (3.10) and which,
when converted to engineering strain, is identical to
that given by Ghosh in [3]. The results of Fig. 7z)
indicate apain that the amount of strain that can be
achieved prior to necking increases sharply with in-
creasing strain-ratc exponent m. From this figure it
is also apparent that the value of strain-hardening
exponent N is relatively unimportant for the higher
values of m, but that variations in both m and N
substantially affect the critical strain e in the lower
range of m.

In Fig. 7{b), Woodford’s [16] compilation of experi-
mental data for a variety of materials is given. The
trend line from this plot is reproduced as the dashed
line in Fig. 7(a), and is seen to lie in the range of
numerncal results predicted by the present analysis.

6. CONCLUSION

The relatively ‘simple nonlinear long-wavelength
analysis demonstrates the strong influence of a very
small degree of material strain-raté dependence on
refarding necking localization. It seems likely that the
long-wavelength analysis actually underestimates the
amount of essentially uniform straining attainable

prior to necking failure. As discussed in the paper,

. this is due to inherently three-dimensional aspects of
stress distribution which develop as necking pro-
gresses. In one form or another, the long wave
approximation is invoked by many authors, but its
limitations are not fully understood. The approach
of Marciniak and Kuczyniski[11] to necking failure
in thin sheets of time-independent materials under bi-
axial tension involves approximations similar to those
used here, as does their work [12] accounting for

HUTCHINSON anp NEALE: NECKING UNDER UNIAXIAL TENSION

time-dependent material behavior in sheet necking.
Burke and Nix[15] also adopt the long-wavelength
approximations in their nonlinear analysis of neck
development in nonlinear viscous materials of the
type (2.2). Even when nonuniformities are very small
three dimensional effects can be important when their
wavelengths are short For example, from (2.7) and
Fig. 2, it is seen that for sinusoidal nonuniformities
with wavelength 4 less than =R, (le. ¢ > 2) the
growth-rate is a small fraction of the long wavelength
growth-rate. The extent to which inherently three-
dimensional features modify predictions of ‘the long-
wavelength analysis requires further investigation.
An ad hoc approach to necking in flat strip specimens
by Ghosh [4] does incorporate such features in an
approximate way and allows for the possibility of nu-
merical calculations which are not inordinately heavy.
In particular, his numerical results, analogous to
those in Fig. 5, appear to be in good agreement with
the trend of the experimental data for strips which
he collected in Fig. 1.

Acknowledgement—The work of JW.H. was supported in
part by the Air Force Office of Scientific Research under
Grant AFOSR-73-2476, and by the Division of Engineer-
ing and Applied Physics, Harvard University. K. W.N.
gratefully acknowledges the support of the University of
Sherbrooke.

REFERENCES

. Considére, Ann. Ponts Chaussées 9, 574 (1885).

. K. Ghosh, Met. Trans. 5, 1607 {1974).

. K. Ghosh, J. Eng. Mat. Tech. to be published (1977).:

- K. Ghosh, Res. Lab. General Motors Corp. {1976).

- Sagat and D. M. R. Taplin, Metal Sci. 10, 92 (1976).

. W. Hart, Acta Metr. 15, 351 {1967).

. D. Campbell, J. Mech. Phys. Solids 15, 359 (I1967).

. J. Jonas, R. A. Holt and C, E. Coleman, Acta Met,
24, 911 (1976).

. A. 8. Argon, The Inhomogeneity of Plastic Deformation,
Chapter 7. American Society of Metals, Metals Park,
Ohio (1973).

10. J. W. Hutchinson and H. Obrecht, Proc. 4th Int. Conf.

on Fracture, Vol. 1, p. 101. Waterloo, Canada (1977).
11. Z. Marciniak and K. Kuczyiski, Int. J. mech. Sci. 9,
609 (1967).

12. Z. Marciniak, K. Kuczynski and T. Pokora, int. J.
ech. Sci. 15, 789 (1973).

13. P. W. Bridgman, Studies in Large Plastic Flow and
Fracture. Harvard University Press (1964).

14. C. E. Pearson, Handbook of Applied Mathematics. Van
Nostrand—Reinhold, New York (1974).

15. M. A. Burke and W. D. Nix, Acta Met. 23, 793 {(1975):

16. D. A. Woodford, Trans. Am. Sec. Metals 62, 291 (1969).

R
e

e &
[




