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ABSTRACT

PROPAGATION of a neck along the length of a tensile specimen as occurs in certain polymeric materials and in
a few metals is studied. Two material models are considered : a nonlinear elastic solid, and an inelastic flow
theory solid with both rate-dependent and rate-independent behaviors. For the elastic solid the states ahead
and behind the neck transition can be obtained fairly simply from just the jump conditions governing
continuity of mass, momentum and energy. For the inelastic solid a full three-dimensional analysis must be
performed to obtain the same information, and an analysis of axisymmetric neck propagation is carried out.

1. INTRODUCTION

NECKING in a tensile test sets in if the uniaxial nominal (engineering) stress—strain curve
of the specimen material has a maximum. For metals whose uniaxial nominal curve
peaks and then falls monotonically, a neck forms at some section of the tensile specimen
and remains localized with nearly all the subsequent elongation occurring in the neck.
A few metals and some polymers have a uniaxial behavior in which the nominal stress
first peaks but then reaches a minimum and with further straining increases to levels
well above the initial peak. Such a uniaxial curve is depicted in Fig. 1(a) where the
nominal stress n (load/original area) is shown as a function of the stretch 4 (current
length/original length). A neck initiates in these materials in much the same way as in
typical metal specimens. However, the upturn in the uniaxial nominal stress—strain
curve leads to a termination of the localization and forces the neck to spread along
the entire length of the specimen as depicted in Fig. 2. An overall load-elongation curve
for such a specimen as obtained directly from a test machine record is also sketched in
Fig. 2.

Once the neck has started to spread, steady-state propagation conditions are soon
approached in which the transition front moves at constant velocity into the unnecked
material, assuming a steady overall elongation velocity is imposed. In the steady-state
regime the pulling load is constant. Detailed experimental observations of neck
initiation and propagation are reported in the recent paper by G’SELL, ALY-HELAL and
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Jonas (1982). The phenomenon of neck propagation in polymers is often termed “cold
drawing” (WARD, 1971) and is employed as a standard process to harden fibers.

Although neck propagation has been observed for many years, the fundamental
mechanical aspects of the problem have not been extensively explored.
Thermodynamical features of the problem have been studied by a number of authors
including MaRSHALL and THOMPSON (1954) and BARENBLATT (1974). While thermal
considerations are highly important, the essence of neck propagation lies in its
mechanical aspects, and this paper will focus on the mechanics of steady-state neck
propagation under conditions in which thermal effects do not need to be explicitly
considered. Specifically, it will be assumed that either the propagation is sufficiently
rapid such that adiabatic deformation prevails or the propagation is sufficiently slow
such that the deformation can be considered to be isothermal.

We begin in the next section by writing down jump, or discontinuity, conditions
relating states ahead and behind the neck transition for steady-state propagation.
Jump conditions for conservation of mass, momentum and energy are only sufficient to
determine the states ahead and behind the transition front when the material is a
nonlinear elastic solid. For this reason it is useful to introduce the notion of a fictitious
nonlinearly elastic solid with a stress—strain curve such as that in Fig. 1. Results for the
nonlinearly elastic solid, which are simply obtainable, will be contrasted with those for
an inelastic solid, more typical of polymers or certain metals, whose stress—strain
behavior under multiaxial stress histories such as that experienced by a particle passing
through the neck transition is inherently path-dependent. For an inelastic solid the
jump conditions are not sufficient to determine the deformation states ahead and
behind the propagating transition front. To obtain these states a full analysis must be
performed, including determination of the shape of the neck transition and the
multiaxial deformation history of material elements as they are engulfed by the front.
The difference between the elastic and inelastic neck propagation problems is
analogous to the difference between shock wave propagation in a gas and that in a
solid. The states ahead and behind the shock front can be obtained directly in terms of
the jump conditions for a gas characterized by a state function. For shock propagation
in an elastic—plastic solid the jump conditions are insufficient to determine the states
ahead and behind the shock without knowledge of the constitutive behavior
characterizing the multiaxial deformation history of material particles passing through
the shock.

The steady-state problem is formulated and solved approximately for propagation
of an axisymmetric neck down a circular cylindrical bar. Several material models are
considered each of which has uniaxial behavior of the type depicted in Fig. 1. The
inelastic material will be represented by J, flow theory, both rate-independent and
rate-dependent versions. While not necessarily an accurate model of a polymer, the
flow theory is sometimes used to represent the multiaxial stress—strain behavior of
polymers for lack of anything better. For present purposes it will serve as a prototype
material with inelastic features not unlike those expected of a polymer under the
multiaxial deformation histories experienced in necking. A similar analysis will also be
performed for a nonlinearly elastic solid described by J, deformation theory. Since the
states ahead and behind the transition can be obtained directly from the jump
conditions for this elastic material, this case provides some check on the accuracy of our
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approximate three-dimensional analysis. It will aiso be seen that the predictions for the
nonlinearly elastic solid provide a rough approximation for neck propagation along
the rate-independent inelastic solid with the same uniaxial stress—strain curve.

2. STEADY-STATE NECK PROPAGATION
IN AN INCOMPRESSIBLE ELASTIC BAR

The bar is assumed to be infinite in extent, to have uniform properties, and to have a
uniform cross-section of area A, in the undeformed state. The uniaxial stress—strain
behavior is of the form graphed in Fig. 1. As already discussed, Fig. 1(a) displays the
nominal (engineering) stress, n, as a function of stretch, A. Figure 1(b) shows the
dependence of true stress, o, on logarithmic strain, ¢ = In 4, and this relation is assumed
to be monotonically increasing, since we want to exclude any purely material
instabilities.

As discussed in the Introduction, the neck is assumed to be propagating under either
an adiabatic or an isothermal condition, and the uniaxial behavior in Fig. 1 should be
associated with whichever of these conditions is in effect. The full multiaxial stress—
strain relation of the elastic solid will not be needed in this section, although it will be
assumed that the material possesses a strain energy density function W appropriate to
either the adiabatic or isothermal condition.

The results take the simplest form if the material is taken to be incompressible, which
will be done. In uniaxial tension, the strain energy density of the material is related to

the uniaxial data by
A £
szndlzjade. 2.1
0 0

F1G. 1. Uniaxial stress-strain curves. (a) Nominal stress, n, vs. stretch A. (b) True stress, g, vs. logarithmic
strain, ¢.
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As depicted in Fig. 2, a neck is assumed to have formed at some point along the bar
and then to have spread a distance sufficient to ensure that the transition front joining
the necked and unnecked regions is advancing under steady-state conditions. In the
idealized steady-state problem shown in Fig. 2 the profile of the bar as well as the stress
and strain fields do not change when viewed by an observer travelling at the same
velocity as the transition front. The material far ahead of the front is taken to be at rest
while the necked section far behind the transition is pulled at velocity ». The transition
front moves with velocity ¢ towards the unnecked region.

Far ahead of the transition in the unnecked region the material is in a state of uniaxial
tension and we denote the nominal stress and stretch in this state by (ny, 4(). Far behind
the transition the necked material is also assumed to be in a state of uniaxial tension
given by (ny, Ay). The state of stress in the transition region is, of course, not uniaxial.
However, we do assume that the material behavior is such that no non-smooth
behavior occurs in the transition, such as loss of ellipticity. The strain energy density
difference between states U and N for a particle passing through the transition is
therefore the same as if it experienced a purely uniaxial history between these states
since a strain density W is assumed to exist. That is,

AN
Wy —Wy = j n di, (2.2)
Au
which is just the area under the uniaxial nominal stress—strain curve between Ay and A.
Continuity, together with incompressibility, implies

()
)

If A, and Ay denote the cross-sectional areas of the bar far ahead and behind the
transition, then

AvAy = AnAn = 4o (2.4)

NECKING STARTS
LOCALIZED NECK NECK PROPAGATION

g ) S D
" / /

Py.¥ — Py

L)

(AT REST)
———  STEADY-STATE PROPAGATION

OVERALL ELONGATION

Fi1G. 2. Overall load-elongation behavior in a tensile test when neck propagation occurs. Conventions for
steady-state propagation.
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and
ny = Py/d, and ny = Py/A, (2.5)

where Py and Py denote the loads carried at the respective cross-sections.

The rate of change of the momentum of the entire bar in the axial direction is
—cAypv where p is the mass density of the bar. Thus, overall momentum balance
requires Py— Py = cAypv. By using (2.3) to eliminate ¢ and by making use of (2.4) and
(2.5), one can write the equation for conservation of momentum as

(ny—ny) (An—Av) = pv?. (2.6)

In a unit of time the pulling load does work Pyv, while the transition front has
translated forward a distance c¢. To evaluate the change in kinetic energy and strain
energy in the bar during this unit of time, one need only note that to an observer moving
with the front the bar appears unchanged. In effect, a segment of volume ¢ A4y, from far
ahead of the transition has been “transferred” far behind the transition. The increase in
kinetic energy is cAy3 pv* while the increase in strain energy is cAy(Wy— W,). The
steady-state energy balance is therefore

Pyv = cAy(Wy— W) +3cAypv™. (2.7
Dividing (2.7) by 4, and using (2.3) through (2.5), one can write the energy balance as
n(An—=Ay) = (Wy— W) +3p0°. (2.83)

The strain energy density difference in this equation must be interpreted as being
associated with either an adiabatic or an isothermal condition, whichever of these
limiting conditions is assumed to prevail.

Suppose the pull velocity v is specified. Then equations (2.6) and (2.8), together with
the uniaxial strain energy density W(4) in (2.1), fully determine the states (ny, 4,) and
(nn» An) ahead and behind the transition, assuming a steady-state solution exists.
Furthermore, the velocity of neck propagation ¢ is obtained from (2.3) when Ay and 4y,
have been determined. A graphical solution representing these states is revealing, and
for this purpose we use (2.6) to eliminate pv* from (2.8) with the result

3 (nn+ny) (An—Ay) = Wa—Wa. (2.9)

Under gquasi-static propagation conditions when the term pv? can be ignored, (2.6)
implies that ny = ny or, equivalently, that Py = Py. With ny = ny = n*, (2.9) becomes

WAy — M) = W— W (2.10)

The graphical solution to (2.10) is shown in Fig. 3. By (2.2), W — Wy is the area under
the curve of n vs. A between Ay and Ay, while n*(1y— 1) is the area of the rectangle
superimposed on the figure. The equality of these two areas required by (2.10) is
equivalent to the requirement that the areas of the two lobes designated by #, and %,
be equal. In the literature of phase transitions, the horizontal line at n* connecting the
states U and N is called the Maxwell line. The possible relevance of the Maxwell line
construction to neck propagation in materials such as polymers was apparently noted
by Thompson and Tuckett in the late 1950’s or early 1960’s (cf. discussion of the paper
by BARENBLATT (1974)), but we have been unable to locate this reference.
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F1G. 3. Maxwell line construction for quasi-static, steady-state neck propagation in an elastic solid.

The quasi-static, steady-state propagation load, P* = n*A,, is lower than the peak
load, P, = PmaxAo, that aninitially uniform bar can support. This means that the load
needed to initiate a neck in a bar is larger than the load needed to propagate the neck
quasi-statically once it has started to spread, as has been depicted in Fig. 2.

When pv? is not negligible, (2.6) and (2.9) must be solved simultaneously subject to
(2.2). It is straightforward to find the lowest order effect of pv? on the solution by
perturbing about the quasi-static solution. An asterisk is used to denote quantities
associated with the quasi-static solution from the Maxwell line construction. To lowest
order in pv?, one finds

ny = n* +(A5—A¥) " 4pvP+ -
ny = n*—({ =857 307+ -
In = A [SRAE A8 13007+ -+
Ay = 45— [SHAE—28) " 13p0? + -+

where S = dn/dA. The pull load, Py = nyA,, increases above the quasi-static propa-
gation load as the pull velocity v increases, while the load carried by cross-sections
ahead of the transition, P, = nyA,, drops. The stretch difference across the transition,
An— Ay, INcreases with increasing v.

A graphical construction of the solution to (2.6) and (2.9) is also possible when pv? is
not negligible, although it is not as pleasingly simple as the Maxwell line construction.
Refer to Fig. 4(a), and suppose again that the pull velocity v is prescribed. Equation (2.9)
requires that the areas 2, and #, must be equal. In addition, (2.6) requires that U and
N must be adjusted such that the area of the rectangle ANBU equals pv>.

Some nominal stress—stretch curves result in a maximum pull velocity and load
beyond which steady-state propagation ceases to exist, assuming that the bar cannot
support compressive loads ahead of the transition. The maximum pull velocity and pull
load are associated with the construction shown in Fig. 4(b) where A, — 1 and Ay is
determined from the condition #, = #,. Equations (2.6) and (2.9) then reduce to

nAn—1) = pv? and  iny(Ay—1) = Wy (2.12)

(2.11)

so that the maximum pull velocity is given by

v = J@Wi/p) = \/Inn(n— V)/p]. (2.13)
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F1G. 4. Graphical construction for dynamic steady-state neck propagation in an elastic solid : {a) general case,
(b) corresponding to maximum propagation speed with ny = 0.

In a later section, a numerical example will illustrate the occurrence of a maximum pull
velocity in a nonlinearly elastic bar.

3. THREE-DIMENSIONAL ANALYSIS OF STEADY-STATE NECK PROPAGATION

In the previous section it was possible to determine the states on either side of the
transition, independently of the details of the behavior in the transition, because the
strain energy difference Wy — W, could be determined in terms of the uniaxial states U
and N. This is not the case for an inelastic solid. Because the stress—strain behavior of an
inelastic solid is inherently path-dependent, substantial deviations of the stressing
history from uniaxial states in the transition region render invalid the calculation of
Wy — W, from uniaxial data alone. For an inelastic solid it is essential to analyze the
full three-dimensional problem to obtain the states on either side of the transition.

The equations of conservation of mass (2.3), momentum (2.6) and energy (2.8) derived
in the previous section continue to hold for steady-state propagation along an
incompressible inelastic bar. Now, however, ny must be interpreted as the nominal
stress averaged across the cross-section (1.e., Py/Ag), while Wy — W, is the stress-work
experienced by a cross-sectional slice of unit volume as it passes through the transition.
We will make use of these jump conditions later.

The three-dimensional analysis of steady-state neck propagation is carried out for an
infinitely long round bar made of an incompressible material with a uniaxial true
stress—true strain (o — &) and nominal stress—stretch (r, 4) curve similar to those depicted
in Fig. 1. The multiaxial constitutive relations will be detailed in the next section.

A cylindrical polar coordinate system (r, 0, z) is used as a reference. Without loss of
generality we take this system to be situated in the transition front and to be translating
with it along the bar axis at a constant velocity ¢ (Fig. 5). Because of axisymmetry the
particle velocities become

v =ue+0,e, 3.1

where e,, e, are unit base vectors in the r and z directions, respectively, and the
components v,, v, are functions of r and z only. The boundary conditions on these
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r streamlines @ =const.
/
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F1G. 5. Conventions for analysis of axisymmetric steady-state neck propagation.

components are the same as those considered in the previous section except that they
are expressed in the coordinate system translating with the front, namely

v,=0, v,=—c as z— + oo,

(3.2)

v,=0, v,=—(v+c) asz— —co.
The profile of the bar during neck propagation is such that the cross-sections become
uniform far away from the transition front with a radius R(z) = R, as z » + o0 and
R =Ry as z— — oo and the slopes R'(z) approaching zero as z — + oco. Since
An/Au = (Ry/Ry)? the continuity relation (2.3) becomes

_d (R 1 3.3
=q() ]

The Eulerian strain-rate components associated with the axisymmetric velocity field
(3.1) are as follows

vr .
] Szz = vz,z’

Srr

=Urp é90 =
. (3.4)
érz = E(vr.z+vz,r)7 érg = ézg = 0,
where a comma denotes partial differentiation. Incompressibility requires that &, + &g,
+£,, = 0. This constraint can be satisfied by introducing a stream function ®(r, z) such
that

1
v, = l(I),z, v,=—-0,. (3.5
r r

Curves @ = const. identify the streamlines of the flow. The strain-rate components (3.4)
are then given by

1 1
_2 ézz = - 7(1) rzs (36)

D,
on0,to]

€go =

w‘,__
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variational principle (3.7). We have R = R(Ry,¢;)i = 1,...,k so that

_ X B8R koo

6R Zogéc,-z _ZOR,(SC,,
LR .k

OR = Y, =—dc;= ¥ Ris, (3.13)
i=0 i i=0
LRk

SR" =% a—éci = 3 Riéc,
i=0 i i=0

(Note that R:= 8R'/dc; is not equal to (R) in general, and similarly that
Ry = 8R"/dc; # (R)". Above and in the following, ¢, = Ry.)

From (3.11) to (3.13) and the relation s, = 0 we obtain the following for the
integrand in (3.7).

k
306 P = < 3 LfoRi+fi R+ f,R Voc, + 2 sc, (3.14)
/ ! RU i=0 RU
with
! _ 2 372 _
fo= == |:9szzR’+s,zr( Iif +R”>]+ %[%—2‘“ —4}R’,
3 _F pc?
fl = —ﬁ?[szz—i—zsrzR E}_‘F Zw,
3.15)
1
f2 = - Fsrzn
1 1 pc r w ’
f3 E 35 R +S,.z',b :| R7 |:2— Ez j|R
and
¥ = 3(R)—RR", o= RR'—2R) (3.16)

The continuity relation (3.3) gives the connection

ov = 5RN+(R2 —1)50. (3.17)

By setting the coefficients of Ry, da; and éc equal to zero in (3.7) we obtain the
following set of equations

P ® _ _ o
ho ==+ J [90Ro+9,Ro+9,R5] d7 = 0
U —®
hi:f [90R+9:Ri+g.R{1dZ = 0, i=1,. .k (3.18)

R ® _
h(k+1)_ N(PN PUR) J g;dz =0,

-—®
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where

R(z)
g,-:Rﬁ,j firdr, i=0,...,3. (3.19)

¢]

The last equation of the set (3.18) can be written as
Pyv = j 5;;€;dV +5cAypv?, (3.20)
vV

where V is the volume. This is simply the work balance which is equivalent to the
relation (2.7).

Consider the pull velocity v as the prescribed quantity. Equations (3.18) together
with the continuity relation (3.3) and the momentum balance relation (3.9) then
provides a set of (k+4) equations for the (k+4) parameters Py, Py, ¢, Ry and ¢;
(i=1,...,k).

Numerical results will later be given for the following two-parameter description of
the bar profile

R(Z) = $[(1 + Ry)+ (1 — Ry) tanh (82)], (3.21)

where ¢, = 8 is a measure of the sharpness of the transition front. The profile (3.21)
satisfies the boundary conditions at z = +co. Substituting (3.21) into (3.18) and
substituting for Py and ¢ using (3.9) and (3.3) gives three equations of the form (3.18) to
determine Py, Ry = Ry/Ry and ffor a prescribed pull velocity v. Once the values of Py,
Ry and f have been computed, we go back to (3.9) and (3.3) to determine Py and the
neck speed c.

4. CONSTITUTIVE LAWS

The constitutive laws employed in the three-dimensional analysis are finite strain
versions of the classical J, flow and J, deformation theories of plasticity. As mentioned
previously, the flow theory solid will serve as a prototype material to characterize the
inelastic features of neck propagation even though it is perhaps not entirely adequate
for describing the real multiaxial behavior of polymers at large strains. Since
deformation theory describes a true nonlinear elastic solid, it will serve to verify
the accuracy of our three-dimensional numerical solutions as the exact solutions for
the loads Py, Py, and radius reduction Ry/Ry in this case are given by the analysis of
Section 2.

J, Flow theory

We assume the material to be rigid—plastic and first consider time-independent
material behavior. For continuing yielding the J, flow theory constitutive law is

20, .
ij=§£—:8u,

s (4.1)
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where

0. = Gsys)'%, = (%éijéij)l/z 4.2)
are the effective stress and effective strain-rate, respectively. The effective strain £ is
defined as [ dé. In simple tension the effective stress and effective strain are equal to the
true stress g and logarithmic strain ¢, respectively. The o,—& curve for uniaxial tension is
assumed to hold for multiaxial stress histories. A true stress—natural strain curve with
the features illustrated in Fig. 1(b) will be employed in this analysis. This rate-
independent curve is written as

g, = 0y(e) (4.3)

with no dependence on effective strain-rate é.
To describe rate-dependent material response, we replace (4.3) in the flow theory
equations (4.1) by the following relation

o, = as(@[l +mIn (1 + Biﬂ (4.4)

where m is a strain-rate hardening index and &g is a reference strain-rate. The above
curve (4.4) reduces to the time-independent relation (4.3) when m = 0 and in the quasi-
static limit (¢ — 0). A relation of the form (4.4) brings in the effect of material strain-rate
dependence in the simplest possible way, and it cannot be expected to accurately
represent material behavior for arbitrary histories of stress, strain and strain-rate. This
model should be sufficient, however, for giving a qualitative indication of the effects of
material rate-sensitivity on neck propagation.

For the steady-flow problem formulated in the previous section, the fields £ £ are
specified by the wave speed ¢ and profile of the bar R(z). To determine the spatial
distribution of effective strain & we note first that £ = ¢, = In Ay at z = oo and then
integrate along the streamlines @ = const. as follows:

v
&= £U+J ﬁdl’ (4.5)
where d! = |v| dz/v, = |v| dr/v, represents an element of arc length along the streamline.
For the fields corresponding to (3.10) we have
z 1 - 1 7 2 - S a 172

E=¢ey— | =<4R ~| = | [3(RY»—RR" dz; 4.6

F= oy LR{()+3(R)[(> ]} 2 @6)
where here 7 = r(z) is the radial coordinate along the particular streamline considered.
Having computed the ¢ distribution, we can calculate the value of the effective stress g,
at each point using (4.3) or (4.4) and then substitute in (4.1) to compute stress deviator
components s;;.

J, Deformation theory

The finite strain J, deformation theory constitutive law considered is a nonlinear
elastic law for isotropic, incompressible solids. Aspects of this law were discussed in
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previous papers (HUTCHINSON and NEALE, 1978, 1981). In applying it here we make use
of Hill’s theory and “principal-axes techniques” (HiLL, 1970) for finitely deformed
isotropic elastic solids.

Let 5; and ¢; = In 4; denote the principal components of Cauchy stress deviator and
principal logarithmic strains, respectively (4; are the principal stretches). The logarith-
mic strain tensor & is, by definition, coaxial with the Lagrangian strain ellipsoid.
Furthermore, the strain-rates ¢, etc. are identically equal to the Eulerian strain-rate
components &, ;, etc. referred to the current axes (x, x3) of the Eulerian strain ellipsoid.
Transforming the strain-rate components from the (z,r) reference system to the
principal Eulerian axes (x', x3) one finds

gy =&, =3[, +6,)+(E,.—E,,) cos 2¢] +&,, sin 2¢,
y =&y = (6,5 +5,,)—(£,,—£,,) cos 2¢]—§,, sin 2¢, @.7)
é’12 = _%(ézz_érr) sin 2¢+érz COS 2¢,

where ¢ represents the orientation of the x',-axis with respect to z-axis. HILL (1970)
gives the following for the rate of rotation of the principal Eulerian axes:
. AT+ A3
=28, +Q, (4.8)
l%-—/{% 12
where Q = (v,,—v,,)/2 represents the rigid-body spin of a material element in the z—r
plane. By integrating along streamlines as described earlier, we get

v [FIR@T ¢
v=9 ‘L[RT] ¢4

“[R(z) |* &
=gl IS Bhi)
& =& J‘M[RU] c dz,

where @Y = 0, ¥ = ¢, and &Y = —¢/2 designate the values at z = co.

To determine the current stress deviator components we make use of the fact that, for
an isotropic elastic solid, the principal directions of the Cauchy deviatoric stress tensor
s must coincide with the principal Eulerian axes x;. The finite strain J, deformation
theory law is expressed in terms of the principal components of s and £ and has the form
(HutcHiNsoN and NEALE, 1978)

(4.9)

=22, (4.10)

where the effective strain ¢, is defined as follows

2 1/2
= (5 sisi) . (.11)

The effective stress and strain are related by the uniaxial relation (4.3), i.e. 0, = a,(e.).
Thus for a given flow field (prescribed by the wave speed ¢ and radius profile R(z)) we
can integrate (4.9) along the streamlines ® = const. to determine the principal axes
orientations ¢ and total principal strains ¢, Equations (4.10), (4.11) together with the
uniaxial stress—strain relation (4.3) gives the principal stress deviators s;. Transforming
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back to the (z,r) reference system gives
Y
2
Ser = 3L(51 +52) — (5, — ;) cos 2¢], (4.12)
1
2

Other schemes are possible for analyzing the nonlinear elastic solid which would
more naturally exploit the path-independence of the material. However, the present
scheme was used because it fits in with the numerical approach outlined in the previous
section.

5. RESULTS AND DISCUSSION

Some characteristic features of neck propagation in elastic and inelastic materials
will now be examined. Numerical results have been generated using the analyses of the
previous sections. Details of the numerical procedure associated with the three-
dimensional analysis are discussed in the Appendix.

The particular form of uniaxial stress—strain curve (4.3) adopted was constructed by
modifying the experimental relation suggested by G’SeLL and Jonas (1979) as follows:

{aks” for & < g,

5.1
k exp (Me?) £ = & G.1)

We take k, ¢, and M as the independent material constants and impose continuity of
the stress ¢ and tangent modulus da/de at ¢ = g, This gives N = 2M(gy)? and «
= exp (N/2)/e5. The uniaxial nominal stress-stretch curve associated with (5.1) reaches
alocal maximum when ¢ = N, alocal minimum when & = 1/(2M) and thus has the form
depicted in Fig. 1{a) if N < gq < 1/(2M). Numerical results will be given for two cases:
(i) M = 0.50,¢, = 0.50 and (i1)) M = 0.25, &, = 1.00. The uniaxial curves associated with
these choices are shown in Fig. 6 where the peaks are n,,,,,/k = P,,,./(kAg) = 0.742 and
0.551, respectively.

Results are first given for dynamic steady-state neck propagation in rate-
independent nonlinearly elastic and inelastic materials (Figs 7-10). In Figs 7 and 8
the loads Pn/P.. and Py/P.., are plotted against the nondimensional parameter
¢ = pv*/k which is associated with the pull velocity. Solid curves here refer to the in-
elastic material (J, flow theory) while dashed curves refer to the nonlinear elastic
solid (/, deformation theory). These results emanate from the three-dimensional
analysis of Section 3. The dash—dotted curves represent the exact solutions for the same
nonlinear elastic material as obtained from the analysis of Section 2. (This curve for Py
in Fig. 7 is indistinguishable from the dashed curve.) The close agreement between the
exact results and those obtained numerically for the nonlinear elastic material suggests
that the discretization and associated integration formulas of the numerical scheme
used in conjunction with the three-dimensional analysis are reasonably accurate.

When the material behavior is elastic the loads Py and Py, respectively increase and
decrease monotonically with increasing pull velocity v (Figs 7 and 8), as suggested by
the graphical construction of Fig. 4. A maximum pull velocity corresponding to Py, = 0



Neck propagation 419

-n
k -
0.8-
04
0 [ B B
| 3 5
A
(a)
n
k_
0.8+
0.4M
OLL [ [
| 20 40 X

F1G. 6. Uniaxial stress—strain curves used in numerical calculations.
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iseventually attained, although only at large {. When the material behavior is inelastic,
the load carried by cross-sections far behind the transition front Py also experiences an
increase with increasing pull velocity. However, the load in the unnecked region far
ahead of the wave front Py first decreases very slightly with increasing velocity but then
begins to increase. A value of velocity is eventually reached where Py = P,,,,, that 1s,
where the nominal uniaxial tensile stress in the unnecked sections is at the maximum
point on the n—4 curve of the material. This state, designated by a ~, would permit the
onset of Jocalized necking in the region ahead of the transition. Our solution cannot
encompass such behavior and our curves have been terminated when P, = P,

The results shown in Figs 7 and 8 indicate that, for a prescribed pull velocity, the
inelastic material requires a higher pull load than the elastic material. This is to be
expected since the energy which is dissipated in the transition region due to shearing is
not recovered in the inelastic solid. In the quasi-static limit { = 0, P, = Py and the
elastic solution is that given by the Maxwell-line construction. The load level for quasi-
static propagation in the inelastic material is again higher than that for the elastic
material.

As discussed earlier, (2.9) holds for the inelastic solid as well as the elastic solid if Wy
— Wy is understood to be the average stress—work absorbed by a cross-sectional slice of
unit volume as it passes through the transition. By (2.9) the ratio of the average stress-
work experienced by the inelastic material to that of the elastic material is

(WN - WU)inclastic [(nN + nU) (}'N - )'U):Iinelaslic

= . 2
(W — Wietastic [(nn +1y) (An— Au)etastic 63
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For the material with M = 0.5 and ¢, = 0.5, this ratio ranges from 1.32 in the quasi-
static limit to 1.26 for pv?/k = 7.4. For the second material (M = 0.25, ¢, = 1.0), the
range is 1.26 for pv? = 0-1.12 for pv? = 20.9. In quasi-static propagation the inelastic
material absorbs about 309, more energy than the corresponding fictitious nonlinearly
elastic material.

Plots of the radius-reduction ratio Ry/Ry, and transition profile parameter § against
the pull velocity parameter { are shown in Figs 9 and 10. Figure 9 indicates that the
ratio Ry/Ry, for the elastic material is generally less than that for the inelastic solid, and
that this ratio decreases with increasing pull velocity for both materials.
Correspondingly, the S-parameter increases with increasing { (Fig. 10) with the elastic
solid exhibiting an increasingly sharper transition profile (higher g value) than the
inelastic solid.

Although the cold drawing of polymers is a high speed process, generally the rate of
neck propagation is still not fast enough for inertial effects to be important. On the
other hand, polymers have a positive rate-dependence and velocity effects can therefore
appear even in quasi-static propagation. The results presented below were determined
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F1G.9. Ratio of radius behind transition to radius ahead of transition as a function of pull velocity parameter.
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Fi1G. 10. Variation of the transition width parameter (see equation (3.21)) with pull velocity parameter.

neglecting inertial effects. The rate-dependent relation (4.4) was assumed in conjunction
with the flow law (4.1). Two values of the strain-rate sensitivity have been considered : m
= 0.01 and 0.05. The non-dimensional velocity parameter which arises in this analysis
is vy = v/(Ryér). Plots of the pull load, the radius-reduction and the transition width
parameter f as functions of y are given in Figs 11-14. In these figures P, is the peak
load (1,,,.4,) associated with m = 0 or, equivalently, associated with &/é; — 0. A higher
load level is required to increase the pull velocity, yet the transition profile becomes
smoother (ff decreases) accompanied by a slightly smaller reduction in radius (Ry/Ry
increases).

The mathematical character of the steady-state rate-independent problem is different
from the corresponding rate-dependent problem. In the rate-independent problem the
quasi-static pull load is independent of the pull velocity. The mathematical problem for
P*is a nonlinear eigenvalue problem. When rate-dependence is present the pull load is
a function of the pull velocity v. The rate-dependent results of Figs 11-14 coincide with
the quasi-static time-independent results as v — 0 since (4.4) reduces to the time-
independent relation as &/ég — 0.

A positive strain-rate sensitivity (m > 0) has the expected effect of stabilizing neck
propagation. For example, once a neck is initiated and starts to spread it will tend to
propagate in both directions, as depicted in Fig. 2 and as is usually observed
experimentally. Any tendency for either one of the propagating transition fronts to slow
down is offset by a drop in flow resistance and vice versa.
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F1G. 11. Results for quasi-static, steady-state neck propagation in rate-dependent inelastic solid.

Another feature which emerges in Figs 11-14 is the increase of the pull load towards
P_.. withincreasing pull velocity. When the pullload is very close to P, there will be a
tendency for necks to initiate ahead of the travelling front at any section with a slight
reduction in cross-sectional area {or material strength) due to an initial nonuniformity
in the fiber. The approach of the pull load toward P, with increasing y is rather
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F1G. 12. Results for quasi-static, steady-state neck propagation in rate-dependent inelastic solid.
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F1G. 13. Results for quasi-static, steady-state neck propagation in rate-dependent inelastic solid.

gradual. Thus, it may be difficult to identify a precise value of y where multiple necks
will start to be observed.

6. CONCLUDING REMARKS

Qualitative insight into neck propagation along polymers is gained from the analysis
based on the fictitious nonlinear elastic solid, but quantitative predictions require that
inelasticity be taken into account. The present analysis can be improved upon in a
number of respects. First, there is no obstacle to incorporating other, more realistic,
constitutive descriptions of material behavior. Secondly, the accuracy of the three-
dimensional solution can be improved upon if that seems warranted. The improvement
which would involve the least alteration to the scheme used here would be the inclusion
of more free parameters in the specification of the shape of the neck transition. It is also
possible that the approximate form (3.10) of the stream function assumed here is too
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F1G. 14. Results for quasi-static, steady-state neck propagation in rate-dependent inelastic solid.

restrictive. In principle, this choice could be generalized as well, but with a sacrifice of
some of the simplicity.

Tensile specimens of some metals propagate necks, or bands, along their length. A
well-known example is the propagation of Liiders bands in mild steel. While there are a
number of similarities between Liiders band propagation and the neck propagation
discussed in this paper, there is an essential difference. Mild steel displays a true
material instability at its upper yield point. In uniaxial tension the true stress, as well as
the nominal stress, peaks at the upper yield point, and this precipitates the shear band
formation characteristic of Liiders bands. In the present paper we have restricted
attention to materials which do not undergo material shear instabilities, at least over
the range of deformation states considered.
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APPENDIX

Certain details of the numerical solution associated with the three-dimensional analysis are
briefly discussed here. Three equations of the form (3.18) are to be solved, and this is done
iteratively using the Newton—-Raphson technique.

At each step of the iterative solution numerical integrations must be performed. To compute
the values of g, defined by (3.19) we use an 8-point Gaussian quadrature formula, while
integrations with respect to Z in (3.18) are calculated with a 17-point Gauss—Hermite quadrature
formula. To ensure a uniform accuracy regardless of the sharpness of the transition front, a
change of variables Z = Bz is introduced as suggested by the profile shape (3.21). To improve the
starting values at the Z, station in the Gauss—Hermite scheme, a 5-point Gauss—Laguerre
formula is used for the interval (Z,, + c0).

With stream functions of the form (3.10) the equation 7 = «;R identifies a streamline for each
value of x; (0 < k; < 1). We choose 8 values of k; such that the corresponding vatues of 7 coincide
precisely with the stations r; used for the Gaussian integrations of (3.19). (These ks are
independent of Z!) Our double integration scheme thus results in a grid (Z,, ;) with i = 1,...,22
andj = 1,...,8 and with r; always lying automatically on the same streamline for a fixed j-value.
This simplifies considerably the streamline integrals (4.6) and (4.9) which are evaluated by fixing
k; and then integrating from one Z; station to the next. A direct Euler method with a finer mesh
(1020 intervals between consecutive Z; stations) was used for these integrations.




