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SUMMARY

SINGULAR stress and strain fields are found at the tip of a crack growing steadily and quasi-statieally
into an elastic-plastic strain-hardening material. The material is characterized by J, flow theory
together with a bilinear effective stress—strain curve. The cascs of anti-plane shear, plane stress and
plane strain are each considered. Numerieal results are given for the order of the singularity, details
of the stress and strain-rate fields, and the near-tip regions of plastic loading and elastic unloading.

1. INTRODUCTION

For sTATIONARY cracks in a given mode of loading, strain-hardening plays the
important rcle of producing unigque stress and strain fields in the plastic zone near a
crack tip. A single amplitude factor measures the intensity of these fields. Only
through this factor do overall geometry and applied load influence near-tip behavior.
In the present paper, analogous near-tip fields are determined for steady, quasi-static
crack growth in strain-hardening, elastic-plastic materials characterized by J, flow
theory and a bilinear effective stress-strain curve. The cases of anti-plane shear
(Mode III}, plane stress and plane strain (Mode I) are cach treated. We start with the
anti-plane shear analysis, since, of the three cases, it can be presented in most detail
with least complication.

2. ANTI-PLANE SHEAR ANALYSIS

Let x; be rectangular Cartesian coordinates travelling with the crack tip and with
the xs-axis lying along the crack edge as shown in Fig. 1. Non-zero stresses and
strains are 7, = o3 and y; = 235 with § = 1, 2. Let

T=(zf+13)* (2.1)

1 This work was supported in part by the Advanced Research Projects Agency under Contract
F44620-75-C-0088, in part by the Air Force Office of Scientific Research under Grant AFOSR-
732476, in part by the National Science Foundation under Grant MPS75-08328 with Rensselaer
Polylechnic Institute, and by the Division of Engineering and Applied Physics, Harvard University.
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be the effective shear stress. In a simple shearing history, the shear stress and strain
are taken to be related by the bilinear stress—strain curve shown in Fig. 1. The small-
strain generalization to multi-axial incremental behavior according to J, flow theory
(Prandtl-Reuss theory) is

Gijy = aty+(1-w)t” 'yt (plastic loading, t 2 0), 22
Ggp=aty,  (elastic unloading, # < 0), (23)

where ¢ = &/G and () denotes material differentiation with respect to any mono-
tonically increasing quantity.

UNLOADING /4 _LOADING

FiG. 1. Crack-tip geometry and stress-strain curve.

Introduce a stress-rate function ¢(x, ), ensuring equilibrium stress-rates, according
to

1"-1 = q{),xp T'.-Z = _45,.1’1’ (24)

where a subscript comma denotes differentiation with respect to subsequent subscripts.
Let (%,, ;) and (},, },) be the components of the stress-rate and strain-rate in the
(r, &) coordinate system of Fig. 1; e.g.

t, =%, cos §+1, sin 0, iy = —1, sin 8+1, cos 8. (2.5)
In this system,
_'.:r = r‘l‘ib,aa i-B = _qb,r- (26)
Compatibility of the strain-rates requires
(7),6— (), = 0. (2.7)

After elimination of the strain-rates using (2.2) for plastic loading and (2.6), one
obtains for (2.7),

arVio+(1—a){(r™"5,1) g— (11" '141),} = 0, (2.8)
where (z,, T,) are the stress components in the (r, 8) system. In the unloading region,
Vi = 0. (2.9)

Identify the rate parameter with the increase in crack length so that in a steady state
the material derivative and the x,-gradient of Cartesian components of stress and
strain are related by
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Equation (2.8) is homogeneous of degrec one in the stress-rate function, even
taking into account the connection of the stresses to their rates through (2.10). This
homogeneity permits us to [ook for selutions of the form

¢ = Krorif{), (2.11)

where K is an amplitude factor, 14 1s introduced for later convenience and where
sand fare to be determined. Symmetry with respect to 8 = 0 requires f(8) = f(— ).
This, together with vanishing tractions on 8 = +mn, gives the boundary conditions

=90, fim=0, (2.12)

where a prime denotes differentiation with respect to 8.
We anticipate that plastic loading (# > 0) will occur for |8] < 8,. The condition
for determining the boundary between loading and unleading is

i=0, 6=086, (2.13)

Elastic unioading with (2.3) is assumed to occur for |6 > 8,. The possibility of a
reversed loading region will not be considered. CHITALEY and McCrinTock (1971) did
find a secondary loading zone in their perfectly-plastic analysis, but it extended from
[8] = m by less than half a degree and had negligible influence on the rest of the field.

With [ ] denoting the jump in a quantity across 6, continuity of traction-rate
requires [ 5] = 0. In addition, the displacement-rate i3 must be continuous across 6,
which implies that [$,] = 0. This, in turn, by (2.3), (2.4) and (2.13), requires [4,] = 0.
Together the two conditions will be satisfied if and only if

(f1=f6,)-f6;)=0, (f1=0. (2.14)

It also follows that 1 is continuous across g,
The following notation is convenient:

(1, 1) = Kror* ™' (15(0), 1(0)), (2.15)
where from (2.4) and (2.6),
tr=f’s f8=—Sf,
f, =ssind f+cosd f, 1, =—sc0s0 f+sind f’} (2.16)

The stress field of the dominant singularity can be written as

(15, T) = Kror (Ty(0), T(8)), (2.17)
where, from (2.4) and (2.10),

=1 (2.18)
and

sin® T, =scosl T,+¢,. {2.19)
Compoenents T, and T, can be expressed in terms of T, and T, by relations such as
(2.5). Note also,

T=(TT+TH=(T}+ T3 (2.20)
and

t=T YT 1, +Taty) = T HTot, + Tety). (2.21)
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All quantities defined above can therefore be expressed in terms of f, /' and T,. In
what follows, fand T, will be taken as the basic dependent variables.

The assumed form of the solution is now substituted into (2.8) governing behavior
in the loading region. Separating out the most highly differentiated term (i.e. /), one
finds, for 6 < 6,

S e+ (=) T2 + s T+ (1 —a){ —2T' T+ TT/t +
+ T.(T t,+ Tyty+ Tole) — sT Tt} = 0. (2.22)

In the elastic unloading region, the solution to (2.9}, which satisfies f(n) = 0 and
continuity of f'across 8, is

f=107) sin (s(r—)/sin (s(n—0,)), 0=0, {2.23)

Continuity of /" across 8, equation (2.14), can be expressed as a condition on f and
ffor 60— 67 as
S8 ) +scot (s(m—0,)f(0,) = C, (2.24)

where 0, is unknown a priori and must satisfy (2.13), i.e.
K6, = 0. (2.25)

Satisfaction of (2.24) guarantees that the solutions in the loading and unloading
regions can be matched across 8, Boundary conditions ahead of the crack are

Jom=0 (2.26)

and the requirement that T, be regular at 6 = 0; equation (2.26) implies T,{0)
= T,(0) = 0. The O-variations must be normalized in some manner and the most
suitable one for present purposes is T(0) = T,{0) = 1, which is equivalent to

70y = 1. (2.27)

Equations (2.19) and (2.22) constitute a homogeneous, third-order system of
ordinary differential equations for fand 7).t It is supplemented by the two homo-

TaBLE | Mode 111

o 5 &y
10 —0-5 1-571
67 —0-444 1:523
0-5 —0-394 1-473
0-3 —0:325 1-393
0-2 0277 1-329
0-1 —0-207 1221
0-01 —0-0737 0-507
0-001 —0-0244 0-750

t An alternative formulation can be given in terms of a stress function rather than a stress-rate
function. That formulation leads to a single third-order differential equation for the @-variation of
the stress function. We have also solved this equation numerically with the same results reported
below., On balance, the formulation reported here is the easiest one to usc.
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Fic. 2. Order of singularity of stresses and strains.

geneous boundary conditions (2.24) and (2.26), together with the regularity con-
dition at § = 0, and (2.25) for determining 6. The order of the singularity s is the
eigenvalue. A discussion of the numerical method is given in the Appendix. In
principle, however, the procedure is to specify a trial value of s and then to integrate
(2.19) and (2.22) starting at & = 0 until a value of 0 is found at which ¢ vanishes,
where condition (2.24) is checked. If (2.24) is satisfied, then the solution has been
found; if not, an improved estimate of s is obtained using a procedure discussed in
the Appendix and the process is repeated.

Values of 5 and §, for selected values of o ranging over 1 = « = 0-001 are given
in Table 1. In Fig. 2, 5 is plotted against o, since the numerical results so plotted
strongly suggest that s is proportional to «* for small &. An unsuccessful attempt was
made to formulate and solve an asymptotic problem for small « which would revaal
explicitly this limiting behavior.

Stress distributions in the loading region are shown in Fig. 3 for « = 1, 0-1, 0-01.
With o = 1, then s = —4 and the distributions are identical to those for a stationary
crack in a linear elastic material, 1.e.

J=rcos }0, T, = cos 30, T, = sin 8, T=1. (2.28)

In this limit, # vanishes at # = im, although &, is immaterial since the plastic strain-

T \- Jas 4 s T as 00l
1 | 1 ' 0l
o 8-
a:g0” |
g a=0) i 6
7t = 4 |
‘ T N !
‘ r g 0L ‘
{ : . 0.0
— i i | I N R O — L - —
0 2 4 6 8 101214 O 2 4 6 8 101214
8 o

Fic. 3. Stress distributions for & < @, in anti-plane shear,
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rates vanish for all 8. The f-variations of the stress distribution for low strain-

hardening, « = 0-01 with 5 = —0-0737, is seen to be very close to that associated
with the slip-line field ahead of an elastic perfectly-plastic crack, i.e.
f=cos 0, Ty = Tg, 17, =0, T =T, 2.2%)

The approach to elastic perfectly-plastic behavior is also seen in the plots of the
plastic part of the strain-rates in Fig. 4. These can be expressed, using (2.2), (2.15)
and (2.17), as

i = Kyor® ™ 'Py(8), with Py(8) = (1-)T ™' Ty, {2.30)

where y, = 1,/G. For low strain-hardening (¢ = 0-01 in Fig. 4), P, & 0, which is
consistent with the fact that P, = 0 in an elastic perfectly-plastic slip-line fan at the
crack tip.

0.08

006

0.04

0.02

F1G. 4. Plastic strain-rate distribution for low strain-hardening in anti-plane shear (see equation (2.30)).

Directly ahead of the crack, 0 = 0, r = —s and Py = s(l —e), this being the
largest value of Py for |0] < 0,. The elastic part of the strain-rate is given by

75 = Kyor* ™! 1,(0). (231)

For low strain-hardening, these components can be estimated quite accurately using
{2.16) and (2.29) as

= —Kyyr' tsinf,  ji=—sKyr® !cos@. (2.32)

Thus, directly ahead of the crack the ratio of the elastic strain-rate to the plastic
strain-rate js essentially o for low strain-hardening. However, for 0 # 0, $¢ is the
dominant elastic strain-rate component and it is of order afs compared to the plastic
strain-rates. Based on the numerical results for s, this ratio is therefore proportional
to a* for small .

3. Duscussion OF ANTI-PLANE SHEAR RESULTS
A small amount of strain-hardening has a substantial effect on the crack tip
singularity in steady growth in the sense that the strength of the singularity s increases
strongly as o increases from zero. A value of # less than 0:02 already gives s = --0-1.
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At the same time, the O-variations of the stresses and strain-rates are less strongly
dependent on variations in small o.

In analogous stationary crack problems, such as those for power-law hardening
materials analyzed by HutcHinsow (1968) and Rice and ROSENGREN ([968), plastic
strains dominate elastic strains as the crack tip is approached and elastic strains
play no role in the dominant singularity analysis to lowest order. This is nof the
case in the above solutions, nor is it true for elastic perfectly-plastic crack growth
as discussed by RIcE (1973). Elastic strain-rates play an essential role in steady crack-
growth behavior and they cannot be neglected in the analysis, even though for
small & they are only of order afs compared to the plastic strain-rates. The singularity
fields produced here are exact solutions to the field equations involving ne approxi-
mation, except that (2.2) is taken to hold for ali r when |0 < 6,, and consequently
there is no transition to purely elastic behavior (2.3) when 1 falls below 7, ahead of
the crack.

Passage to the limit of elastic perfect-plasticity is not straightforward. However,
as already discussed, the limiting stress field appears to be the slip-line field (2.29)
used by CHITALEY and McCrintock (1971). Using the limiting value of f from (2.29)
and taking the limit of {2.24} as « — 0, one finds

cot 6, = m—0, = 0, =~ 19-664°, (3.1)

This compares with §, = 19-693° obtained by Chitaley and McClintock, who take
into account the tiny reversed loading zone mentioned earlier. We also note that
¢t = 0 for all 8 in the loading region in the limit & = 0 since 7 = 174, and thus the side
conditicn (2.25) is also satisfied. On the other hand, numerical results for 8, in Table 1
are far from (3.1), even for « as small as 1077, although 0, is still decreasing strongly
even at these small values of «. One cannot conclude from our numerical results
whether or not 8, approaches (3.1) in the limit. The important conclusion to be drawn
is that 0, is significantly affected by strain-hardening.

It is not possible to let & — O in the expression for the plastic strain-rates (2.30).
This is to be expected since the amplitude of the plastic strain-rates is not tied to the
near-tip stress field for perfect-plasticity. For o > 0, stress-rates and strain-rates are
uniquely related and the equations are elfiptic; but for « = 0 the equations become
hyperbolic and the unique relationship breaks down.

SLEPYAN (1973) has considered a problem which is similar to the present one in all
respects except, instead of J, flow theory, he uses J, deformaticn theory in the loading
region. He is able to arrive at a closed-form expression relating s to ¢,. Because of
the inherent Jack of continuity of the strain-rate when deformation theory is coupled
with elastic unloading, 8, is not uniquely determined in his analysis. Slepyan chooses
0, to give the strongest pessible singularity which leads to results very close to the
present ones in Fig. 2. Flow theory with a smooth yield surface, such as that used
here, gives rise to an effective incremental stiffness which is most likely larger than
that of an actual metal for the non-proportional stress histories invoived in crack
growth. 1In contrast, deformation theory probably underestimates the effective
incremental stiffness. Thus, it is notable that the two calculations give comparable
results for 5 as a function of o.
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4, PLANE STRESS ANALYSIS

Here g, denotes the yield stress in tension and ¢, = 0o/£ 15 the yield strain, where
£ is Young’s modulus. Let E, denote the slope of the bilinear stress-strain relation in
tension for stresses in excess of o, and now take o = E/E. With ;; as the stress
deviator and o, = (3s;;5;;)* as the effective stress, the constitutive relation according
to J, flow theory for an elastically isotropic solid is

i = a[(L+v)g;;—va,d;;1+ (320 )(1 —a)s;;0,  (loading, ¢, = 0), 4.1)
U (14 v)6; — v 0] (unloading, ¢, < 0), (4.2)

where v is Poisson’s ratio.

With ¢, &9, 6,5 denoting components of the stress-raie in an (r, ) coordinate
system centered at the crack tip, equilibrium is satisfied by introduction of a stress-
rate function according to

Gy = r_1¢',r+ 72 g Goo = P.ors G =—(r" ld’,e),r- (4.3)
Compatibility of the in-plane strain-rates requires
r 1(1‘8’98)."-’- r_lérr,ﬂﬂ -r" l‘érr,r - 2"—2(ér9,9r),r = 0) (44)

where the strain-rate components in (4.4) are those in the (r, 8) system.

In plane stress, the stress components 43, 0,4, 0,5 are taken to be zero. Under
this assumption, (4.4) becomes, on eliminating the strain-rates using (4.1) or (4.2)
and (4.3),

CCV4¢ + %(1 - a){r_ I(ra; lsﬂﬁde),rr-" r—l(a’e_ lsrrde),Bﬂ_ r ](0'; 1S:—rd-e),r—
L—2"42[’.(0510-%0.-2),8].1‘} =0 for d-e = 01 (45)

Vi =0 for ¢, <O. (4.6)

Cartesian components of stress and strain are connected to their corresponding rates
by steady-state relations analogous to (2.10):

Tij = —Tijxp L 4.7

Here, solutions are sought of the form

¢ = Kaor' ' f(8), (4.8)
(6:;, 0,) = Kaor'™1(1;(8), 1(0)), (4.9)
(Jijw Tas Sij) = KUOTS(EU(G), z(8), S;‘j(a))i (4.10)

where s is anticipated to be in the range —% < 5 < 0. From (4.3),
ty="0G+1f+1", fpo = s(s+ 1)/, te=-—sf". 4.10)

From (4.7),

and o=~ (s+1)cosO f+sind f', Zo=0+1)sinf f4cos@ [’ (4.12)
sinf i, =scos® X+, (4.13)

where 7, can be expressed in terms of 1,,, 744, {,, Using standard formulae for changes
in components under rotation of axes. Also,

ijtij-
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Reduction of (4.5) governing behavior in the loading region (¢, = 0, 8 < 0,) is
lengthy, but straightforward, and will not be given here. The result can be expressed
in the form

Y =Fla,s,0.f,f . f" L) for6<8, (4.15)

Equations (4.13) and (4.15) comprise a Sth-order system. Equation (4.15) emphasizes
that f™ is determined if the arguments of F indicated are specified (v does not enter);
for numerical work it does not pay explicitly to eliminate quantities such as #;; and
L. The possibility of a secondary loading region is excluded from consideration. In
the elastic unloading region, the solution to (4.6) is

J=by[(s+1) sin ((s—1)(m =) —(s— 1) sin ((s+ I}m— )]+
+by[cos ({s— D(m—8))—cos (s + 1 ){m— 0], 0>8, (4.16)

where b, and b, are undetermined constants and f satisfies traction-free conditions
atfd =maie f=f =0
The boundary between loading and elastic unloading is determined by d, = 0, i.e.

#8,) = 0. (4.17)
Continuity of traction-rates across J, requires
1=0/1=9, (4.18)

and these conditions can be used to solve for b; and &, in terms of f(#; ) and f'(8;).
Continuity of the r-component of the displacement-rate implies that &, is continucus
across ¢,. This, together with (4.1), (4.2) and (4.17), implies that ¢,, is continuous
across ¢,, which requires

L/"1=0. (4.19)
It also follows that ¢, is continuous across 0,. The relation
(rérﬂ),r_érr,ﬂ = r"";'e.rr (420)

reveals that [(ré,},—é,, ] must be continuous across #,. From (4.1), (4.2) and the
continuity of f and its first two derivatives, this condition is equivalent to

ol /"] = 3L =)E7 'St gog; = 0. (4.21)
Ahead of the crack, symmetry associated with Mode 1 requires
fr=f=0, 0=0, (4.22)

and in addition f is required to be regular at & = 0. To normalize the @-variations,
we take

2(0) = 1. {4.23)

The numerical procedure is similar to that for anti-plane shear except that now
there are two unknown parameters s and ¢, where

g = Z;(0)Z,,(0). (4.24)

T Neo terms are neglected in this reduction, as was also the case in anti-plane shear. As a double
check on the results presented for plane stress, and for plane strain given later. each of the present
writers has independently derived all equations. Furthermore, each writer has independently calculated
most of the numcrical results presented in the present paper.
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For a given «, with s and ¢ prescribed, fis determined from (4.15) with an estimate of
8, from (4.17). At this 0, a check is made on whether or not the two jump conditions,
equations (4.19) and (4.21), are satisfied. If not, new estirnates of s and g are obtained
using Newton’s method and the process is repeated uatil satisfactory convergence is
obtained.

TaBLE 2. Plane stress

-4 s &,
1-0 —0-5 1-398
0-75 —0468 1-410
0-25 —0-335 1-371
0-1 —0-237 1-285
0-05 —0-178 1214
0-01 —0-0864 1-068
0-003 —0-0624 1017

Selected values of s and 8, are given in Tabie 2 and a plot of s against «* can be
compared with the corresponding curve for anti-plane shear in Fig. 2. Stress
distributions in the loading region are shown as solid-line curves in Fig. 5 for the

& o0 |

s 4r- /"T;;_‘
g 2 |
0 = AR o i

C 2 4 8 8 10 12 14

g

FiG. 5. Stress distributions for & < & in plane stress. Dashed curves from perfectly-plastic slip-line
field, equations (4.25).

cases ¢ = 025, 0-0I. Also shown, as dashed-line curves, are siress components
associated with the slip-line field of an elastic perfectly-plastic solution for a crack
in plane stress. In the loading region ahead of the crack, this sclution is (HUTCHINSON,
1968)

2 1
Ogo = 20,, == 0y €08 0, O,g =" Ggsin 0. 4.25
&g \/5 0 '3 \/3 Q ( )

The f-variations for low strain-hardening (& = 0-01) are very close to those given
by (4.25). (Dashed curves for £y, and £, are not shown in Fig. 5 since they are in-
distinguishable for & = 0-01.)

Further evidence that the solution is approaching the slip-line field for perfect-
plasticity can be seen in Fig. 6, where plots are shown of #-variations of the plastic
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strain-rate defined by
wdly = Keor® ™' Pi(0). (4.26)

Note that P,(f) is very small compared to the other two components. This is con-
sistent with s, = 0 according to (4.25), so that for perfect-plasticity £, = 0.

.OST——_——__“—i—V . “—a—h——_‘T

Fic. 6. Plastic strain-rate distribution for low strain-hardening in plane stress (sec equation (4.26)).

5. PLANE STRAIN ANALYSIS

The constitutive relation is still {(4.1) and (4.2). The plane strain condition &y, = 0
gives

Gy = [ﬁ+%(] “@5%30;2]#1[0”’("7604’6")_
—%(] —0)5530, 2(5.—:5‘" + SpoGgs +20,46,0)] (5.1)

which expresses ¢35 in terms of the in-plane stress-rates. Equations (4.3), {4.4), (4.6)
and (4.7) continue to hold, while the terms

_W[-"_I(f'éaa),rr—"‘1‘5’33,r+r_2‘j'33,99] (5.2)

must be added to the left side of {4.5). The form of the dominant singularity is again
(4.8)-(4.10); and (4.11)-(4.14) still hold, although now o¢5; must be included in
s;;and Z.

The governing equation for fis of the same general form (4.15) as in plane stress,
except that it is more lengthy and depends on Poisson’s ratio v. Equation (4.16)
governing behavior in the elastic unfoading regime still pertains as does {(4.17).
Continuity conditions across @, continue to be governed by (4.18) and (4.19), but
{4.20) becomes

o) =y 13— )27 (S, +vS33)t |p=py = 0. (5.3)

At 0 = 0, equation {4.22) applies. In plane strain, the normalization (4.23) is no
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longer convenient since £(0) turns out to be small compared to Z(8,). Instead, take
max {X(6), |§| < 6,} = L. (5.4)

The numerical scheme is similar to that previously outlined for plane stress and
discussed in the Appendix.

TaBLE 3. Plane strain

a{v=14) s d, o(v=1% 5 a,
i —05 1-548 [ —0-5 1-571
0-5 —0-442 1-717 0-5 —0-436 1756
03 —0-373 1-875 03 —0:356 1-899
01 —0-197 2-174 01 —0-180 2-186
003 —0-136 2-393 0-05 —0:129 2-413
0-01 —0-0887 2736 0-01 —0-0865 2:762

Numerical values of s and §, are given in Table 3 for v = § and 4, and curves of
s as a function of «* are given in Fig. 7. The dependence of s on v is not strong, nor
do the @-variations depend significantly on v. The dependence of s on « is similar to
that in anti-plane shear and plane stress, but it does not appear that s is proportional
to o for small «.

Curves of £(8} in the loading region are shown in Fig. & where it can be seen that
the maximum value of T is attained at ¢, For low strain-hardening, « = 0-01, the
loading zone extends to O, = 157°. Stress distributions are shown in Fig. 9 for
o = 1 (the elastic solution) and « = 0-01. The results in Fig. 9 are for v = 1; the
in-plane stresses are imperceptibly different for those for v = 4. For low strain-
hardening, high triaxial stressing occurs ahead of the crack (with Z,; & HZ,, +Zy)),
just as for the stationary c¢rack in plane strain, Mode I. However, even with as little
strain-hardening as o = 0-01, the stress distribution is still distinct from the well-
known Prandt]l-Hill slip-line field at the tip of a stationary crack in an elastic perfectly-
plastic material, although it may be tending toward that limit as @ — 0. (For example,

FiG. 7. Order ol singularity of stresses and strains for plane strain,



]

Crack-tip fields in steady crack-growth with linear strain-hardening 9

0 a 8 12 16 20 24 28
FiG. 8. Effective stress distributions in plane strain.

for the stationary crack with o = 0, Z,9(0) &= 29 and Z,,(0) = 18 with the present
normalization. Figure 9 can be compared with HutcHinson (1968, Figure 53) In
this respect, plane strain growth seems to be different from anti-plane shear and plane
stress discussed above. This is not altogether unexpected. The perfect-plasticity
slip-line fans in anti-plane shear and in plane stress lie ahead of the crack and the stress
distributions in the fans are fully determined by symmetry and equilibrium, in-
dependent of boundary conditions at 8 = £ r. In the stationary plane strain problem,
a slip-line fan lies above (and below) the crack in the region =/4 < # < 3an/4, and
stresses ahead of the crack do depend on the boundary conditions at & = =+ behind
the crack. Thus, it is not surprising that elastic unloading in the growing crack

’ PLANE STRAIN

Fic, 9. Stress distributions lor & << 0, in plane strain.
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problem has more influence on the stresses ahead of the crack in plane strain than
in the other two cases.

Components of the plastic strain-rate (4.26) are shown in Fig. [0 for the low
strain-hardening case ¢ = 0-01. The predeminant component is £%. Ahead of the
crack, the plastic strain-rates are relatively small, although not negligible. Starting
at & ~ 20°, &5 becomes substantial, extending back to 8, =~ 150°. By comparison,
plastic strains extend only from 8 = 45° to 8 = 135° in the stationary problem.
(See, for example, the strain distributions given by HutcHmNsON (1968) for a low
strain-hardening power-law material.)

a=00I
veIsd

FiG. 10. Plastic strain-rate distribution for low strain-hardening in plane strain (see equation (4.26)).

6. DIsCUSSION

A moderate amount of strain-hardening gives rise to a fairly robust singularity.
The amplitude factor X provides a unique measure of the intensity of the singularity
fields, and it is through K that the overall geometry and the loading make their
presence felt at the tip. The determination of X is a separate problem in itself and it
has not been addressed here.

Even with strain-hardening, the singularity in the strains is not nearly as strong
as in the stationary problem. This is the main source of crack growth stabilization,
as first shown by McCrintocK (1958) and as discussed further by Rice (1968, p. 277).
For example, for an elastic perfectly-plastic material with a stationary crack, the
strains vary like r ~! as the tip is approached. According to the present steady-growth
analysis, the corresponding variation is r°, where 5 is typically on the order of —0-2
for moderate strain-hardening. (The limit ¢ — 0 leads to a logarithmic variation in
r for the strains since the strain-rates are then proportional to ™', as noted in previous
work.)

For Jow to moderate strain-hardening in anti-plane shear and plane stress, the
#-variations of the stress fields ahead of the crack are not significantly different from
those for the corresponding stationary crack in an elastic perfectly-plastic material.
However, in plane strain two new features have emerged. First, the level of triaxial
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stress ahead of the crack may not be as intense as in the stationary case. Secondly,
there appears to be a redistribution of the crack-tip strain-rates, and therefore strains,
towards the forward part of the field. The first effect would be expected to have a
stabilizing influence, while the latter would probably have the opposite effect.
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APPENDIX

Numerical Analysis
. Anti-plane shear

To integrate forward using (2.22) and (2.19) with f(0) = 1, //(0) = 0 and T,
regular at § = 0, we start the solution using Taylor series expansions about # = 0:
F=1+3a0*+54b0%+ .. .,
fr=ab+1b0*+ .., (A1)
Ty =0+uf®+ .. ..

Direct substitution into (2.19) and (2.22) gives

a=s(s"—s+1—a)(x—s),
7= (a+)(1—s), (A.2)
#=(b—25A—2a+43as)/[6(3—3s)],

together with a more lengthy expression for & which will not be shown. This expansion
provided values of fand T, at 8 = A#, where A8 is the integration step-size. From
this point on, the integration was carried out numerically accerding to the following
prescripticn.

Let f;, f/ and Ty, be known values at # = 7A8. Then, f” and T}; may be calculated
from (2.22) and (2.19). To calculate values at 8 = (i+ 1)Af, an implicit integration
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scheme was used, where

Jros =St fIAO+L£7(A8)* + Ee(AD)?,
fiv1 = HfIAB+e(AGY, (A.3)
Tie1 = T+ TLAG+IT(AD) +3TT(AG).

Here, ¢ is chosen, by straightforward numerical iteration, so that
=+ cAb

equals f*at § = (i + 1A calculated from (2.22) using f; ., fi 4 L and T,;, , given by the
above formulae. Note that T;and Ty} can be determined from derivatives of (2.19) as

T{; = —(sin 6)7 *(sTy; +f) +cot 8 (T}, + [y + 57, (A.4)
T)! = 2sin )72 cot O (sTy; 1) —2(sin Y *(sT|;+ ) +cot 8 (sT{; + ) + sf". '

With a typical step-size of A = 0-01 rad, the above scheme was found to be accurate,
efficient and stable.

As discussed in the text of the present paper, the integration is carried forward
until a value # = 0, is found where r = 0. At this value of 8, the left side of (2.24)
is evaluated. The whole process is then repeated with a slightly different value of s.
These two resufts can then be used to obtain an improved estimate of § for which
(2.24) will be satisfied. The entire process is repeated until satisfactory convergence
of s is obtained. By varying the step-size Af, we have obtained some insight into
the accuracy of s and 0. The valueis n Table [ appear to be accurate to at least three
significant figures,

2. Plane stress and plane strain

The numerical methed used for the two plane cases 1s analogous 1o that for anti-
plane shear. Now, however, there are two unknown parameters, s and g, which must
be iterated and two conditions at @, which must be satisfied, equations (4.19) and
(4.21) or (5.3). This is accomplished using Newton’s method. Let  denote the left
side of (4.19) and e denote the left side of (4.21) or (5.3) for given values of s and ¢.
Let s+ As and g+ Ag be improved estimates. According te Newton’s methad, As
and Ag should be chosen to satisfy the simultanecus equations

dd

o be é
As+5 AQ=0, e+ As+ o Ag=0. (A.5)
s dq

d —
T 2

The partial derivatives in (A.5) were evaiuated numecically using approximate
formulae such as

[d(s+¢e, e)—d(s, e)], (A.6)

-~
~

QJ]C}J
R~
M| =

where ¢ is chosen sufficiently small compared to s.

Integration of {(4.15) is again started using a Taylor series about & = 0 which is
correct up to and including terms of order 0* in fand order 8% in Z,,. The integration
formula for f;,, is now

1 i 1 .
Fror = fkfA0 4 S A0 + L TAOY + A0 + 88 (A
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with expressions which follow directly for f{, ,, efe. In this expression £, is calculated
from (4.15) and ¢ is found numerically such that f;*+ cAf equals f™ evaluated using
(4.15) at & = (i 1)AS, in analogy to the implicit scheme used in anti-plane shear,
Of the three cases, plane strain placed the most severe test on the numerical
method. For [ow strain-hardening, the higher derivatives of f become very large in the
neighborhood of 8 = -4, as can be inferred from the plot of 2, in Fig. 10.





