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ABSTRACT

Conditions for the onset of wrinkling in doubly-curved sheet metal
undergoing forming are obtained from a plastic buckling analysis for short-
wavelength, shallow modes. The region of the sheet susceptible to
wrinkling is assumed to be unconstrained by the die. When the principal
axes of the membrane stress state coincide with the principal axes of the
curvatures, simple formulas for the stresses or strains at wrinkling are
obtained.

1. INTRODUCTION

Wrinkling is increasingly becoming one of the most common and trouble-
some modes of unacceptable deformation in sheet metal forming, Wrinkling
can be viewed as a plastic buckling process in which the wavelength of the
mode in one direction is extremely short. The mode is a local one which
depends on the local curvatures and thickness of the sheet, on its material
properties, and on the stress state. In this paper we carry out a plastic
buckling analysis of local wrinkling by exploiting the fact that the short
wavelength modes are shallow and can be analyzed using shallow shell
theory, or equivalently, Donnell-Mushtari-Vlasov (DMV) theory. The
wrinkling phenomenon is closely related to certain shell buckling modes,
and existing knowledge on the plastic buckling of shells is helpful in
understanding and predicting wrinkling.

2. WRINKLING ANALYSIS OF DOUBLY-CURVED THIN SHEETS

Our approach consists of formulating the problem within the context
of plastic bifurcation theory for thin plates and shells following a treat-
ment of plastic buckling using Donnell-Mushtari-Vlasov (DMV) shallow shell
theory. This allows us to determine the critical conditions for buckling
in a short wavelength or "wrinkling" mode. The analysis is restricted to
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modes for which the characteristic wavelength is large compared to the
sheet thickness, yet small compared to the radii of curvatures of the
sheet. Such modes are termed "shallow" and are accurately described by
the DMV theory.

We imagine in the current stage of the forming process that the sheet
has attained a doubly-curved state with principal radii of curvatures R

and R2 which are assumed to be constant over the region of the sheet

being examined for susceptibility to the shallow local modes. We limit
our investigation to regions of the sheet which are not in contact with
the die and thus neglect any interaction between sheet and die. Several
further idealizations are made which help to simplify the analysis.

® At the beginning of the current stage of the forming process the
sheet material is assumed to be isotropic in the unstressed state and
uniform over the region being examined with no variation through the
thickness. The material will be assumed to be characterized by

either J2 deformation theory or J2 flow theory when stressed into

the plastic range.

® During the current forming process the prebuckling, or prewrinkling,
state of stress in the sheet is assumed to be a membrane state which
is uniform over the region being examined for wrinkling.

® The principal axes of the prebuckling membrane state are assumed to
coincide with the principal axes of the curvature of the sheet. Let
X and x denote surface coordinates everywhere aligned with these

1 2
principal axes and let 01 and 02 denote the principal membrane
stresses.

A fairly complete discussion of plastic buckling and the basic
relations for the DMV theory of plates and shells can be found in [1].
According to this theory and the shallow shell approximations, buckling
from the uniform membrane state gives rise to the following incremental
stretching (EGB) and bending (KaB) strains
1w U, ) +b W
2 B,a aB

a,B

i -
B2 (2.1

Kag = 7,08

Here ﬁa (2,B=1,2) are the incremental displacements in the X Xy

directions, W 1is the incremental buckling displacement normal to the
middle surface of the sheet, baB is the curvature tensor of the middle

surface in the prebuckling state and a comma denotes covariant differ-
entiation with respect to a surface coordinate. The above incremental

strains lead to incremental stress resultants (NGB) and bending moments

(ﬁaB) at buckling. These are given by
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where t 1is the current sheet thickness and g are the plane-stress
incremental moduli relating stress increments %QB to strain increments
ﬁaB through %GB==EGBKY6KY . These moduli, to be specified later, are

uniform throughout the sheet because of our assumption of a homogeneous
membrane state prior to buckling.
To determine the critical stress state for buckling we consider the
following "bifurcation functional" [1]
t3

s e[| saBys . —aRKYys * .
F(U,W) = 1[12 L KQBKKY-FtL EaBEKY+-N w,aw,B ds (2.3)
S

where S 1is the region of the sheet middle surface over which the wrinkles
occur. The condition that F>0 for all admissible fields ﬁa’ﬁ ensures

that bifurcation will not occur, Conversely, bifurcation first becomes
possible when F=0 for some non-zero field. For wrinkling or bifurcation
in short-wavelength, shallow modes we consider the following fields:

W = At cos(Xlxl/l)cos(szz/Q)
Ul = Bt sin(klxl/l)cos(Azxz/l) (2.4)
U2 = Ct cos(Alxl/l)sin(Azxz/Z)

where

2 = VRt (2.5)

and R will later be identified with either Rl or R2 , as appropriate.

In (2.4) A, B and C are constants representing the relative displace-
ment amplitudes of the mode shape and Xl’ Xz are nondimensional wave

numbers. In employing these fields we anticipate that wrinkling occurs
over a certain region S of the sheet which spans many wavelengths of the
buckling mode. The boundary conditions or continuity conditions along
the edges of S then become relatively unimportant. In this sense, our
analysis is a local one.

The analysis involves substituting the fields (2.4) into the bifur-

cation functional (2.3) and integrating over S . 1In so doing we use the
11
relations (2.1) with b,.=1/R, , b,,=1/R, , as well as N  =-to_ ,
22 11 1 22 2 1
N " =-to and the following formulas

2
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[sin(xlxl/z)sin(xzxz/z)]zds

S - 8s (2.6)
J[cos(klxl/l)cos(kzlel)]zdS
S

Here . B=1/4 if both Al and kz are nonzero and B=1/2 if either Al

or AZ are zero, The functional (2.3) can then be written as
T 2 T
F = ss:[ﬂ {ul* ] {u} 2.7

where {u}= (A,B,C) 1s the displacement-amplitude vector and the matrix
[M] 1is given by
2 2 2
_Afe byn b 2,2 2
M1 712 [2] {Lllkl FLhophy F 2Ly, + 2L44”1)‘2}+ {Lll {R J Ly [R_}

1 2
L1112 2 2
+ 2L12 [*R—l'] [R—Z]} - {lel + O’2>\2}

. 2 2 - 2 2
Mg = LAyt lygty 5 Mgg = Lophy vl
(2.8)
3 3
Mg =My = Lllkl[-f{— + L12>‘1[E‘]
1 2
_ - £ £
Mpg = M3y = LZZAZ{R } + lekz[?]
2 1
Myy = Myp = (L + L OMA,
Here we have introduced the abbreviated notation L11= Lllll’ L22= L2222 .

L Boundary, or continuity, conditions around the

127 M122 0 Bas T l21o
perimeter of S are confined to a narrow strip of width on the order of

2
2 and their effect on F , compared to (2.7), is small for small &7/S .
Buckling in the mode (2.4) is possible when the associated bifurcation

functional F=0 . 1In view of (2.7) this first occurs when the determinant
PR cr cr
of [M] wvanishes. To determine the critical stress values o] »9, for

which short-wavelength buckling first occurs, we minimize this determinant

with respect to the waveform parameters Al and AZ and set the minimum

equal to zero. The values of Al and AZ so obtained describe the

corresponding critical buckling pattern.
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3. CASE OF WRINKLING ALONG A PRINCIPAL AXIS

For the prebuckling geometry and stress state considered in the
previous section, wrinkling will in most cases be aligned with one of the

principal curvature (stress) directions. In such cases either Al or AZ

is zero and the previous analysis simplifies considerably. For example,
for wrinkles perpendicular to the x,-direction we put A2= 0 1in (2.8).

1
The bifurcation condition det{M]=0 becomes
D=M M _-M_ =0 3
11722~ M2 3.1

The only stress component that appears explicitly in (3.1) is ol

Thus (3.1) gives a relation between 0 and Al for buckling. Minimizing

1
01 with respect to Al gives the following expression for the critical

wrinkling stress

er _ 1 [t] 2 ,1/2
07 = —=—|—|(L ;L ,-L7,) (3.2)
1 /3 R2 11722 12
The corresponding critical wavelength parameter is
cr .2 1/2 1/2
SR VETONR SOER AP0 R Sy (3.3)

A ]
when R 1in (2.5) is taken as R2 so that 2==VR2t . For wrinkling per-
pendicular to the xz-direction the analogous relations are obtained by
simply interchanging the indices 1<=2 in (3.2) and (3.3). Although 9,

does not enter explicitly in the critical condition (3.2), it neverthe-
less does influence wrinkling since the incremental moduli [ depend on
% The result (3.2) suggests that the ratio t/R2 is the only relevant
geometric parameter for wrinkles aligned with the xz—direction. The radius
of curvature Rl perpendicular to the wrinkles does not affect O;r
Similar observations obviously hold for the value O;r associated with
wrinkles lying perpendicular to the xz—direction.
Explicit results based on the commonly used Jz flow and

deformation theories of plasticity will now be given, As discussed in [1]
each of these constitutive laws has a long history in plastic bifurcation
calculations. It is generally found that the deformation theory, which
predicts lower buckling stresses and strains than the corresponding flow
theory, gives results which are in better agreement with experiment. For
this reason, our emphasis will be on the deformation theory predictions.

To simplify the expressions, incompressibility will be assumed. For
either of the Jz theories the incremental moduli can then be expressed as
follows:
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a
e
g,y2
_ b= = 2 .
Ly, = 3E - (E Et) L,e (3.4)
g,0
_ 2= = 172
le 3E—(E-Et)[ 2}
[o
e
1/2 . -
where V3J (01 0102+02) is the effective stress and E is the
tangent modulus, i.e., the slope of the uniaxial stress- straln curve at
the stress level Oe . With flow theory - E is equal to Young's modulus

E while for deformation theory E corresponds to the secant modulus Es’

obtainable from the uniaxial stress-strain curve at the stress value 0
(1e,E ==0/€(0))

Substituting (3.4) in (3.2) gives

oSt _2t \/ cr _
1 IR E.E R g

w(re

t —
R /EEt (3.5)

1

for wrinkles aligned perpendicular to the %= and xz—directions,
respectively.

Consider the case of proportional loading or straining in the pre-
buckling state. Let 02/01= a=const and 82/€l= p=const be the imposed

stress and strain ratios, respectively. Both flow theory and deformation
theory give

-1 2+p 2 1+ 2p (3.6)
=% 777 g - . 2..1/2 .
e [31+p+0d)1Y/2 % 314+t
and a= (1+2p)/(24p) . The effective strain, defined as €e= (ZEiEi/3)l/2
is given by
_ 2apipht?
€ € (3.7)
e V3 1

while o = (l-o+a )l/2 1 Furthermore, for a power-law hardening of the

type Oe= KE:: in the plastic range we have

N-1 N-1
= NK& = K& 3.8
E, = NKe_ , E_=Ke (3.8)
These relations can be substituted iq‘(3.5) to get explicit expressions
for Oir or d;r at wrinkling. With deformation theory (E= ES) we

obtain the simple results
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cr Vit cr _ _ VN

t
’ € - _ (3.9)
1 (2+p) R2 2 (2+p 1) Rl

for wrinkles aligned perpendicular to the X - and xz—directions,

respectively. Analogous expressions can be developed for J2 flow theory,

but these do not turn out to be quite as simple and attractive as the above
deformation theory result.

4. DISCUSSION

Although some of the idealizations made in leading up to the formulas
for the critical strains in (3.9) are rather restrictive, we nevertheless
believe that these formulas are indicative of the interplay between
geometry and material properties in determining wrinkling. The critical
strain at wrinkling decreases with decreasing strain hardening and with
decreasing ratio of thickness to radius of curvature. It is therefore not
surprising that wrinkling has become a more prominent problem,since the
higher strength sheet metals being favored in recent years tend to be
thinner with lower strain hardening.

The wrinkling condition (3.9) depends at least as strongly on geometry,
through t/R , as on strain hardening. The critical stress (3.5)

cr _ 2t f¢
°p T3 R VER

2

for wrinkles with ridges perpendicular to the xl—direction is precisely the

critical compressive axial stress for a cylindrical shell of radius R
which undergoes axisymmetric buckling, assuming the shell material is
incompressible and that a prebuckling hoop stress 02= adl is also

present. Results of this type for the plastic buckling of shells were
originally due to Bijlaard [2] in the late 1940's. Axisymmetric buckles
occurring on axially compressed cylindrical shells are short-wavelength
modes which are not unlike sheet metal wrinkles [3]. Although, because
they extend around the complete circumference of the cylinder, they tend
to localize in a single buckle.

The strong sensitivity of plastic buckling predictions for plates and
shells to the choice of plastic constitutive law (i.e. deformation theory
vs. flow theory) was recognized in the late 1940's and early 1950's as well.
A full discussion of the issues is given in (1], along with basic
references on the subject. It seems reasonable to suppose that J2

deformation theory predictions for wrinkling strains will be much more
realistic than those based on J2 flow theory, especially for more-or-less

proportional prewrinkling strain histories. Nevertheless, the inherent
lack of any strain history dependence associated with the deformation
theory points to the obvious limitations of this constitutive law. We also
emphasize that another important limitation of the present analysis 1s the
assumption that the unloaded sheet is isotropic at the start of the stage
of the forming process in which wrinkling occurs.
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