o TTTETTRATTEE e TEEEEAEATENT RS T T T e T TR T AT T N

AVLNUrNiceyU Replimet ruin
Special Technical Publication 700
Copyright
American Society for Testing and Materials
1916 Race Street, Philadelphia, Pa. 19103
1980

R. H. Dean' and J. W. Hutchit-tson2

Quasi-Static Steady Crack Growth in
Small-Scale Yielding

REFERENCES: Dean, R. H. and Hutchinson, J. W., “Quasi-Static Steady Crack
Growth In Small-Scale Yielding,” Fracture Mechanics: Twelfth Conference, ASTM
STP 700, American Society for Testing and Materials, 1980, pp. 383-405.

ABSTRACT: A numerical analysis of quasi-static, steady-state crack growth under
small-scale yielding conditions has been carried out for antiplane shear (Mode III) and
plane strain, Mode L. In addition to results for an elastic-perfectly plastic solid, the
study includes results relating to the influence of strain hardening on stable crack
growth. Limited results based on a corner theory of plasticity give some indication of
the extent to which stable crack growth predictions are sensitive to the type of plasticity
theory used.
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Crack-tip plasticity is primarily responsible for the phenomenon of stable
crack growth in metals under monotonically increasing load or displace-
ment conditions. As the crack advances, a material element just above or
below the plane of the crack experiences a distinctly nonproportional history
of straining; that is, the relative proportions of the strain components vary
strongly as the tip passes beneath or above the element. By contrast, a
material element in the vicinity of a stationary crack experiences predomi-
nantly proportional plastic loading. An elastic-plastic solid offers consider-
ably more resistance to nonproportional strain histories than to proportional
ones, and this is the main source of stable crack growth. In small-scale
yielding the strain at a given distance from the tip in the plastic zone is
larger in the stationary problem than it is in the steady growth problem at
the same value of the stress intensity factor K.
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For a stationary crack in an elastic-perfectly plastic solid the strains
increase as 1/r as the distance from the tip r is diminished. For a growing
crack the strain singularity is the weaker, In(1/r), as has been discussed by
Rice [/]3. The character of the singular behavior at the tip of a growing
crack in a hardening material has been found for linear strain hardening
by Amazigo and Hutchinson [2]; but for more realistic hardening charac-

terizations, such as power-law hardening, the near-tip singularity fields -

have remained elusive.

In carrying out a numerical analysis of a growing crack starting from its
stationary state it is necessary to specify a near-tip fracture criterion or
some relation between the crack advance and the applied load or displace-
ment parameter. Various techniques have been proposed for such analyses
and some of the most recent papers pursuing this approach are included in
Ref 3. As the crack advances, the increment in applied load or displace-
ment peeded to achieve a given increment of growth diminishes: i small-
scale yielding the crack approaches nominally steady-state growth condi-
tions, with an unchanging stress intensity factor K, following a crack
advance which is one or two times the plastic zone size associated with the

steady-state K. It is this steady-state problem which is studied in the -

present paper. Small-scale yielding is invoked, and all traces of the transient
growth period are assumed to have been left far behind the current crack
tip. As seen in Fig. 1, the crack is semi-infinite with a wake of residual
plastic strains trailing behind the advancing tip. The formulation and solu-
. tion of the steady-state problem does not require the specification of a
fracture criterion. Instead, K plays the role of a scaling parameter to which
all stress and strain quantities are related. Studies of the steady-state prob-
lem in Mode III have been published by Chitaley and McClintock [4] and
by Andersson [5], who also considers plane stress in Mode'1." -

The present paper begins by reexamining the Mode TII problem. Some
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3The italic numbers in brackets refer to the list of references appended to this paper.
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modification of the Chitaley-McClintock solution for elastic-perfectly plastic
materials is noted. The effects of strain hardening and of corner develop-
ment on the yield surface are also taken. into account,.and an attempt is
made to assess their influence on the level of K required for steady-state
growth compared to the K needed to cause crack growth initiation. The
second part of the paper deals with plane-strain crack growth in Mode I
for hardening and nonhardening materials. Contact with the recent results
of Rice and Sorensen [6] and Rice, Drugan, and Sham [7] is made in the
steady-state limit.

Numerical Analysis of Steady Growth

In the small-scale yielding limit, the elastic singularity field is imposed
as the far field limit via a semi-infinite crack as depicted in Fig. 1. Thus,
asr — o

K
=D . 1
% 2ar f®)

where the 0-variations depend on the symmetry of the field with respect to
the crack plane y = 0. The material is elastically isotropic and the stan-
dard definition of K is employed throughout. It is imagined that the crack
has grown from the left in Fig. 1 under steady-state conditions at constant
K. The stress and strain fields around the moving crack tip will appear
unchanging to an observer moving with the tip. At any fixed material
point an increment of any quantity such as the stress is given by

0; = —a aa,j/ax 2)
where ¢ is the increment of crack advance.

It is convenient to nondimensionalize the equations. In Mode III the
dimensionless quantities are

- GTow - _TO_ 2
W= r={% r
Q)
?u = G‘Yu/TO ?a = Ta/TO
where
79 = the yield stress in shear,

G = the elastic shear modulus,
the displacement in the z-direction,
Te = 043, and 7y, = 2¢€,3.

£
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The dimensionless problem is independent of K. A similar nondimensional-
ization will be used for the Mode I problem. '

A displacement-based finite element method is employed in the analysis.
In a standard vector notation, the variational equation of equilibrium is

o7 dedA = | FT duds . (4)

“:herfe dA is an area element and tractions F from Eq 1 are applied on a
circuit with line element, ds. far from the tip. The strains and displace-
ments are given in terms of the nodal displacements U by

¢e =BU and ua=RU (5
where small-strain theory is assumed. The stresses are given by
o = D¢e — ¢P) 6)

where D¢ is the elastic constitutive matrix and ¢” is the plastic strain. With
K = 1 BTD*B dA as the elastic stiffness matrix, the nodal displacements
must satisfy

KU= |R7Fds + | BTD®%r dA N

The iterative procedure for solving Eq 7 is as follows:
I. Given the estimate of ¢” from the i — 1t jteration, use it in Eq 7 to
compute the i'" estimate of U, UV,
2. Compute ' everywhere from U,
(_;3. CIc;mP:ne o' in the elastic region ahead of the plastic zone using
o'l = Dre'?,

4. Using the steady-state relation
30!-, /ox = D:}‘il 3ek,/6x (8)

integrate in the negative x-direction through the elastic-plastic elements to
obtain o'”, where 3¢, dx is obtained by taking appropriate differences in ¢
between elements. Here D is the instantaneous tangent moduli from the
elastic-plastic constitutive relation. In the active plastic zone where the
yield condition is currently met, D is the matrix of the loading moduli,
while D¢’ takes on elastic values where the stress falls within the yield
surface. A technique similar to that in Rice and Tracey [8] was used to
compute the normal to the yield surface for the current iteration.
5. Compute the /*" estimate of the plastic strain everywhere using

DEAN AND HUTCHINSON ON QUASI-STATIC CRACK GROWTH 387
e# =¢— (D)7 g

6. Repeat Steps 1 through 5 until convergence is achieved.

The basic element used was the constant strain triangle. The finite element
mesh, shown schematically in Fig. 2, is composed of triangles and quadri-
laterals, the latter being formed from four triangles with the center node
condensed out. A mesh consisting of 1609 degrees of freedom before con-
densation was used in the Mode III calculations, while twice that number
was used in the Mode I calculations. In Mode III the size of the smallest
quadrilateral element was 0.4 percent of the distance to the elastic-plastic
boundary directly ahead of the crack on the x-axis, while the corresponding
figure in plane strain Mode I was 3 percent or about 1 percent of the height
of the plastic zone in the y-direction.

A form of parameter tracking was used to facilitate convergence of the
iteration scheme. The elastic solution (¢ = 0) was used to produce the
first iteration for a high hardening case. When this case had converged the
hardening parameter (either the tangent modulus for the linear straining
hardening or the hardening exponent for power hardening) was decreased
and the distribution of €? in the previous case was used to start the new
iteration. The elastic-perfectly plastic cases required the most iterations to
achieve satisfactory convergence and 50 to 100 iterations were used. The
elastic stiffness matrix K¢ in Eq 7 remained unchanged during all the
computations, and therefore was formed and decomposed only during the
initial elastic solution,

Steady Growth in Mode 111

Elastic-Perfectly Plastic Material Behavior

Results for the elastic-perfectly plastic case will be discussed first to show
the relationship with the previous work on this problem by Chitaley and
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McClintock {4]. In Mode III the Mises and Tresca yield conditions both
reduce to

72+ 1,2 = 792 9

Prandtl-Reuss equations (J, flow theory) were assumed in conjunction with
Eq9.

The plastic zone is shown in Fig. 3 using the nondimensional coordinates
as axes. For comparison, the plastic zone for the corresponding stationary
problem in small-scale yielding is also shown. The elastic-plastic boundary
of the stationary problem is circular and extends a distance 7w~ 1(K/7y)?
ahead of the tip. The position of the elastic-plastic boundary for the growing
crack was interpolated from the numerical results. Its distance ahead of
the tip at the plane of the crack is about 10 percent greater than for the
stationary problem at the same K, that is

r, = 0.36(K/79)? (10)

The zone computed by Chitaley and McClintock extended about 5 per-
cent beyond the stationary zone ahead of the crack. However, the main
difference between the zone of Fig. 3 and that computed by Chitaley and
McClintock is that their active zone was confined between two radial lines
emanating from the tip at about 20 deg on either side of the plane of the
crack. The active zone of Fig. 3 extends to almost +60 deg from the plane
of the crack. The numerical scheme employed by Chitaley and McClintock
appears to have involved the built-in assumption that the slip lines (that is,
the straight lines along which the resolved shear stress equals 7o) all pass

STEADILY
RESIDUAL _ GROWING CRACK
PLASTIC -

KTt | STRAINS , ~

STATIONARY
CRACK

_x_
(K/Tp)?

FIG. 3—Active plastic zone for steady-state crack growth in an elastic-perfectly plastic
matertal in Mode Ill small-scale yielding.
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through the crack tip. In other words, they assumed the plastic zone could
be characterized by a centered fan of slip lines. Numerical results presented
here indicate that this is not the case as can be seen from the lines of maxi-
mum shear stress shown in Fig. 3. For lines making an angle less than
about 20 deg with y = 0 it does appear that the lines focus at the tip, but
for angles greater than this the lines would intersect the plane of the crack
behind the tip if extended out of the active plastic zone. The greater the
angle with the x-axis, the further back the point of intersection.

In light of these findings we have reexamined the asymptotic analysis of
Chitaley and McClintock for the stress field at the crack tip in Mode III.
In particular, the possibility of a wedge shaped sector of nonfocused slip
lines was considered, as suggested by the above results, in addition to the
sectors containing a centered fan and elastic unloading considered by
Chitaley and McClintock. The authors were unable to find an asymptotic
stress field different from that of Chitaley and McClintock which was con-
sistent with the requirement that the plastic work rate of the near-tip
stresses be everywhere positive. Even though the smallest quadrilateral
element at the tip used in calculating the results of Fig. 3 was less than
0.4 percent of the size of the active plastic zone, there is no evidence in the
results to suggest that the asymptotic stress field, with its 20 deg focused
fan and elastic unloading outside the fan, is approached. Assuming that
the asymptotic field of Chitaley and McClintock is correct, it would appear
that it is attained only at distances that must be less than 1 percent of the
plastic zone size. " ‘ )

The strain ahead of the tip on the x-axis ¢an be obtained by integrating
the slip line equations with the result forr < r,

y, = 70[1 +In(r,/n + % In? (r,,/r)J an

where y9 = 79/G is the yield strain in shear. Since the estimate of r,
(Eq 10) is only about 5 percent larger than that of Chitaley and McClintock,
the authors’ findings for the strain ahead of the crack are in fairly close
agreement with theirs. To give some indication of the accuracy of the
present numerical results for the strains, one notes that the computed re-
sults for vy, agreed closely with Eq 11 for values of v,/y, less than 15,
corresponding to r/r, greater than 0.01, as will be seen in a subsequent
figure.

Curves of the crack opening displacement, § = w(x, y = 0%) —
w(x, y = 07), behind the tip are shown in Fig. 4. Included in that plot
for comparison purposes are curves for the stationary problem for an
elastic material and for an elastic-perfectly plastic material; namely, the
curve for the growing crack in an elastic-perfectly plastic material and
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curves for two hardemng matenals, which’ wﬂl be discussed below. In
steady growth in an elastlc -perfectly plastlc material, the crack dpenlng
displacement goes to zero like 7 In (1/r) as x = —r goes to zero. A numieri-
cal fit to the finite element results for §, which is displayed in Fig. S, gives

8Gry 0.83 rrol 1‘ /217K -
K T K2n<r1'02:> 12)
Linear Strain Hardening
With
r=(2+ g~ - (13)

the incremental flow law for plastic loading of a linear strain hardening
material in antiplane shear is

G,ig = atg+ (1 — a)rgi/T ~ for# >0 - (14)

where G, is the constant tangent modulus of the shear stress-strain curve
and’'a¢ = G,/G. For elastic unloading or within the yield surface, 73 = G¥;.

Amazigo and Hutchinson [2] have determined the crack-tip singularity
‘fields for steady-state growth in the linear hardening material (Eq 14).
Asymptotically as r — 0, they find

~ riig(0), v ~ r*15(9), w ~ rrtig(0) (15)
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FIG. S—Comparison of numerical results with theoretical results chasen to give best fit as
discussed in the text for Mode I11.
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where s and the §-variations depend on a. With r as the nondimensional
radial distance defined in Eq 3. Eq 15 implies that the strain just ahead of

the crack on y = 0 and the crack opening displacement just behind the
crack should be of the form

Y/vo = ' t ¢, (16)
0GT
o = et a”

where ¢y, c¢;, and c; are undetermined constants. (It is possible that there
are additional singular terms, of lower order than r*, which should appear
in Eq 16. These have not been determined and are not taken into account
here.) The coefficients in Eqs 16 and 17 were chosen to fit to the finite
element results. Solid line curves in Fig. S are from Eqs 16 and 17 with the
. coefficient values shown in Table 1. The finite element values are shown as
solid dots. The s-values in Table 1 are taken from Ref 2, Table 1. Included
in Fig. 5 are the elastic-perfectly plastic finite element results, together
with curves from Eqs 11 and 12.

The strain hardening parameter o has relatively little influence on the
location of the elastic-plastic boundary as can be seen in Fig. 6. The angu-
lar extent of the active zone near the tip on either side of @ = 0 increases
as « increases in approximate agreement with the predictions of the asymp-
totic analysis of Ref 2. The present numerical results reveal a very small
reversed zone of plastic yielding in the wake behind the tip. But this sec-
ondary zone extended less than 2 percent of the height of the plastic zone
above and below the crack flank. The effect of this secondary zone, which
was taken into account in Ref 4 but not in Ref 2, appears to play a neg-
ligible role in Mode III.

These results can be used to obtain some insight into the role of strain
hardening as it affects stable crack growth in small-scale yielding. First,
consider a strain-based fracture criterion similar to the one proposed by
McClintock and Irwin [9] where crack growth can initiate or continue if
ahead of the crack in the plastic zone :

Yy Yo at r=r, (18)

TABLE 1—Coefficient values.

- [ s c1 €2 €3
0.1 —0.207 5.25 —6.35 2.30
0.2 —0.277 2.61 —3.06 2.02
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FIG. 6—Effect of linear hardening parameter o on active plastic zone shape in Mode II.

Reviewing quickly for the elastic-perfectly plastic case (o« = 0), one uses
the strain ahead of the crack in the stationary problem

Yy/v0 = r,*/r where r, = w~1(K/10)? (19)

together with v, from Eq 11 for the steadily growing crack and the growth
criterion from Eq 18-to determine the ratio of K,, needed to drive the
crack in steady-state to K, needed to initiate growth. If one approximates
rp in Eqs 10 and 11 by r,* in Eq 19, as McClintock and Irwin did, one
obtains

(Ko /KR = (vo/7c) exp [V2(ve/v9) — 1 — 1] (20)

showing that K, /K. may be very large if the ‘‘fracture strain,” v, is many
times the yield strain, .

For the linear hardening material the strain ahead of the crack in the
plastic zone of the small-scale yielding stationary problem can be shown
from Ref 10 to satisfy o

_ 1 { o o ay, .
=— |24 21
r (1. — a) ['y,, l—aln (G‘Y,+(1—a)‘7o>] @b

where 7 is again given by Eq 3. For « — 0, Eq 21 yields Eq 19; and for
a # 0, Eq 21 gives v, /yp — (2Qrar) "2 as 7 — 0. The full relation (Eq 21)
was used in the following calculation. Using Eq 21 for the stationary prob-
lem and Eq 11 or 16 for the steady-state problem, together with the im-
posed growth criterion (Eq 18), the ratio K, /K, for a = 0, 0.1 and 0.2
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was calculated. The ratio, which depends only on v /¥4, 1s plotted in
Fig. 7. Note that the curve for the elastic-perfectly plastic case (o = ) is
not exactly as indicated by Eq 20, since in Fig. 7 the more accurate result
for r, from Eq 10 has been used. Although linear hardening does not
provide a very realistic representation of most stress-strain behavior, the
trend with increasing hardening in Fig. 7 is clearly a decrease in the poten-
tial for stable crack growth. The exponential-type dependence of K /K,
on large v./¥q. as typified for the zero hardening case by Eq 20, results
from the weak logarithmic strain distribution (Eq 11) ahead of the growing
crack. Hardening leads to a more robust singularity in the strains (see
Eq 16 and Table 1} and consequently to smailer values of K /K, at large

Y Yo
An alternative growth criterion, which will be used later in the Mode I
analysis, is based on a critical crack opening displacement (COD) a given
distance behind the crack, as has been employed by Rice and Sorensen (6]
in their Mode I analysis, that is
&§=29

at r =r

. (22)

¢

For the stationary problem in Mode LI small-scale yielding (/0]

o fie, 1 T 2
( 3‘26+ ln[l Sa a)su 3<W

s = ' (23)

whered = w(r, @) — w(r, —x) and ¥ and w are given in Eq 3. The growth
criterion (Eq 22) was used in conjunction with the numerical data for the
growing crack and for the stationary crack (Eq 23) to generate K /K_as a
function of §./(ygr.) for @« = 0, 0.1 and 0.2. The results are shown in
Fig. 8. Again one sees a decrease in the potential for stable crack growth
with an increase in hardening.

Power Hardening with Smooth and Cornered Yield Surfaces
A limited study was made for a power hardening material that deforms

in monotonic shearing according to

’7/’70:'1'/70 TSTU
(24)
= (1/74)" T > Ty

The asymptotic form of the singularity fields is not known for a growing
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FIG. 7—Dependence of Ky /K, on hardening in Mode HI as predicted from a near-lip
growth criterion based on attainment of a critical strain yc a distance €. ahead of the tip.
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FIG. 8—Dependence of Ks/Ke on hardening in Mode II us predicted from a growth
criterion based on attainntent of a crivical shearing displacement 8, a distance t; behind the tip.
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crack in a power law material, as has already been mentioned. Our main
concern here will be to contrast the results from two different flow theories,
both of which satisfy Eq 24 in pure shear. One employs the classical smooth
isotropic hardening surface based on Eq 13 (that is, J, flow theory), and
the other is a recently proposed {/1] law, called J, corner theory, in which
a corner develops on the yield surface at the loading point. Subsequent
yield surfaces for the two theories in antiplane shear are shown in Fig. 9.
Plastic loading according to the classical J, flow theory requires

Yo = G liy + (G, "' — G V1, i/1 (25)

where G, is the current tangent modulus whose dependence on 7 is obtained
from Eq 24.

The plastic strain-rate given by the second term in Eq 25 is constrained
to lie along the normal to the yield surface. In a nonproportional stress
history, such as that shown in Fig. 9 where the ratios of the stress com-
ponents change, the stiffness associated with the component of stress incre-
ment, which is tangent to the yield surface, is necessarily the elastic value.
Crack growth inherently involves strongly nonproportional stressing in
material elements lying above and below the plane of the crack, as men-
tioned in the beginning of this paper. Isotropic hardening based on the
smooth Mises yield surface tends to overestimate the resistance of an
elastic-plastic material to nonproportional deformation. A corner theory of
plasticity, by contrast, probably underestimates somewhat the resistance
to nonproportional deformation, although perhaps not significantly. Thus,
a comparison of results based on the two theories may give some indication
as to whether the extensive stable crack growth predicted by classical flow
theory (as indicated by the large values of K, /K ) is realistic.

Full details of J, corner theory are given in the paper by Christoffersen
and Hutchinson [/7]. In their notation, the angle between the axis of the
corner (see Fig. 9) and the stress-rate is given by

cos B = 1,7, /(TNT,7,) (26)

The total strain-rate is given by v, = dW/d7, where W is the stress-rate
potential defined by

I NP
W= 0Bt @n

The strain-rate is

Gy, = (Q + % Q’ cotan B)ia — % Q' (sin B cos B)~17,#/7 (28)

-—

)u
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F1G. 9—Two yield surfaces employed in the Mode 1] power hardening calculations.

where Q' = dQ/dB. The function Q(B) provides a smooth transition from
a proportional loading increment (8 = 0) to elastic unloading for 8 = 8..
For proportional loading the predictions of Eq 25 and 28 are identical,
and for nearly proportional loading the strain-rates from Eq 28 coincide
with the predictions of the J, deformation theory of plasticity. The function
Q(B) used in the calculations reported below is specified by the function
2(¢) defined in Ref 11, Eq 2.46 (with m = 3 and 6, = 0).

The active plastic zones for the smooth theory ‘and corner theory with
n = 5 are shown in Fig. 10. Ahead of the crack the plastic boundaries are
essentially coincident. The corner theory unloading boundary trails the iso-
tropic hardening unloading boundary. The corner theory active zone is
somewhat larger than that for isotropic hardening, reflecting the diminished
resistance of the corner theory material to nonproportional stress histories.

Curves of COD behind the tip for the classical flow theory and the corner
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F1G. 10—Comparison of active plastic zones in Mode III for power hardening (n = 5) for
two yield surface characterizations.
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theory for n = 5 are included in Fig. 4. Over the portion of the plastic
zone in which the present results are accurate (that is, to within about
1 percent of the plastic zone size from the tip), there is rather little dif-
ference in the results for the two theories. The COD, a given distance
behind the tip, is slightly larger for the corner theory material than for the
smooth yield surface material. This small difference again reflects the
lowered resistance that the corner theory material offers to nonproportional
plastic deformation.

The strain ahead of the crack from the two theories is shown in Fig. 11.
Here again the difference is small but now the strain from the smooth
yield surface solid is slightly larger than the other, at least for strains less
than 15 v, for which. the authors’ results are accurate. This somewhat sur-
prising interchange can be rationalized by noting that the deformation on
the line ahead of the crack is exactly proportional (r, = 0), while non-
proportional deformation takes place above and below the plane of the
crack. Examination of the numerical results indicates that the standard
flow theory solid tends to concentrate the straining in the region ahead of
the crack, compared to the corner theory solid. Although the effect is not
" large, the corner theory solid shows relatively more straining above and
below the line of the crack, consistent with what one would expect and
consistent with its slightly larger opening displacement.

Our study of the influence of reduced resistance to nonproportional flow

20

| ' Perfectly-Plastic — — —

Power Smooth Yield Surface
15 | :grgenmq Corner Yield Surface -----

FIG. 11—Strain ahead of crack in Mode III for power hardening theories and comparison
with elastic-perfectly plastic distribution.
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as modeled by the corner theory has not been sufficiently extensive to
warrant the apparent conclusion that the effect is not very large. It is pos-
sible that larger discrepancies will emerge closer to the tip at higher strain
levels. One also notes that use of the corner theory results, as opposed to
the standard flow theory results, with the critical strain criterion (Eq 18)
would yield slightly higher estimates of K,,/K.. On the other hand, use of
the corner theory results for the opening displacement with Eq 22 would
give slightly lower estimates of this ratio, at least over the range considered
here. Nevertheless, it does appear that the influence of strain hardening
may be more significant than the corner effect.

Steady Growth in Plane Strain Mode I

In the plane strain study a piecewise-power law material was assumed
whose uniaxial stress-strain curve is given by

e/eg = o/oy o< ag
29)
= (0/0g)" g > ag

where

0o = the uniaxial yield stress,
€g = 0g/E = the yield strain, and
E = Young’s Modulus.

The classical incremental theory (J, flow theory) was used to generalize
Eq 29 to multiaxial states. This theory assumes isotropic hardening based
on the Mises surface (that is, J, = 1/2 s;s; = constant, where s; is the
stress deviator). The material was taken to be elastically isotropic with
Poisson’s ratio, ». Included in Eq 29 for n — oo is elastic-perfectly plastic
behavior.

‘Amazigo and Hutchinson [2] obtained singularity fields for the plane
strain, Mode I problem for linear strain hardening. However, they ne-
glected the effect of reversed plastic loading along the flank of the crack
behind the tip. The present numerical results indicate that substantial re-
versed loading occurs in plane strain, and therefore its omission in Ref 2 is
likely to render those results inaccurate. For this reason no attempt was
made to use the linear hardening material in the present plane strain study.

The elastic-plastic boundary of the active plastic zone is shown in Fig. 12
for the elastic-perfectly plastic material-(n = o0) and for n = 3 and 10.
Poisson’s ratio was taken to be » = 0.3 in all cases. The zone in which
“reversed” plastic flow occurs, trails behind the tip as shown with a width
that is approximately 15 percent of the vertical extent of the plastic zone
for n = 10 and co.
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FIG. 12—Active plastic zoue in plane strain Mode I small-scale yleldmg Jor two levels of
power hardening and elastic-perfecily plastic behavior.

Stresses near the tip as determined from the finite element results for the
elastic-perfectly plastic material are shown in Fig. 13. The numerical re-
sults are compared with the asymptotic near-tip stress field recently deter-
mined by Rice et al [7]. These new asymptotic stresses differ only by about
1 percent from the stresses of the Prandtl field, except in the neighborhood
of 6 = 135 deg, where the differences are on the order of 10 percent. The
main difference between the new asymptotic field and the Prandtl field is

Analyticol [7]
© xeo Numerical
Somple Points

o-|o | o {4

TP

| 1
0° 30° 60°  90° 120° 150° 180°
ANGLE - 8

_ FIG. 13—Comparison of the near-tip numerical stress results with asymptotic Sfield of
Ref 7 for plane strain Mode 1.
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the presence of a wedge of elastic unloading extending from approximately
0 = 115 deg to 6§ = 163 deg, whereas yield is satisfied for all § in the
Prandtl field. There is no evidence in the authors’ numerical results of
elastic unloading near the tip. As can be seen in Fig. 12, the active plastic
zone appears to fully surround the tip. It is quite likely that the mesh
refinement used in the present calculations is not sufficient to reveal the
wedge shaped unloading region. In Mode III it was noted that the mesh
used indicated a substantially smaller wedge of elastic unloading near the
tip than that predicted by the Chitaley-McClintock asymptotic field. In
plane strain, the mesh used in this analysis is relatively coarser (the smallest
quadrilateral element is about 3 percent of the distance to the elastic
plastic boundary ahead of the crack) and this may explain the authors’
failure to observe any elastic unloading near the tip.

Curves of the nondimensional COD behind the crack for the steady
growth problem are shown in Figs. 14a and b. The linear elastic curve
(n = 1) is shown in Fig. 14a. The numerical values from the finite element
calculations for the elastic-perfectly plastic case (n = oo) are shown as
solid dots in Fig. 14b. As the tip is approached the opening displacement
goes to zero as

_ g0 o (eR\
,6——BErln( ) 30)

r

where, following the notation of Rice and Sorensen [6], 8 is a numerical
constant (with no relation to the angle 8 used in the corner theory),
e = 2.7183 and R = c(K/ay)? where c is another numerical constant. The
best least-square fit of Eq 30 to the four computed values of  nearest the
tip (see Fig. 14b) gives

B =428 and ¢ =0.71 31)

The analysis of Rice et al [7], which employs the asymptotic near-tip
field mentioned above, gives the theoretical value § = 5.08. Fixing 8 at
5.08 and choosing ¢ to give a best least-square fit of the same four values
of 6, one finds

=508 and ¢ =0.28 (32)

This latter estimate of c is in reasonable agreement with the value obtained
in Ref 7 from a fit of numerical data for the transient growth of a crack.
Curves from Eq 30, using Eq 31 and 32, are shown in Fig. 145. There is
relatively little difference between the two curves for x/(K/a¢)? in the range
—0.001 to —0.02.
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FIG. 14—Crack opening displacement in plane strain Mode 1 (a) effec.l of hqrdening. unfl
(b) numerical values for elastic perfectly plastic case (n = ™) and comparison with asymptotic
formula.

The results for & for » = 3, 10 and o have been replotted as &/(eg7),
where ¢ = 0¢/E, as a function of r/(K/a,)? in Fig. 15. It is in this forfn
that the results are most convenient for predicting K, /K, from a near-tip
fracture criterion based on a critical 6. :

Following Rice and Sorensen [6], and also Ref 7, one again adopts the
near-tip criterion (Eq 22) for initiation and continuation of crack growth.
For a given value of 8./(egr.) and n, the value of r./(K,/ag)? for steady-
state growth can be read off the abscissa of Fig. 15. The value of 7. /(K ./d¢)?
for initiation of growth can be read from the corresponding curve for.the
stationary problem. These two values supply the ratio (K /K .)? for a given
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FIG. 15—Normalized crack opening displacement in plane strain Mode I.

pair &./(eqr.) and n. Curves obtained in this manner are plotted in Fig. 16
for n = 3, 10 and . For the stationary problem the authors derived
curves of 8/(eyr) versus r/(K/oy)? from Ref 12 for n = 3 and o and from
Ref 6 for n = 10. However, the n-dependence of the stationary solution for
o plays a relatively minor role in determining the influence of hardening on
the variation of K,, /K, with 8./(egr.) in Fig. 16. Primarily, the influence
of hardening on the curves in Fig. 16 is due to the dependence of the
steady growth solution of Fig. 15 on the hardening index n. )

‘The strong dependence of K,, /K, on hardening is qualitatively similar to
what was found in Mode III for linear hardening. The curves in Fig. 16
were not extrapolated to values of 8. /(eor.) beyond about 32, corresponding
to the limit to which the numerical results are felt to be accurate. Rice and
Sorensen [6] suggest that values of &, /(¢q7.) larger than 100 may be appro-
priate for certain intermediate strength pressure vessel steels with unusually
high tear resistance. Then, values of K, /K, will be enormous for light to
moderate strain hardening (10 < n < oo, say) as can be seen from the
trends of Fig. 16. But it is also clear from these trends that the elastic-
perfectly plastic result for a given &./(eor.) appears to significantly over-
estimate the potential for stable crack growth in a hardening material. It
seems reasonable to assume that the same conclusion holds for the entire
transient growth process. That is, one expects that the normalized resistance
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FIG. 16—Effect of hardening on K« /K. in plane strain Mode [ as predicted by a criterion
based on the attainment of a critical opening displacement b a distance t. behind the current tip.

curve in small-scale yielding (that is, Kz /K as a function of Aa), as pre-
dicted using a near-tip fracture criterion such as the one employed here,
will be strongly inflaenced by small to moderate amounts of hardening.
Predictions for elastic-perfectly plastic solids w1ll tend to be unconservative
when strain hardening is present
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