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Abstract

Recent work an the mechanics of necking and localization in metals is reviewed.
Several approaches are discussed including bifurcation analyses of diffuse
necking modes and shear band modes and nonlinear imperfection growth analyses.

Various configurations are considered including slabs,

bars and sheets.

Emphasis is placed on the influence of constitutive assumptions on predicted

behavior.
1. INTRODUCTION
Necking and localization phenomena in metals and
other materials have been receiving increased
attention from mechanikers in recent years. In
part, this stems from a desire to understand how
these phenomena fit into the general theory of
nonlinear continuum mechanics, In addition, there
are a number of issues related to material
forming, testing and failure for which a better
understanding of the underlying mechanics appears
to be essential for further progress. In metals
the phenomena fall within the context of finite
strain plasticity theory. Familiarity with this
Although
there are stil} many points to be resolved,

¢class of problems is rapidly increasing.

particularly with respect to constitutive
characterization, much can be learned from
existing field equations for the incremental
deformation of finitely deformed elastic-plastic
solids. The development of numerical methods for
dealing with finite strain incremental problems
has also progressed rapidly, and this in turn has

stimulated interest in the basic theory.

In this review, a selection of recent work will be
discusséd which falls under the general heading of

necking and localization in metals. Our primary
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aim is to convey a sense of the potential for
progress which appears possible on several aspects
of the subject and, at the same time, to bring out
the fact that the major obstacle to further
progress is, in most instances, inadeguate
No attempt has been

made to exhaustively review the subject or to

constitutive descriptions.

provide an extensive bibliography on necking.
Instead, we have drawn from a rather limited
nunber of references and we have tried to bring
out the common ground in various aspects of the
subject, We begin with a discussicen of necking
and shear band localization in the plane strain
deformation of slabs and go on to discuss necking
in bars and thin sheets, The significant effect
of material straii~rate dependence is discussed in
the last section.

Much of the confusion concerned with the
generalization of small strain plasticity theory
to a finite strain formulation which existed in
the past now seems to have been largely cleared
up.
be resolved that are strictly large strain issues,

A number of fundamental issues do remain to

but there appears to be fairly wide-spread
acceptance of a general framework for finite
strain plasticity. This generalization, with its

associated variational principles, uniqueness and



bifurcation conditions, is largely due to Hill
{1-3].
time-independent plasticity fits in this
framework.
2., BIFURCATI(N PHENOMENA TN PLANE STRAIN TENSION
The most thorough study of the relation between
various possible bifurcation modes and necking
behavior in tension has been for the plane strain
deformation of a rectangular slab [4-5]. Take the
faces of the slab to be parallel to the x, and X,
axes and assume the initial properties to be
orthotropic (possibly isotropic) with respect to
these axes. The lateral faces perpendicular to the
2 (x, = tae) are traction-free and the two
end faces (x1 = ta1)
boundary conditions in which the ends undergo a
relative separation in the x1—direction with
vanishing shearing traction. The state of uniform
in-plane tension is one possible solution for any
If it
is assumed that the material is incompressible,

X . axis

are subject to idealized

amount of relative separation of the ends.

then the incremental in-plane deformations from
this state are governed by only two instantaneous
moduli [6].
will have more than one possible branch to its

For an elastic-plastic solid, which

rate-constitutive relation, the bifurcation mode
will be assoclated with the branch having the
"softest® moduli which includes the proportional
With éi )

loading increment. 3
as the Cauchy stress and gij denoting its

as the strain~rate,
O'ij
Jaumann derivative,

*

1o : )
911~ %2 =3 Beley T {1
* . [
O1o T 2H€y, v (2)
with é11 + é55, =0 . Thus, Eg is the

instantanecus tangent modulus relating increments
in true stress and natural straln (511 = Etéu)
for an increment of pure in-plane tenslon; p 1s
the instantaneous shear modulus.

If we consider an elongatien history in which the
two ends of the slab are separated monotonically,
the moduli will have their elastic values (which
Beyond
is assumed to decrease monotonically

may be stress dependent} prior to yield.
yleld, Ee
in the uniform state, while the dependence of g on

All the work discussed here for
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the stress in the uniform state depends on the
particular choice of constitutive law., For a
solid with a smooth yileld surface, u is
necessarily the instantaneous elastic shear
modulus since the plastic strain increment has no
shearing component. For a solid which develops a
corner on its yield surface, u will decrease with
increasing stress in the uniform state, although
at a slower rate than the tangent modulus, The
instantaneous moduli of the J, deformation theory
of plasticity are often used to model the total
loading branch with the softest modull of a yield
surface with a corner., In the small strain range,
the shearihg modulus for the in-plane deformation
of the incompressible slab is given by

g = 35/3 (3

according to deformation theory for an initially
isotropic solid, where Eg is the secant modulus of

the equivalent wuniaxial stress-strain curve.

As the slab is elorgated in its uniform state the
maximum load {per unit length in the x3—direction)
is attained at the stress where Et has been
reduced to

B (4)

The first possible bifurcation from the uniform
state cannot occur below the stress (4) associated
with maximum load as long as 2y > E, which will
almost always be the case in an elastic-plastic
solid. A rather complete study of eigenétresses
and eigenmodes covering essentially the entire
range of material and geometric parameters has
been given in Hill and Hutchinsen [5). For a
relatively slender slab, with current length
and thickness a, such that

9

Y = -rraz/(2al) << 1 {5}

the lowest bifurcation stress eccurs just beyond
maximum load when

{6)



A dependence on Eg/u appears first in the term
For a solid which is rigid in shear,
0, the lowest bifurcation stress for

15 given by the smaller of

of order Ys.
- lies E/p=
arbitrary Y

Y

sin(277

{7)

. where the plus goes With a symmetric mode (with
respect to ¥, = )
anti-symmetric mode. This limiting solution of
Cowper and Onat [7] was one of the first

and the minus with an

- diffuse-mode necking bifurcations to be obtained.

The uniform state admits shorter wavelength
bifurcation modes of a diffuse nature at stresses
In fact,
there is necessarily an infinity of medes, with
all possible combinations of symmetry and
anti-symmetry with respect to the two planes Xy =

above the lowest bifurcation stress.

0 and Xo = 0 before the stress exceeds the
value given by
1/2
G- 1 4 O [2-e (8)
Et E.'t 2uta

This is the stress at which surface instability
modes of arbitrarily short wavelengths set in. In
the range of deformation in which (8) applies
Et/y << 1, unless the hardening rate is quite

large, and (8) can be replaced by the
approximation
o = VIuE (9}

At a still higher stress, the governing equations

cease to be elliptic and become hyperbolic. Then
localized shear-band bifurcation modes become

possible., The stress separating the elliptic and
hyperbolic regimes is
1/2
4
g = Et(Eﬁ - 1) (10)
o
which for E /u << 1 is approximately
6 = 2V, E
2ViE, (11)

The above bifurcation stresses are derived
assuming a uniform state of in-plane tension at
the instant of bifurcation, while in an actual

history the stresses would cease to be uniform

a9

With
realistic end conditions nonuniform stresses

beyond the lowest bifurcation point.

develop upon first application of load and
symmetric bifurcation would not be expected. As
necking progresses the stress field becomes more
22at the
Nevertheless, as lorng as 611

nonuniform with increasing values of o
center of the neck.
>>cr22
the stresses at which the short wavelength modes
and, in particular, the localized shear-band modes
set in are reasonably accurate.

it can be expected that the estimates for

Imposition of
hydrostatic tension or pressure does not alter the
state of shear-band formation.

An example which illustrates the above sequence of
events has been studied experimentally and
theoretically by Asarc [8].
idealized model of a single crystal in which two

Asaro considered an

families of slip planes are symmetrically disposed
about the tensile axis. The normal and slip
plane,
and the slip directions make an amgle ¢ with the
tensile axis (xy). Elastic effects are
and it is assumed that there is no
The
instantaneous hardening coefficient for each
system is h so that t = hy, where Y is the
shear strain-rate and t

direction of each plane lie in the X=X,

neglected,
cross—-hardening between the two systems.

is the rate of increase
of resolved shear stress on the crystallographic
slip plane. With both systems active, the
incremental constitutive relation is precisely of
the form (1) and (2) for in-plane deformations. -
Rsaro finds

2h

(sin 262 (12)

h +6 cos 2¢
2{cos 2(;5)2

In the test [8] the single crystal displayed

diffuse necking at first and then gave way to
localized shear bands after further straining.
For ¢ = 35°

orientation

corresponding to the slip plane
in the single crystal when
localization set in, the analysis using (10} with
(12) indicates that ¢ =~ 15h = 7E.. The angle
which the shear band makes with the tensile axis
according to the analysis is approximately 40°.
From (6), diffuse necking starts when ¢ = Ey o and



thus shear band localization is postporied well
beyond the onset of diffuse necking. Asaro argues
that the stress level required for shear band
formation under these circumstances is consistent
with the expected hardening level at that level of
straining, From a metallurgical standpoint, these
results are significant because the bands form
while the systems are still hardening (h > 0},

and in this sense the material is still stable at,

the macroscopic level. For a crystal orientated
for single slip, a localized shear band requires
an ideally plastic or strain softening state,
assuming the classical Schmid law applies., When
the Schmid condition is relaxed, for example,
allowing for some influence on slip of the shear
stress acting on a cross-slip plane, Asaro and
Rice [9] have shown that it is then also possible
for shear bands to occur with positive hardening
Thus, the conclusion from
these two studies is contrary to the commonly held
view that highly localized straining in a crystal
requires work softening or,
non-hardening of the slip systems,

of the slip system.

at least,

3. NECKING QF BARS UNDER UNIAXIAL TENSION

The conventional wisdom based on Considére's one
dimensional analysis is that necking of a bar in
uniaxial tension starts at the maximum load. One
of the perplexing early results in bifurcation
analysis is that necking-type bifurcation modes
are not possible in a tensile bar of a
rigid-plastic solid with a smooth yield surface.
More recently, however, it has been shown [10, 11]
that allowance for elasticity leads to a necking
bifurcation just slightly beyond the point of
maximum load if the bar is not unduly stubby, in
general accord with the Consid}ere result, Let L
and R be the current length and radius of a
uniform round bar whose lateral faces are subjJect
to no traction and whose ends are subject to an
imposed uniform relative axial separation with no
shearing tractions. For a solid with properties
which are initially uniform and isotropic or
transversely isotropic with respect to the axis of
the cylinder the fundamental solution is the state
of uniaxial tension. The lowest bifurcation

stress has been obtained for the case of an

Y0

incompressible elastic-plastic solid with
transversely isotropic elastic moduli and with a
smooth yield surface [11]. The result is not
strorngly dependent on the elastic anisotropy. For
the case in which the elastic moduli are governed
by an lsotropic relation between the Jaumann-rate
of the Cauchy stress and the strain-rate, with
elastic shear modulus g, the lowest bifurcation
stress assoclated with an axisymmetric necking
mode is

2
= Y e
1 + 5 &

f T
t 192 t

4 6
+ o(‘r .Y f_:“—) an
t
This is an asymptotic formula valid for slender
bars for which Y = 7R/L << 1. Here, E¢ is the
tangent modulus at bifurcation relating an

increment of true tensile stress to an increment
of natural strain (i.e., § = E.&).

The maximum load condition is again ¢ = E. .
Equation {13) suggests that for a solid rigid in
shear, i.e. in the absence of any elasticity with
i-+w, no bifurcation is possible, which can be
demonstrated directly. For slender specimens with
Y << 1, bifurcation will be delayed only slightly .
beyornd maximun load according to {13), even though
#/E,. may be as large as 100 . The difficulty
assoclated with the limit of a rigid-plastic solid
derives from the assumption of a smooth yleld
surface, If the material is modeled by a
deformation theory of plasticity, the strain-rate
is not subject to the constraint imposed by the
smooth yield surface, arnd the delay of bifurcation
beyond maximum load will be less than that given
by (13). Although {13) does not apply precisely

‘" to a bar characterized by deformation theory, the

replacement in (13) of p by Eg/3 (from (3)) should
give a qualitative indication of the difference
involved.

Numerical analyses of necking in round bars have
Chen [12]
[13] used
finite elements and, most recently, Norris et al.
[14] used finite differences. The results of
these calculations differ from one ancother in scme

been carried out using several methods:
used a Kantorovich method, Needleman

of their details but are in general agreement and-
are conspicuously successful in displaying the
full range of the necking process from essentially

uniform straining to advanced necking states. It



now appears possible to calculate details of the
stress and strain distributions in the neck with
reasonable accuracy and thereby assess and improve
the approximate formulas of Bridgman and
Davidenkov and Spiridonova. These have been
widely used in the determination of uniaxial
stress-strain data at large strains from necked
down specimens. Norris et al. [14] have suggested
possible corrections to Bridgman's formulas for
the particular steel they considered. They have
also computed the dependence of the ratio of
lateral surface radius to cylindrical radius at
the minimum point of the neck as a function of the
This is
information which is required in the application
of Bridgman's formulas and which until now has

reduction in cross-sectional area.

only been available from direct experimental
measurement. Calculations of this type are
costly, and more of them will be needed before the
role of strain hardening and other factors have
been adequately documented, But they hold promise
for supplying stress and strain distributions
under large strain conditions which are essential
to the understanding of the microscopic fracture
process. Recent studies which have made use of
detailed stress-strain calculations at finite
strain for variously designed test specimens have
been reported in Argon et al. [15] and Hancock and
Mackenzie [16], and others can be éxpected to
follow.

The bifurcation condition for localized shear
bands from a fundamental state of uniaxial tension
has been obtained by Rice [17] and Needleman and
Rice [18]). The assumption of a smooth yield
surface effectively excludes the possibility of
shear bands under ilniaxial tension since the
bifurcation stress required for their formation is
on the order of the elastic shear modulus. Under
plain strain tension, one also concludes from {10)
that shear bands would be rather unlikely at the
stress levels at which they are observed if u is
identified with the elastic shear modulus, as
required by a smooth yield surface, unless Ey
falls to an extremely low value., Rice and
Needleman consider an alternative yield behavior
associated with a cornered yield surface.
Instantaneous moduli at bifurcation for a nearly
proportional loading increment are modeled by

moduli frem a deformation theory-type law. This

leads to reduced shear moduli as has already been

discussed. For example, 1in the case of plane
(10) their
deformation theory gives u = E5/3, where Eg is the
secant modulus of the effective true

stress~logarithmic strain curve at the current

strain tension where applies,

effective stress level., Further comments on the
particular deformation theory they use will be

made in the next section.

For a pure power law relation between true
effective stress and effective logarithmic strain,

l.e.

N
o, = Ke, (14

Needleman and Rice [18] find that the critical

. strains for shear band formation (major principal
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component} are

€= [N(1 - NyJL/2

(15}
({plane strain tension)
1/2
€ = + 3N - N
[(1 ) (1 1/31 (16)
uniaxial tension

or axisymmetric straining

where N is restricted to be less than 1/2 in

(15) and - 1/3 1in (16).
limited by shear band formation, the ductility
ratio obtained from (15) and {(16) is {N < 1/3}

Assuming ductility is

ductility in plane strain tension
ductility In uniaxial tension

_ 3N
VT +aw

The above results hold for arbitrary superimposed
hydrostatic tension or compression since the
Thus,
(16) applies at the minimum point of a neck in a

(17}

material is assumed to be incompressible.

round tensile bar where axisymmetric straining
occurs. Assuming the onset of shear band
formation marks the effective end of homogenecus
deformation at the local level, and thus the peint

of material failure, the results (15): and (16)



should serve as upper limits on the amount of
straining possible for the two states of
straining. Any microscopic mechanisms of material
failure such as cracking or void growth {(also
considered in Needleman and Rice [18]) if present
would be expected to reduce the strain te failure
and, of course, would be sensitive to superimposed
hydrostatic tension or compression. A comparison
of the results (15} and {16} has been made in
Needleman and Rice [18] with experimental data of
Clausing [19] for a variety of ductile steels with
yield stresses varying between 280 and 1770 MPa.
In uniaxial tension {axisymmetric straining), the
experimentally determined strain at failure for
all the steels tested ranged between .9 and 1.2,
For values of N ranging between 0 and 1/3, the
strain for shear band formation varies from .58
o .66 according to (16}. Thus, ductility is
substantially underestimated by shear band
analysis in spite of the fact that it is expected
to provide an upper bound. There are several
possible explanations for the low predictions.
Strictly speaking, the bifurcation analysis of the
shear bands provides only the strain at the onset
It is possible, but probably
unlikely, that considerable straining of an almost

of their formation.

uniform character cccurs beyond bifurcation; that
is, that localization proceeds very gradually
after it starts. It is also possible that the
instantaneous moduli used in Rice {17] and
Needleman and Rice [18] to model the effect of a
corner are not sufficiently "stiff" and thus
permit shear bands to form at lower stress levels
than they otherwise might. There is some evidence
that this may be the case in that a true finite
strain deformation theory, to be discussed in the
next sectlon, does predict stiffer moduli and
delayed shear band formation substantially beyond
{16) . Another possible explanation of the low
strain for shear band formation from (16) is the
‘neglect ‘of material strain-rate sensitivity. The
effect of small amounts of strain-rate dependence
on the retardation of diffuse necking are
substantial, as will be discussed in the last
section, but its effect on shear band formation
does not appear to have been studied,

Rudnicki and Rice [20] and Rice [17) have broken
new ground in studying the influence of other
nonclassical plasticity effects such as pressure
dependence of yield, on the bifurcation analysis
of material failure. Here, too, details of the
constitutive assumptions can have a strong
influence on the gquantitative predictions. Even
where these details are not fully understood, the
qualitative implications of these studies are
significant.

4. NECKING IN THIN SHEETS

Two approaches to the analysis of necking in thin
sheets have been used. One is a bifurcation
analysis of the onset of a localized band of
straining in a uniform sheet, The other assumes
an initial geometric or material imperfection and
follows its growth as it develops into a neck.
Most work has been carried out within the context
of the plane stress assumptions, The two
approaches have been detailed in Hutchinson and
Neale [21]) and will be discussed here in turn.

In the bifurcation analysis, a perfect sheet
subject to proportional straining is considered so
that the principal implane strains are related by

€ (18)

2 P9
where €y is to be regarded as the major component,
For a sheet whose initial properties are
isotropic, the range of p in which sheet failure
may be governed by necking is -1/2 < p < 1, with p
= -1/2 corresponding to uniaxial tension, g = 0
to a state of in-plane plane strain tension and p
= 1 to equal biaxial stressing in the plane.
Bifurcation into a localization band (i.e. necking
band) is considered with stress and strain
increments varying across the band and vanishing
outside it. The incremental behavior is assumed
to be governed by the assumptions of plane stress,
and therefore the width of the band, or
equivalently the minimum characteristic in-plane
wavelength of the localization band, must be long
compared to the thickness of the sheet for the
analysis to apply. In contrast, the
three—-dimensional shear band bifurcation analyses
of the previous sections wepe carried ocut under
the tacit assumption that the width of the shear



band was small compared to any characteristic
overall dimension such as thickness. Such shear
bards must be considered as signaling the onset of
inherent material failure, whereas the necking
modes for thin sheets discussed in this section
are macroscopic necks and are not material

failures as such.

One of the earliest results was that of Hill [22]
for a rigid-plastic sheet governed by the common
flow laws, based on a smooth yield surface.
example,

For
for a material whose yield surface is

described by the Js invariant and whose uniaxial
behavior is given by the power law relation {14),

localization bands occur only for -1/2 < p < 0
at the strain

€, = N/(1 + p) (193
The normal to the band makes an angle tan'_ o=m

to the axis of principal strain. For p > 0, no
bifurcation is possible in a rigid-plastic solid
1f a smooth yleld surface is invoked. Allowance
for elasticity does not essentially chamge (19},
nor does it alter the conclusion that shear bands

are effectively excluded for p > 0.

A considerable body of experimental work on
necking in sheet metals under biaxial conditions
now exists, e.g. Azrin and Backofen [23), Hecker
(24}, and Tadros and Mellor [25). Many factors
influence the strain at which necking sets in
including, in particular, anisotropy and material
strain-rate dependence. The general consensus is
that [19] gives a reasonable estimate of the limit
strain outside the neck in the range -1/2 < p < 0
in a sheet which is approximately isotropic at the
start of the straining process and which has small
strain-rate dependence., On the other hand,
necking is almost always observed to occur in
ductile sheet metals for p> 0 at strain levels
typically in the range N < ¢ 1< 2N depending on
the value of p and on other factors.
few materials with large N{=.5) ,
limit strain ¢, occurs under conditions of
in-plane plane strain, p = 0,

Except for a
the minimum

To get arourd the difficulty in the range p> 0 ,
Storen and Rice [26] relaxed the assumption of a
smooth yield surface and invoked a scolid which

?3

. at finite strains as well.

develops a corner at the loading point of the
yield surface, For a nealy proporticnal loading
increment they modeled the instantaneous modull by
the moduli of a deformation-type plasticity theory
-~ the same constitutive law mentioned earlier.
It was then found that a necking band is predicted
for 0 < p < 1 . The band forms normal to the
direction of principal strain at the strain

B 392 + N(2 + P)2 5 (20}

1 T 32 +p)1(1 +p ¥ P9

assuming that the power law (l14) governs the
uniaxial behavier. For ¢ = 0, the flow theory and
the deformation theory coincide, and (19) and (20)

both give € = N. For p= 1, {20) gives

el = (1 + 3N)/® (21)

so that € > N for

N < 1/3, For p < 0, the
Storen-Rice calculation gives a result somewhat

below (19), but not significantly so.

Although it was not emphasized by Storen and Rice,
the formula {20} does not apply to the full range
of N if their constitutive law is assumed to
hold. For example, for p = 1 material failure in
the form of a shear band will occur at a strain
below (21) if N > 1/3 ., This shear band cannot
be predicted by the plane stress analysis but is
the outcome of an analysis such as those described
in the previous section. Weedleman and Tvergaard
[27] have made a detailed study of the various
bifurcation modes from a uniform sheet under equal
biaxial straining.- They consider diffuse plane
stress modes and three-dimensional shear band
modes.

Hutchinson and Neale [21]
alternative finite strain deformation theory to
that employed by Storen and Rice [26). Whereas
the constitutive model of Storen and Rice is only
a true deformation theory (i,e. nonlinear elastic
solid) in the small strain range, that of
Hutchinson and Neale is a true deformation theory

considered an

For proportional
loading, the two formulations coincide at finite
strains and furthermore the two laws reduce to the
same small strain limit. The difference in the
two laws shows up in that certain of the

instantaneous shearing moduli at finite strains



are somewhat larger in the true deformation theory
than in the corresponding law used in Storen and
For p < 0,
the results from Hutchinson and Neale lie between
those of Hill (19) and Storen and Rice, while for
0 < p £ 1, the analysis of Hutchinson and Neale
gives precisely the same result {20} as Storen and
Rice. based on the constitutive law
of Hutchinson and Neale, material failure does not
intercede at strains below (20). In other words,
bifurcation into a necking mode is predicted to

Rice for the strain states involved.

Furthermore,

occur prior to the formation of shear bands at
even larger N-values. A brief discussion of this
point for the case p = 1 is given by Needleman and
Tvergaard [27].

introduced

Marciniak and Kuczynski [28]

imperfections to get around the prediction of no

necking when g > 0 in a perfect sheet governed by’

a flow theory with a smooth yield surface. They
assumed plane stress conditions both inside and
outside the developing neck and they take the
material to satisfy a flow theory using a J2 yield
surface characterization. For an imperfection in
the form of a geometric thickness variation or a
material property variation which is a function of
only the coordinate perpendicular to the
infinitely long band, the problem is one
Furthermore, because of the plane
the stress and strain
increments at the minimum point of the neck can be

dimensional.
stress assumption,

directly solved for in terms of the prescribed
strain increments outside the band. In this way,
they are able to calculate the dependence of the
limiting strain outside the neck on the
They find that
imperfections do lead to finite limit strains for
p > 0, but it is doubtful that the predicted
limit strains are sufficiently low to account for
test data when realistic levels of imperfecticns
are assumed.

imperfection amplitude.

A discussion of a number of recent
studies using the Marciniak-Kuczynski (M-K)
approach is given in Hutchinson and Neale [21]
where this same approach is repeated using the
true finite strain Iy deformation theory to
characterize the material. The deformation theory
results have the virtue that the limit as the
imperfection parameter goes toc zero gives the
bifurcation results discussed previously.
Furthermore, the effect of the Imperfection on the
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deformation theory limit strains is a reduction
which is roughly the same for all values of p.

For the case of in-plane strain, p = 0, the two
plasticity theories give identical predictions.
For a material characterized by (14} in simple
tension, the asymptotically exact relation between
the maximum attainable strain outside the neck ard
a small thickness imperfection £ according to the
M-K analysis [21] is

1 - V&1 /N

E]_/N = (22)

Here & is the percentage reduction of the
thickness at the minimun point of the band at the
start of straining. An extremely small
imperfection has a relatively large effect on the
necking strain as a consequence of the square root

dependence.

It does not yet appear to be possible to use
existing experimental data to infer whether one
{or perhaps neither) of the constitutive laws is
adequate in the analysis of sheet metal necking.
Assuming strain-rate effects can be neglected and
assuming the material is isotropic, or
approximately so, it seems reasonable to expect
that the true defeormation theory results should
supply a lower bound to the limit strains, given
realistic imperfection levels, and the J2 flow
theory should supply an upper bound. The
difficulty is that these two theories predict
widely differing results for p > 0. It is
possible that a smooth yield surface which
properly accounts for initial anisotropy may, when
used with the M-K analysis, lead to more realistic
predictions [29], although a more extended study
[30] indicates that small differences in the shape
of the yield surface can have large effects on the
predictions. A recent study [31] using kinematic
hardening in place of isotropic hardening also
gives what appears to give results more in line
with experimental observations.

One should mot lose sight of the fact that the M-K
analysis only applies to necks whose variation
across the band are lorng compared to the thickness
of the sheet. 1In the early stages of neck
development, the plane stress assumptions of the

M-K analysis are reascnably accurate as long as



the wavelength characterizing the width of the
band, and thus the imperfection, is more than
about four times the sheet thickness [32].
Otherwise the M-K analysis overestimates the
growth of the neck. In general, other issues
aside, the M-K analysis underestimates the maximum
attainable strain outside the neck, Since the band
is taken to be infinitely long, we can further
expect the analysis to underestimate the limit
strain due to an initial imperfecticn with a
realistic aspect ratio. No estimates on the
cffect of the aspect ratic of the initial

imperfection are available,

The major uncertainty in the analysis of necking
in thin sheets, and alse in the analysis of shear
band formation, lies in the proper choice of
constitutive law, To a certain extent, many of
these same issues have surfaced previously in the
theory of plastic buckling [23] but the
discrepancy between the predictions of the simple
flow and deformation theories of plasticity is
exacerbated because necking takes place deeper
into the plastic range than is usually the case in
plastic buckling.

Moreover, even among

deformation-type theories, there are some
significant differences which show up in the
finite strain range, as has been discussed. While
the deformation theory modull may perhaps serve as
a useful approximation to the moduli of a true
flow theory with a corner in carrying out a
bifurcation analysis, they most certainly cannot
be used to explote post-bifurcation behavior
since, then, distinctly mon—proportional loading
increments and even elastic unloading almost
always occur following bifurcation. This Is an
important consideration since a lecalization band
or a shear band may develop rather gradvally
following bifurcation and, if such is the case,
bifurcation itself will not necessarily provide a
No
phenomenological plasticity theory is available
which models the effect of a corner and which can

good estimate of the fallure state.

be used for exploring both bifurcation and
post-bifurcation behavior in situwations typical of
these encountered in necking or shear band
formation (or in plastic buckling).

95

5, NECKING RETARDATION DUE TO
MATERIAL STRAIN-RATE DEPENDENCE

Materials which are significantly strain-rate

dependent can undergo extensive straining prier to

necking. Rods of glass at high temperatures and

superplastic metals can be elongated by as much as
These materials are
sometimes described 3s being nonlinearly viscous
with a tensile relstion between stress and
strain-rate as [34]

1000% in uniaxial tension.

0'=Kém

{23)

where m typically lies in the range .1 < m < 1.
It is less well known that very small amounts of
strain-rate dependence can also significantly
retard the growth of a neck. This obviously has
important implications for various metal forming
operaticns, particularly sheet metal forming,
Ghosh [35] has collected data from tensile tests
on flat strip specimens of a number of sheet
metals with small but varying degrees of
strain-rate dependence. The considerable
additional straining achieved over what would be
expected in the absence of any strain-rate
dependence correlates consistently with a
strain-rate index m defined by the relation
N:m (24}

g = Ke

For values of m ranging from O to .06 the
additional straining increases from 0 to about
40%. In the analysis of many deformation
phenomena other than necking, a value of m this
small would mean that strain-rate effects could be
safely ignored, assuming the strain-rate is not
teo large, and the material could be taken to be

time independent (m = 0).

Equation (24) has been widely used to incorporate
the strain-rate influence on the uniaxial
stress-strain relation. The elastic strain is not
included but usually can be ignored in the range
of strains of interest in necking. Equation (24)
cannot be expected to give an adequate description
of the material under general strain-rate
histories. However, over a range of constant
strain-rate histories, {24) can be used to provide

an approximate fit to experimental data. It is



assumed to provide an approximation to the
behavior for histories, such as those encountered
in many necking tests, where the strain-rate
varies slowly.

An elementary analysis brings out the strong
strain-rate dependence of necking in a bar of
material characterized by (24). Three dimensional
aspects of the stress field which develop in an
advanced neck are neglected and the stress across
each cross-section is taken to be uniaxial and
uniform with resultant equal to the instantaneous
value of the tensile load carried by the bar,
This assumption is analogous to the plane stress
aséumption inveked in the M-K analysis of sheet
necking. It is strictly accurate only when the
characteristic wavelength of the neck is leng
compared to the diameter of the bar, A full three
dimensional solution in Hutchinson and Neal [36]
© for small amplitude, sinusoidal variations of the
radius suggests that the wavelength of the
non—uniformity should be greater than about three
times the diameter for the long-wavelength
assumption to be accurate. For shorter
wavelengths, as are characteristic of the more
advanced stages of necking, the long-wavelength
assumption underestimates the strains which can be
achieved outside the neck.

The long-wavelength assumption permits one to
express the strain at one cross-section in terms
of the strain at any other., With e denoting the
logarithmic strain at the minimum point of the
neck and eot.he strain in the uniform sections

away from the neck, one finds [36]

€
f e T/M N/my,

0 {25)
€

0
(1 - my7/m [ ey,
0

where n is the initial fractional deficit of
cross-sectional area at the minimum point of the
neck. The relation {25) between € and eoholds
for all tensile load histories and, in particular,
is independent of the rate of overall straining
under which the tensile test is carried out.
- Thus, necking retardation effects, while they are

a consequence of material strain-rate dependerce,
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are independent of the rate at which the test is
conducted.

in the limit of a rate-independent material with
0,
uniform section away from the neck is attained at
the maximum load point.

m

the maximum strain which occurs in the

For small initial

imperfections, i.e. n << 1, one obtains from (25)

with m= 0
max

€ s

o N[l —W 1 (26)
and this displays precissly the same strong
imperfection-sensitivity as in the in-plane
tension case (22). For n = 0, the Considdre result
is retrieved., With m > 0, €
monotonically as ¢ increases, and

finite limit as ¢ — w.
emax

increases
¢ _approaches a
An asymptotic result for
can be cobtained when 75 << 1 for small m
satisfying m < 2n and m/N << 1. Under these
conditions, the necking retardation Ae¢ , defined
as the maximum attainable EO minus (26), is

“rjn' Vﬁfn (47 /m)

Although (27) is limited to a very small range of
m, it does bring out the effect of material
rate—dependence., the retardation
increases more rapidly than a linear dependence on
m according to (-m fn m).

Ac (27)

0

n

For small m,

Increasing the
amplitude of the imperfection 71 decreases the
retardation, although for typical values of m and
N a tenfold increase in q reduces the retardation
by less than a factor of two [36].

For initial imperfection amplitudes ranging from
.1% to 1%, the retardation calculated from (25)
varies between .4 and .25 for m = .05 and N = .2,
which are typical values for certain sheet metals.
At larger values of m, the strain hardening index
N is of secondary importance and (25) predicts the
extensive strailning characteristic of
superplasticity.

Necking retardation due to material strain-rate
dependence has alsc been studied in thin sheets
using the M-K analysis [37-39], and results
similar to those in uniaxial tension have been
found over the entire rarge of biaxjal straining.
The inclusion of strain-rate dependence does not



appear to resolve the difficulties associated with
the simple flow thecry. [40] use a
more realistic description of rate-dependent
material than (24) and carry out a long-wavelength
stabllity analysis of the type first introduced by
Hart (41j. This approach is in the spirit of a
classical linearized stability analysis.

Kocks et al,

For
small initial geometric or material
nonuniformities the approach does give accurate
estimates of the early stages of neck development,
However, it is somewhat doubtful that anything
less than a full nonlinear treatment can be used
to predict the maximum strain attainable outside
the neck and its dependence of the level of the
imperfection. This is somewhat reminiscent of the
situation in creep buckling where the classical
stability approach which was applied to columns
proved to be inadequate in predicting times for
creep buckling cellapse due to the inherent
nonlinearity of the phenomena.
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