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ABSTRACT: For cracks in infinite bodies it is shown that modified principles of comple-
mentary potential energy and potential energy can be used to generate upper and lower
bounds to the J-integral of the deformation theory of plasticity. These principles are used
to obtain relatively tight numerical bounds on J for two basic plane strain problems: the
finite crack in an infinite plane and the edge-crack in a semi-infinite plane. In both prob-
lems the material is incompressible with a pure power relation between stress and strain.
Upper bounds for the plane stress problems are also given.

KEY WORDS: nonlinear fracture mechanics, fully plastic crack problems, J-integral,
bounds, elastic-plastic fracture

In the first section of this paper we derive principles for obtaining upper
and lower bounds for the J-integral in certain infinite or semi-infinite crack
problems in which the only length quantity involved is the crack length itself.
Under these circumstances J, the energy release rate per unit of crack exten-
sion in a deformation theory material, is simply related to the minimum of
the potential energy functional and the minimum of the complementary en-
ergy functional, each of which is modified appropriately for an unbounded
region. Any statically admissible stress field in conjunction with the modified
complementary energy functional generates an upper bound to J, while any
kinematically admissible displacement field used with the modified potential
energy functional gives a lower bound.

The principles are then implemented to obtain numerical bounds for two
basic fully plastic problems in plane strain: the finite crack of length 2a in the
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infinite plane and the crack of length a normal to the edge of a semi-infinite
plane. Numerical results for the upper bound toJ are also given for the corre-
sponding problems under plane-stress conditions.

The numerical results are obtained for the case of a small strain incom-
pressible solid characterized in simple tension by

e/eg = alo/ap)" (1

where ¢ and o, are a reference strain and stress and « is an extra constant in-
troduced for convenience of application. The tensile relation is generalized to
multi-axial states by J, deformation theory according to

i 3 N
3:_a<1> Si 2

€ 2 0, 0y
where s;; is the stress deviator and o, is the effective stress defined by
0, = (V2s5;55)'7? (&)
With an effective strain defined by

e = (B¢

)2 (4)

o, and ¢, satisfy the tensile relation, Eq 1.

The numerical results are obtained using a Rayleigh-Ritz procedure to mini-
mize the respective functionals with respect to a family of kinematically or stati-
cally admissible fields with free amplitude factors. This same numerical proce-
dure was employed in an earlier paper [/]* to bound J from below for the finite
crack in the infinite plane and for a penny-shaped crack in an infinite body. In
still earlier work, Ranaweera and Leckie [2] used finite-element procedures
based on both displacements and stresses together with the corresponding two
unmodified minimum principles to evaluate J for several configurations of
finite extent. Their results do appear to have a bound-like character even
though the bounding principles do not strictly apply to finite bodies.

Upper and Lower Bounds to J

Attention is restricted to a small strain deformation theory of plasticity for
homogeneous bodies in which the strain energy density and complementary
stress energy density are

Wie) = i‘ Oi'dé,'j and U(o) = S eijdoi' (5)
Jo 0

3The italic numbers in brackets refer to the list of references appended to this paper.
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To construct the minimum principles for an infinite or semi-infinite body
loaded at infinity, let 6, ¢, and u® denote the stresses, strains, and displace-
ments associated with the uniform field of the loaded body in the absence of
the crack. Denote additional quantities by a tilde so that the total quantities in
the presence of a crack are given by

o=¢" t+ 4, €= € + ¢, a=u>+i (6)

Consider a family of finite bodies with an outer boundary S, of radius R on
which tractions 7; = 0;*n; are prescribed as shown in Fig. 1. The traction-free
crack has length (or half-length) a and for the edge-crack problem the edge
(x;, = 0) is also traction-free. The remote stress ¢™ must be consistent with the
traction-free conditions on boundaries other than the crack. For example,
0;°n; must vanish on the edge x; = 0 for the edge-crack problem.

The potential and complementary potential energy functionals for the
finite body are

PEzj W(dV — | o nuds (7)
VR

N

and

]

CE = U(o)dV (8)

4 Vg

where Vi denotes the volume per unit thickness exterior to the crack and in-
terior to Sg. The stress field in Eq 8 must satisfy equilibrium and the
traction-free boundary conditions on the crack and on any other traction-free

Sk

52

FIG. 1—Crack geometry.
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boundary. It must satisfy the traction condition o;n; = 0;*n; on Sg. The
strain in Eq 7 is derived from the displacement field using the linear strain-
displacement equations. Subject to standard convexity conditions on the en-
ergy density functions, which will be assumed, the two functionals are mini-
mized by the respective exact fields. For the exact solution it is easily shown
that

CE = —PFE 9
and J, defined as the energy release rate with 0;n; held constant on Sz, is

_ 1 dPE __1_ dCE
m da m da

(10)

Here m = 1 when one crack tip is present, as in the edge-crack problem, and
m = 2 when the crack has two tips.

We now manipulate Eqs 7 and 8 into forms such that the contributions
which depend on a remain bounded as R becomes infinite. First we deal with
Eq 7. By the principle of virtual work

S Uym"jﬁids — g Oy-oué',jdVR + S Oy“njﬁ,-dS (11)
Sq 5

R

where S is the surface of the crack and n is the unit normal to S pointing into
Vg. Equation 7 can be written as

PE=¢+C 12)
where

&) = S {W(e) — W(e™) — 0;°¢;}dV — S o;°ni;dS (13)
Ve s
and

C= E W(e=)dV — E o nu;~dS (14)
Ve Sk

Now, as long as @i decays faster than r~2 asr — oo, where r = (x;x;)"/2, it can
be shown that ¢ remains bounded as R — oo. Furthermore, among all such
admissible &, the exact solution fi minimizes ¢ for the infinite problem [3].
Since C is independent of a, it follows that

1 dé
=== 15
J = (15)

and this relation is valid in the limit as R becomes unbounded.
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For either the infinite plane with crack of length 2a or the semi-infinite
plane with the edge-crack of length a, the crack length is the only length quan-
tity and thus ¢ must have the form

& = af(e¢™) (16)

where f depends implicitly on the material properties and on ¢* but not on a.
Thus, from Eqs 15 and 16

J=——193.. (17)

where the notation ®_;, is used to emphasize that ® is evaluated using the ex-
act solution. Any estimate of J obtained from

J= - A ®(i) (18)
ma

using an admissible additional field i@ necessarily leads to a lower bound to J
since (i) = ®;,.
Next, we rewrite Eq 8 as

CE=F+C (19)
where
F(@) = j {U(o) — U(e™) — G¢;,}dV (20)
and -
G = SV U(e>)dV (21)

R

Here we have made use of the fact that
VR

Gsn; = nd G;n;u,® = —0.;%n;u; e , which in-
since §;n; = 0 on Sg and §;n;u;® ;°nu™ on the crack faces, which i

tegrates to zero. If the additional stresses & decay faster than r=32 asr — oo,
then Eq 20 is bounded in the infinite problem. Since C' is independent of a

1 dF
=— = 2
J . (22)
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Furthermore, among all statically admissible  the exact solution minimizes
F, as can be shown using an approach similar to that employed in Ref 3 for
the potential energy formulation. From dimensional considerations it follows
that F is proportional to a? for either of the plane problems so that

J= — Fuin (23)

By virtue of the minimizing role of the exact solution, any estimate of J ob-
tained from

J= L F@) (24)
ma

using a statically admissible additional stress field gives an upper bound.

Numerical Method

For the upper bounds a stress function was used to generate equilibrium
additional stress fields according to

1 = X, 22 6 = X,11s and G = —Xx12 (25)

The power-law material, Eq 2, is inherently incompressible and thus in the
lower-bound calculations a stream function could be used to give the addi-
tional displacements as

4=y, and @& = —y, (26)

In each case, the function was represented as a linear sum of admissible
functions in the form

K K
x= L Ax® or y= L Ay® (27)
i=1 i=1
where the A,'s are free variables chosen to minimize F or &. This minimiza-

tion was achieved by a Newton-Raphson method. With the upper-bound for-
mulation to illustrate the method, the minimum condition is

oF '
=) k=1K (28)
34,
where
oF
= S (E']' = e,-j°°)s,~j(")dV (29)
aAk v
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and s is derived from x* so that

Si

K
i = E A (30)

If {A4;} is an estimate of the solution to Eq 28, the improved estimate
{A4; + AA;} from the next iteration is obtained from

cd F oF
Y ¥ AR T 31
D v Yt vy (31)
where
NE_ - 4 gy~ 1)
aAmaAp = SV? o, { [s’.j(m)s(-i(P) e ? ——022 (siisij(m))(sk[sk[(p)) dv (32)

Corresponding expressions for the lower bound based on ¢ and the first of
Eq 27 are readily derived.

The integrals over the body in Eqs 20, 29, and 32 were evaluated using a
mapping technique together with numerical integration in the mapping
plane. With reference to Fig. 2, the physical plane in both plane problems in-
vestigated here was mapped into the unit circle in the {-plane using the con-
formal map

2= () = %(H ) (33)

where z = x; + ixp and { = § + in = pe . The planar-polar coordinates
w and ¢ in the mapping plane were taken as the independent variables in the
functional representation of x and v, as described in the following. Integra-
tions over the body were performed using iterated 10-point Gaussian quadra-
ture formulas for p ranging from O to 1 and ¢ ranging from-4 to «/2. This
same technique was used in Refs / and 4, where it is described in more detail.
Test cases based on known linear solutions and on special trial functions for
the nonlinear material indicated that the numerical integration of F or & is
accurate to at least three or four significant figures.

The numerical method in the present study differed from that in our
previous paper [/] in that here explicit expressions for the partial derivatives
of & and F with respect to the amplitude factors (for example, Eqs 29 and 32)
were used. In the earlier work these derivatives were evaluated directly from
the functional by numerical differentiation. The present procedure resulted
in a considerable reduction in computation time and led to better numerical
conditioning in some instances.
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FIG. 2—Mapping from physical plane to mapping plane: (a) central crack: (b) edge-crack.

Bounds for the Crack in the Infinite Plane

As indicated in Fig. 1, the crack of length 24 lies on the x;-axis, the one
nonzero remote in-plane stress component is 05, = ¢%, and plane-strain
conditions (e33 = 0) are assumed. The form of the solution for J for the pure
power-hardening material, Eq 2, is [/]

J = ao,” ¢,*h(n) 34)
where, from Eqs 3 and 4
V3 2 ®\n
o?°° = T|a°°| and > = 7 lexx®| = ae()(%) (35)

The bounds given in the following are for 4 (n).
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For the lower bound the stream function, Eq 26, was taken as

N M

=L L Aglw~'sin2k + (~ DA 2k — n/2)] (36)
LN

which is the same representation used in Ref I, except that more terms were
used to obtain the present results. This choice is consistent with the symmetry
of the solution with respect to the two Cartesian axes and, as discussed in
Ref 1, gives rise to a crack opening of the approximate form f(x) Va2 — x,?
where f(a) is bounded. Expressions for partial derivatives of ¢ (and x) with
respect to Cartesian coordinates, which are needed in the evaluation of &, are
obtained in terms of the derivatives with respect to 4 and ¢ with the aid of stan-
dard change of variable formulas as illustrated in Refs 1 and 4.

The stress function for the additional stresses Eq 25 for the upper bound
was taken to be

x= "2—“ (i + u= (1 ~ 2 — 1] sin$ +
N M
— (BN + I E Ayl — wp-etditicosdks  (7)
L I

This choice is also consistent with the twofold symmetry and each individual
contribution gives rise to additional stress components which decay faster than
r=32 for large r. The first term in Eq 37 gives 6;; = 0 and ,; = — o™ on the
crack faces, while each of the other terms makes no traction contribution.
Thus, from Eq 6, the total traction vanishes on the crack faces. By numerical
experimentation it was found that a relatively large value of the exponent s in
the first term was best and the choice s = 7 was made. The individual terms in
the double sum in Eq 37 withj = 1 each has a stress singularity at the tip of the
order r~ Y0+ which is in agreement with the order of the actual singularity.
The terms in the double sum make a contribution to o,y which is zero on the
crack faces. The second set of terms in Eq 37 is capable of representing an ar-
bitrary distribution of o;; along the crack faces. The functions fi(¢) form a
complete set with the required symmetry conditionsf = f* = O at ¢ = 0 and
w/2. They are given by

fi(¢) = cos \(¢p — 7/2) + b;cosh N(¢p — 7/2) (38)
where X\; is the root of (ordered in ascending magnitude with A\, = 1.5056187)

cos(\; 7/2) sinh(\; 7/2) + sin(\; #/2) cosh(\;7/2) = 0 (39)

and
b; = sin(\; w/2)/sinh(\; 7/2) (40)
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The computed bounds to A(n) as defined in Eq 34 are given in Table 1 for
values of n between 1 and 7. For n < 3 the spread between the bounds is less
than 2 percent. For n = Sit is 4 percent and forn = 7 it is 7 percent. The lower
bound was computed with N = 5 and M = 6 for a total of 30 free amplitudes.*
The upper bound was determined using 34 free amplitudes with N = §,
M =6,and P = 5.

Included in Table 1 and plotted in Fig. 3 are numerical values based on the

TABLE 1—Upper- and lower-bound estimates of h for plane-strain cracks
in an infinite plane.

n=10 n=15 n=20 n=30 n=40 n =50 n=70

Upper bound 3.156 3.884 4.517 5.616 6.579 7.456 9.052

Lower bound 3.141 3.856 4.470 5.511 6.390 7.152 8.421

mn 3.141 3.848 4.443 5.441 6.282 7.024 8.312
10

Upper Bound

ED RACK
Lower Bound} W CRAC

Upper Bound

e } CENTRAL CRACK

¥1G. 3—Bounds for the central crack in the infinite body and the edge crack in the semi-
infinite piane under plane-strain conditions.

“The results reported in Ref / were computed with N = 3 and M = 4; for n = S the present
results are about 5 percent higher. This reflects the convergence rate with an increasing number of

terms.




HE AND HUTCHINSON ON PLASTIC CRACK PROBLEMS |-287

approximate result 4#(n) = wVn obtained in Ref 1. It is seen that this simple ap-
proximation is only slightly below the lower bound in the range 1 < # < 7 and
is within 3 percent of the upper bound for » < 3 and within 8 percent forn = 7.
As described in Ref 7 this result is a special case of a formula derived under
more general remote stress conditions where

: V3
o™ =S, o> =T, and o0, = T|S — T (41)
That formula is
3nvn S \?
== = ag,”e,” <—> (42)
4 0,”

For n = 1 the formula is exact for all S and T, while for » # 1 the formula has
an error of order ($/0,2)* when §/0,° is regarded as small. The present
bounds indicate that the formula retains its accuracy (for most purposes) for
S/0,” at least as large as 2/V3, corresponding to remote plane-strain tension.
The reader is referred to the discussion in Ref [ for an explanation of the un-
bounded character of the results in the rigid-perfectly plastic limit as n — oo.

Bounds for the Edge-Crack in the Semi-Infinite Plane

Here the crack of length a is again under plane-strain conditions with a
remote stress ¢,,° = o so that Eqs 34 and 35 still hold.
For the lower bound the stream function was taken as

P
v=1(¢— 7r/2)[A0(1 — )+ 'Ex Apit! — #):I

N M
+.E K Akj[uf_lsin 2k¢+2k(—1)k+1(¢—7r/2)y:| (43)

k=1 j=1

This choice, like the previous one for the crack in the infinite plane, has a crack
opening of the form f(x;) Va — x; with associated strains and stresses which
are less singular than the actual solution when » > 1. The representation for
the stress function x used to calculate the upper bound is the same as Eq 37,
except that the double sum is replaced by

N M

kE1 ,E1 Agi(1 — p)P~ /D14 £ () (44)
By

where f(¢) is defined by Eq 38. Each term in the representation for x satisfies
the zero traction condition on the edge of the plane x; = 0. The total stress dis-
tribution meets the zero traction condition on the crack faces. Thus, x pro-
duces a statically admissible stress distribution for any set of amplitudes.
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Computed bounds to #(n) in Eq 34 are presented in Table 2 and plotted in
Fig. 3. The lower bound was determined using 34 free parameters (N = 6,
M =5, P = 3), and the upper bound was computed with a total of 29 free
parameters (N = 5, M = 5, P = 5). Included in Table 2 are values of the nor-
malized crack mouth opening, § = 2u,(0, 0*%), at the edge of the plane where

gln) = (45)

ae,”
These values were obtained from the stream function computation.
No comparably simple formula to Eq 42 is available for the edge crack. For
n = 1 at the same remote state of uniaxial tension 0®, # = (1.1215)2x for the
edge crack while # = = for the crack in the infinite plane [5]. In Table 2 we
have included the values from (1.1215)2mVr, which would be a good approxi-

TABLE 2—Upper- and lower-bound estimates of h and g for plane-strain edge cracks.

n=10 n=15 n=20 n=30 n=40 n=50 n=70

Lower bound 3.871 4.639 5.264 6.281 7.108 7.812 8.972

Upper bound 3.952 4.771 5.448 6.568 7.507 8.336 9.792
h
(1.1215)%mVn 3.951 4.844 5.593 6.853 7.909 8.843 10.46

g 4.726 5.271 5.731 6.467 7.080 7.613 8.486

Upper Bound
Jedge crack 12

Jp.s. ' Lower Bound
1Y
1.0~

ANY
- | |
05 1.0
1/n

F1G. 4—Ratio of bounds to ) for edge crack to estimate of ) for central crack as a function of 1/n.

TABLE 3—Upper-bound estimates of h for plane-stress cracks.

n=10 n=15 n=20 n=30 n=40 n=50 n=70

Edge crack 3.955 4.874 5.656 6.985 8.119 9.124 10.88
Central crack 3.190 3.914 4.561 5.723 6.774 7.751 9.560
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matjon if the ratio of J for the edge crack toJ for the crack in the infinite plane
were independent of n. This is clearly not the case as can also be seen from the
plot of this ratio in Fig. 4. The curves of Fig. 4 suggest that the ratio of the two
J-values may approach unity for large n.

(a)

10

(b)

FIG. S—Contours of constant effective strain with the remote effective strain as unity and
n = 7: (a) edge crack in plane strain; (b) edge crack in plane stress.
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Upper Bounds for the Plane-Stress Problems

The method outlined in the preceding for determining the upper bound toJ
in plane strain applies to plane stress with the minor modification that o33 = 0
and e3; is not required to be zero. The representations for the stress functions
are still applicable and k() continues to be defined by Eq 34. The upper
bounds to k(n) for the two problems are given in Table 3. In each case 19 free
amplitudes are used in the calculation (N = M = P = 4). It is noted that the
numerical values for A(n) are fairly close to the respective values for the plane-
strain problems.

Constant-Strain Contours

Contours of constant effective strain ¢, are shown in Fig. 5 for the edge-crack
problem in plane strain and in plane stress. In each plot n = 7 and the remote
effective strain is unity.
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