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INTRODUCT ION

Continuing work done previously in Ref. [1-5], we will consider a class of
small strafnm, fully plastic crack problems for incompressible povier law
materials. In simple tension the stress and strain are related by

eleg = 0(0/00)" (1}

where £, and J, area reference strain and stress, respectively, and «

is a constant. Equation {1) is generalized to multiaxial states of stress
using Jz deformation theory according to

€458 = (U2)alog/o)™ s, /0, (2)

where Sij is the stress deviator and the effective stress is given by

T #3sij51j/2 (3)
As first noted by 1lyushin [6], a solution to a boundary value problem in-
volving a single load or displacement parameter which is increa§ed mono-
tonically has two important properties. First, all guantitfes increase in
direct proportion to the load or displacement parameter raised to a power.
For example, if P 15 a load parameter the stress at every point fis

proportional to ¥ while the strain is proportional to P" . The second
property follows from the first. Because the deformation and stress

history is proportional at every point a fully plastic solution based on Eq.

(2) is also an exact solution to the same problem posed using .J2 flow
{incremental) theory. Furfhermore, by identifying Eij as the strain rate

the fully plastic crack problems apply to a power law creeping material as
discussed in [1].

As a consequence of the known simple functional dependence of any
quantity of interest in a crack problem, such as the J-integral or the
load point displacement, or the foad or displacement parameter, it only
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remains to determine how this dependence varies with geometry. It is
feasible to tabulate this geometric dependence once and for all for a
number of basic configurations, just as has been done for linear elastic
crack problems. Analytic solutions to several problems in antiplane

shear have been given by Amazige [2]. But for plane problems numerical
methods appear to be necessary for generating solutions. HNumerical rasults
for the center-cracked strip in tension and the edge-cracked strip in

bending Tor plane stress have been given in Ref. [3] and these will be referred

to further within the present chapter. The primary purpose of the present
thapter is to present new results for the edged crack in plane strain bending
and also to present rmore accurate results for the center-cracked strip in

plane strain tension than those given previeusly in Ref. [1]. We will also make

comparisons with recent results of Parks [4] and Ranaweera and Leckie [5]
for center-cracked strip. Results for the double edge-cracked strip in
tension have been given in Ref. [5] for plane stress and plane strain.
Fully plastic crack solutions have been employed together with Tinear
elastic solutions to produce relatively simple approximate formulas for
quantities such as J and the crack-opening displacement which interpolate
over the range from small-scale yielding to large-scale yielding [3, 7].
Recently such interpolation formulas have been used in the investigation of
the stability of small amounts of crack growth under J-controlled growth
conditions which may involve large-scale plastic yielding [8-10]. These
interpolation methcds are in need of further development, but they hold out
promise for reasonably accurate, simple estimates of quantities of interest
in crack problems involving moderate to large amounts of plastic yielding.

NUMERICAL METHOD

In plane strain the incompressibility of the power law material (2) imposes
a constraint on the in-plane displacement gradients which must be enforced
in any numerical method. Goldman and Hutchinson [1] introduced a
compressible material which reduced to Eq. (2) in the incompressible limit.
They used a finite element method and attempted to extirapoiate numerically
to the limit of incompressibility, but only with limited success. Parks
[4] and Ranaweera and Leckie [5] used a Lagrangian multiplier technique to
enforce incompressibility in their finite element solutions. The
disadvantage of intreducing Lagrangian multipliers is the considerable
increase in the number of unknowns and the associated increase in expense
of the calculations. This disadvantage is largely overcome if the
multipliers are eliminated algebraically prior to numerical computation.
The results in plane strain reported below have been obtained using a
computer program developed for incompressible materials by Heedleman and
Shih [11]. In addition to eliminated multipliers, the program makes use of
a medified Newton method for values of n greater than unity.

Parameter tracking is employed using the sglution for n =1 as the
starting point in the search for the solution at a somewhat larger value
of n , which in turn is taken as a starting point for an even larger value
of n . At the larger values of n (say, n > 7) some care must be
exercised to ensure convergence of the Newton's method. In some cases it
proved necessary to employ several linear iterations before using the
Newton procedure.

Quadrilateral elements compased of four constant strain triangular
elements are used with the internal degree of freedom condensed out
consistent with the incompressibility requirement (11]. In the finest mesh
used there were 12 quadrilateral elements in the circumferential direction
about the crack tip {from 2 =0 to 1) and 24 elements in the radial
direction from the tip to the external boundaries, Tnis was the mesh used
to calculate the numerical results presented below. A somewhat cruder mesh,
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with B x18 elements, was used to obtain some insight to the effect of mesh
refinement. In general, the J-values changed by only a few percent in
going from the crude to the finer mesh, while the crack opening displace-
ment 5, introduced below, was somewhat more sensitive to the mesh size.
At the low n-values, for example in changing n from 3 to 5, typically
three Newton iterations were required to achieve satisfactory convergence.
From n =7 to n =10, eight iterations was more typical. The
calculations were carried out on a COC-7600 computer, TFor the finer mesh
one iteration involved slightly less than 4 seconds, while for the cruder
mesh one iterztion took slightly over one second.

. Numerical results will be presented for the J-integral, the load
point displacement and for certain crack opening displacements. The
J-integral was evaluated using the path-independent line integral of Rice
[12). As a check on the numerical accuracy a number ¢f contours
encircling the crack tip were taken. In all cases the numerically computed
values of J were indeed found to be the same to within about a percent on
all contours. Accuracy will be discussed along with the numerical results
given below. He will also give some discussion of the range of dominance
of the crack tip sirgutarity fields in the last section.

EDGE-CRACKED STRIP IN BENDING
The geometry of the strip is shown in Fig. 1. An uncracked strip of width

b and height 2h in plane strain pure bending undergoes a relative
rotation of its ends given by .

8{h}

{4)

x
no crack b

230 gh [[2n+1] /§W4}n

where M is the resultant moment of the stresses per unit thickness, i.e.,

b
M= ! oyy(x,h)xdx {5)

For the strip with crack of length a the stress distribution associated
with the pure bending of the uncracked strip is imposed on the ends
y = th . The load point rotation, through which M works, is defined as

b
Me(h) = z] 0, (s Yy (x,h)dx (6)
0

where uy is the displacement in the y direction. The contribution to
the load point rotation due to the presence of the crack, ec(h) , Is
defined by

e.(h} =8(h) - B(h} o rack )

The numerical results presented below were computed with h/b = 2 .
Previous work indicates that ec(h) is then ecsentially the limiting value

Bc(m) for an infinitely long strip.- Henceforth, BC , with J and &
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introduced below, will be assumed to be values for an infinite strip and
the implied dependence on h will be dropped.

M, Br2

//—*\ //"\

| - — =2 B3 !

N /

M, B/

Fig. 1 Edge-cracked strip in bending

With ¢

= h-a denoting the width of the remaining 1igament, the
1imit moment of a

perfectly plastic (n = «)} strip in plane strain is

2

M= 0.364 a,c {8

as long-as a/b is not too small. Following Ref. [3], we use HO to normalize

the moment such that the general expressions for the J-in}egra1. the crack
opening displacement at the edge of the strip, § = u2(0,0 )- uz(0.0') (see
Fig. 1), and b, are of the form

+1
J = ag e .c byasbn) ()" (9)
§ =acp hz(a/b,n)(M/Mo)n (10)
6, = ac, h3(a/b,n){M/Mo)n : (1
Here h1 s h2’ and h3 are dimension}ess functions of a/b and n .

Calculated values of h] » hZ’ and h3 for plane strain are given

in Table 1 for a/b = 1/4, 1/2,and 3/4 and for n = 1,2,3,4,7,and 10. For
fixed n , the normalizations in Eqs. (9)-(11) are such that the h's approach
finite, nonzero limits in the deeply-cracked limit as a/b -1 . It can be
seen from Table 1 that h] at a/b = 1/2 differs by less than one percent

from its valués at ajb = 3/4 for all n > 3 . This suggests that the
deeply crackeo Yimit is already attained at a/b =1/2 Ffor n= 3 . An
independent check on this assertion can be had by using ancther formula for
J derived in [13] under the assumption that the deeply cracked limit
pertains. When the remaining tigament c¢ is sufficiently smal} so that

J depends on ¢, but not a, the decply-cracked limit gives
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Using 5q. {11) in Eg. (12} we can evaluate Jdc

Jdc= 0.728&[

The velues of h

close to the values at a/b = 3/4

3 in Table 1, at

n+l

a/b = 1/2

as is hy ;

values are within 10 of each other.
of Jdc to J given by {9} is

J
K, p.7a

|

]h3(a/b.n}coe

In terms of h3.

clrﬂ n+l
o \MO

are not quite as

(12)

The result is

(13)

but, nevertheless, these

At the same value of M , the ratio

n+

1]

4

ha(a/b,n)
h]ia/b,ni

(14)

Zsing the values from Table 1, we find.for example, that this ratio

is 1.C¢ for n =15 and 1.07 for
n=5 2nd 1.09 for n = 10 when

all n - 3 even when a/b
in the values in Table 1 of

of as izrge as 10.

= 1/2 .

hy

n =10

when

a/b = 3/4 .
differance from unity reflects numerical error in our results rather than a
true csparture from the deeply-cracked limit.
the rztio JdCIJ was found to be within one or two percent of unity for

a/b = 1/2 and 1.06 for
KWe believe that this

In the plane stress problem

Table T Plane Strain Strip in Bending
in=1]n-= n = n=>5 =7 = 10
‘h| P127 125 [ vz [1as 108 | .957
L. % hy | 5.96 |5.62 |5.25 |4.63 | 4.13 .52
(h3 {866 | 124 | 149 | 1.4 81 .72
‘h] t1.49 | 133 |12y | 1ea | o.o06 | 742
2. 10, (5.2 | 3.6 | 3.20 | 247 2,08 [ 1.6)
Ihs i2.68 | 2.51 |2.26 |1.82 | 1.5 .20
[h] 11.40 | 1.3¢ ¢ 1.23 | 1.03 .909 | .747
2.3 hy {438 | 3.22 | 2.65 | 2.03 | 1.69 .36
fh3 1 3.59 | 2.82 | 2.3 |1.8 52 | 1.23

Thus we expect that there may be errors
or possibly h3 at the higher n values

For the purpose of comparing plane strain with plane stress, values
a/b = 1/2 for plane stress taken from Ref. [3] are

Equations {8)-(11) still apply, except that in

of h h,» and h

172 3

repeated here in Table 2.

~ plane stress

for

M0= 0.2679 Gyt

2

{15)
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Plots of N, , h2' and hy against 1/n for a/b = 1/2 are shown in

Fig. 2. For h2 and h3

within a few percent of one another for all n . The plane strain values
of h] are about 30% higher than the corresponding plane stress values.

{The difference between h] at n =1 1in the two cases is due not only to

the Poisson ratio (v = 1/2) effect on J, but also to the different
normalizations of M using Eq. (8) or Eq. (15).)

the plane stress and plane strain values are

Table 2  Plane Stress 5trip in Bending

n=1|n=2|n=3|n=5{n=72]n=10

h1 1.104 | 0.97 0.851 | 0.717 | 0.653 | 0.551

2. 00h, (613 | 364 |2.35 |2.26 | 1.95 | 1.6)
hy | 275 | 2.36 |2.03 |1.59 |1.37 | L2
18- L ]
2 ek ]
plane stromn
10 Bok L e A
a8 plane alrasy A 8.0r plone stroin
hi"}-“)
& 10b
ar- 2.0t
hgtdm
2 ] 1ok |
S+ % & w % z s 6 & ©
im 148

Fig. 2 Functions in Eqs. (9)-(11) for edge-cracked
strip in bending for a/b = 1/2

A further check on the fully plastic plane strain results can pe seen
from the relation between & and ac . For a rigid-perfectly plastic

strip (n = «) the center of rotation of the slip 1ine field is located at
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a distance 0.369¢c from the crack tip, as depicted in Fig. 1, so that

S . [
2. 1+0.369 £ {186)

Consider the ratio of & to ag,, from (10) and {11), i.e.,

ny

[
— = = {17)
ch h3
Using the values in Table } 1t {s found that this ratio is within one or

two percent of the limiting vatue (16} for a1l n >3 for a/b = 1/2 and
for a/b = 3/4 .

CENTER-CRACKED STRIP IN TENSION :
The calculations of Goldman and Hutchinson [1] are redone in this section.
A strip of width 2b and length 2h with a centered crack of length 2a
is considered,as shown in Fig. 3. A unitform stress distribution

oyy(x,:h) = P/(2b) (18}

is imposed on the ends where P is the load per unit thickness carried by
the strip. The load point displacement & 1is defined by

b
a(h) = J [u (5:0) - u, (5,0 s (19)
b
With
- = n
A(h)no crack “3“€oh[zgga] (20)
Q

as the Yoad point displacement in the absence of a crack, we define Ac as

a.(h) = alh) - alh} ooy {21)

The calculaticns reported below were made with h/b =2 and it is again
expected that 4. can be regarded as being independent of h for
h/b > 2 .

T The limit load per unit thickness P0 for a cracked, perfectly
plastic {n = =) strip is

P, = 4cco/ﬁ (22}
Using the normalizations introduced in [1] and [3], we write
J = acoeoa(c/b)g1(a/b,n)(P/PO)n*1 (23)
_ n
§ = e 2 gz(a/b.n)(P/Po) (24) ‘
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b, % ugga 9;(a/bn)(P/P)" (25)

where now & = u (U,0+)-uy(0,0') is the opening displacement at the center
of the crack. Values of 9y » 9ps and g, are given in Table 3.

2n

Fig. 3 Center-cracked strip in tension

TJable 3 Plane Strain Strip in Tension

n=1 n=15]n=2|n=2jn=5|n=7|n=10
g, | 2.57 | 2.90 311 | 3.35 | 3.49 | 3.43 | 3.23
2. %—{gz 2.79 | 2.99 3.09 | 3.4 | 300 |2.79 | 2.47
oy | e8| 7se | w2 |17 | 173 97 207
g, | 219 | 2.25 2.27 |28 | 183 |11 | 1.44
2. %—{gz 2.00 | 1.99 1.87 | 161 | 123 | 998 | .778
g, | 798| 9% |16 | Va5 |10 | gse | .77
g, | 200 | 1.85 1.80 | 1.57 | t.2a | 1.0 .793
2. %—%gz 1.0 | 1.08 899 | .637 | .400 | .295 | .204
g, | 81l 763 733 | 593 | .309 | .204 | .208

These values differ by as much as 20% from those in Ref. [1] in some
instances. Parks [4] gave results for the case a/b = 1/2_ for n-values
in the range 1 <n < 3 . He also noted that the results in Ref. [1] for J
were substantially higher than those he determined. The results for h1

in Table 3 for afb = 1/2 and n = 2 and 3 are within 5% of the
appropriately converted values given by Parks. The results of Ranaweera
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and Leckie [5] are alsé in reasonable agreement with the results of
Table 3.3

In the deeply-cracked limit, ¢/b << 1 , J can be expressed as [13]

&

- ;

Jdc = 5 {ZJ PdAc- Pdc} (26)
0

Using Eq. (25) in Eq. (26) one can obtain

m]g3(a/b,n)[%]nﬂ (27)

J, . = —g-ao € a
d¢ A oo

The ratio of this expression for J based on the deeply-cracked assumption
and J from Eg. {23} fis

206 2 o

From the values in Table 3 this ratic is found to be within 3% of unity for
n>5 when a/b=3/4 and for n > 7 when a/b=1/2 . This internal
consistency in the results attests to the numerical accuracy and gives some
indication as to the values of a/b and n needed for the deeply-cracked
limit to prevail.

In plane stress the formulas for J , &, and &, Egs. (23}-{25), still
pertain with

PO a 200c (29)

instead of Eq. (22}. Values of 9 9y and 93 for plane stress taken from Ref.

[3] are repeated here in Table 4 for the one case a/b = 1/2 (additional
cases can be found in Ref. [3])}. Plots of 9> 9ps and 93 against 1/n are

shown in Fig. 4 for a/b = 1/2 . The difference between these functions
in ptane strain and plang stress is even less than for the corresponding
functions for the edge-cracked strip in bending.

Table 4 Plane Stress Strip in Tension

n=11n=15(n=2|n=3|n=5%|na27/|n=10
‘g‘ 2.21 2.24 2.20 2.06 1.81 1.64 1.47
§-= %—lgz 2.38 2.8 2.00 1.70 1.3 1.08 .892
95 .924 1.09 1.18 1.2% 1.18 1.05 888

A promising stress-based method for solving this class of
incompressible plane strain problem has also been developed (F. A. Leckie,
private comaunicatfon).
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Fig. 4 Functions in Egs. (23)-(25) for center-cracked
strip in tension for a/b = 1/2

DOMINANCE OF THE CRACK TIP SINGULARLTY FIELOS

The usual argument which is made to justify the use of J as a fractgre
parameter {s based on the fact that J can be thought of as the amplitude
of the crack tip singularity fields. For the power law material Eg. {2} the
so-called HRR singularity fields [14, 15} are of the form

1 1
n+T; el
J .
%3 * % acoeoln] (r) cij(e.n) (30)
n n
o+l el
€57 aeo[ao el ] (r) Eij(a'") {31)

oon

where 1, is a numerical constant depending on n . Asymptotically as the

crack tip is approached, the singularity f1e1dslbecome a better and better

approximation to the actual stress and strain f1g1Qs as Toqg as n p o,

i.e., some hardening is present, and as long as finite strain effects do not

invalidate the small strain assumptions on which Egs. (20) and (31) are based.
The size of the region over which the singularity fje]ds Eos. (30) and

(31) dominate is of some importance in assessing the validity of a

J-based approach. Recent work by Mcteeking and Parks [1§] has jnd1c§ted

that the size of the region dominated by the crack tip sungu]ar1ty fields

is much larger in the pltane strain bend specimen under_ful]y'y1elded

conditions than in the center-cracked strip under tension. Indeed, the

zone of dominance in the center-cracked configuration is so srall un@er

fully yielded conditions that douwbt would seam to be cast on the v§11d1ty

of using J for this configuration excepl for app\lcat1ons involving leng

cracks. Our study suggests the same conclusion. Figure 5 shows the
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tensile stress directly ahead of the crack, U}y(r) , a5 calculated for the

strip in bending, for the center-cracked strip in tension, and from the
singularity field (30), all for n = 3 and at the same value of J .
Corresponding results for n = 10 are shown in Fig. 6. Because of the
pure power stress-strain relation, the scale of the stress axis in these
figures increases linearly with increasing applied load so that the
relative positicn of the three curves remains fixed. It is evident that
the region cver which the tensile stress ahead of the crack is given with
reasonable accuracy by the singularity field is significantly smaller in
the center-cracked configuration and, in fact, does not appear to even
exist when n = 10 to the extent that our numerical results can resolve
the near-tip behavior. Amazigo [17] has recently closely analyzed his
exact fully plastic solutions for antiplane shear [2] to discover the
extent of dominance of the crack tip singularity fields. He finds a strong
dependence on the hardening index n with the size of the dominant region
decreasing rapidly for n-values above 10. As noted by Rice [18], a number
of impartant questions connected with this issue, and with the significance
of J , if any, independent of its role as the amplitude of the crack tip
singularity fields, remain to be answered,

——+ Bend Bor
——— Canter Croched Ponal
# » ¢ HAR Flald ]

-—-.Bcndlor ' _"' I
| g sl
—1 ]

Fig. 5 Comparisons of stress ahead Fig, 6 Comparisons of stress ahead

of crack tip with stress of HRR of crack tip with stress of HRR
singularity field at same value of J singularity field at same value of J
for n=3 for n =10
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