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In this paper a family of dilatant plasticity theories is introduced by considering yield surfaces which change according to a
combination of isotropic expansion and kinematic translation. One limiting member of the family is Gurson’s (1977) isotropic
hardening model, and the other limiting member is a pure kinematic hardening version. The family of constitutive laws is
constructed such that all versions coincide for proportional stressing histories. The differences between any two versions show
up only under nonproportional stressing histories, such as those encountered in many plastic instability phenomena. Under
nonproportional stressing, the kinematic version is significantly ‘less stiff’ than Gurson’s isotropic hardening model due to the
relatively higher curvature of the kinematic yield surface. This effect is explored in some basic shear localization calculations
and is found to have substantial influence on the localization predictions.

1. Introduction

Small volume concentrations of voids can substantially alter the plastic deformation behavior of metals
rendering the material highly susceptible to flow localization in the form of shear bands or separation
bands. Such localizations tend to lead to material failure, and thus their onset usually marks the
termination of permissible straining. Observations of metals that have failed by the ductile void growth
mechanism reveal that void volume concentrations outside the localization can be very low, often well
below one percent. The implication is that the localization process sets in at correspondingly low void
volume fractions. Some high strength metal alloys display little evidence of any voids outside the
localization band suggesting that localization may be triggered by nucleation of the voids or, possibly, by a
synergistic combination of nucleation and low hardening.

Theories of dilatational plasticity incorporate the contribution to inelastic straining from the nucleation
and growth of voids. While such theories will invariably be phenomenological in character, it is essential
that they accurately reflect, or model, actual void nucleation and growth processes. A prototype theory has
been proposed by Gurson (1977) and, to date, this theory appears to have been applied more than any
other. Gurson’s theory is endowed with a yield condition, a flow law, a measure of void volume fraction, a
rule for nucleating voids, and a law for the evolution of the void volume fraction. Its yield surface was
derived from approximate solutions to problems for a volume element of perfectly-plastic material
containing a void (a thick spherical shell), and it was extended to strain hardening materials under the
assumption of isotropic hardening. The stress—strain behavior of the void-free material is part of the
specification of the theory, and with no voids present the Gurson model reduces to the classical
Prandtl-Reuss isotropic hardening theory based on the Mises invariant (i.e., J, flow theory).

It is well known that the classical J, flow theory tends to be ‘overly stiff’ when used to predict plastic
instabilities such as buckling and necking when those instabilities involve distinctly nonproportional stress
histories. The low curvature of the isotropic hardening yield surface results in less strain change for a given
finite, nonproportional stress change than would be the case for a yield surface with either higher curvature
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or a corner at the loading point. Such differences can be substantial for materials with appreciable strain
hardening. In a study of sheet metal necking, Tvergaard (1978) invoked kinematic hardening to model a
yield surface whose curvature at the loading point remains constant even as the material strain hardens. He
showed that necking strains predicted were highly sensitive to the curvature of the yield surface and that
the kinematic hardening results were in better accord with experimental findings than those based on the
isotropic hardening yield surface.

In much the same spirit, we address in this paper the sensitivity of flow localization predictions to the
curvature of the yield surface of the porous solid. We do this by formulating a family of yield surfaces and
associated flow laws in which a given yield surface is incremented with a specific combination of isotropic
and kinematic components. Each member of the family is constructed such that under proportional
stressing it coincides with Gurson’s purely isotropic hardening version. The difference between any two
members of the family only shows up when departures from proportional stressing occur. Flow localization
calculations similar to those of Yamamoto (1978) and Saje, Pan and Needleman (1982) have been carried
out for shear localizations using both the isotropic hardening version of Gurson and the purely kinematic
version. The difference between the two sets of predictions is dramatic. It is concluded that the kinematic
version, or perhaps a member of the family involving combined isotropic and kinematic hardening, may
provide one practical means of circumventing the apparent overly stiff behavior associated with the Gurson
model as it now stands.

No attempt will be made in this paper to assess the accuracy of the constitutive models, either by
comparison with detailed calculations for void arrays or by direct comparisons with experiments. The
limited number of assessments which have been made (e.g., Tvergaard, 1982) suggests that for proportional
stressing the Gurson model, or a relatively minor modification of it mentioned later, is at least qualitatively
correct. Thus, given the aims of the present study, we feel justified in using the Gurson model as the
reference for proportional stressing. Nucleation effects are not considered in this paper since the central
issue addressed here does not hinge on nucleation. Such effects may be incorporated in the manner of Saje
et al. (1982).

2. Yield functions and rate-constitutive relations

2.1. Yield functions

Gurson’s (1977) yield function involves two state parameters, the void volume fraction f and a measure
of the current flow stress of the matrix material o,. With 2 as the macroscopic stress, 2’ as its deviator, and

X =1X,, as the mean stress, Gurson’s condition for yield is
35 p
D:(Z, 0, f)= % — +2fcosh(% 0"‘)—(1 +f%)=0. (2.1)
O, 4

Here and throughout the paper Cartesian components of vectors and tensors will be used. Tvergaard (1982)
has proposed a modification of this yield function involving different coefficients in the second and third
terms. These modifications are readily accommodated in the development which follows, but they will not
be considered since they will not effect the relative behavior of the various theories.

To introduce a family of combined isotropic /kinematic hardening yield surfaces, let o, continue to play
the role as a measure of the matrix flow stress, and let o, be the initial yield stress of the matrix material.
The radius of the yield surface of the matrix material is denoted by o and it is taken as

or=(1 —b)ay+bae (2.2)
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Fig. 1. Schematic representation of the initial yield surface and the current yield surfaces for the isotropic hardening and kinematic
hardening theories. The current stress state is X (the loading point), and the ‘center’ of the kinematic hardening surface is at 4.

where the parameter b is assumed to be a constant lying in the range [0,1]. For the family of yield functions
given below, the choice b =1 corresponds to isotropic hardening (i.e., Gurson’s function (2.1)), while 5 =0
corresponds to pure kinematic hardening. In the void-free limit ( /= 0), these two theories reduce to their
respective classical limits. The linear relation (2.2) between o and o, is the simplest to consider, but the
constitutive relation developed below could embrace nearly any dependence of o on g,.

Let A be a symmetric tensor which specifies the current ‘center’ of the yield surface, as depicted in Fig.
1, and let 4’ denote its deviator. Let

B=X-4 (2.3)

be the stress difference taken from the center of the yield surface to the loading point, with deviator B’ and
mean B, = }B,,. The yield condition is taken to be

B,j'B,',' B
qs(E,A,oF,f)s%# +2fcosh[§0:')—(1+fz)=0. (2.4)
F

2.2. Rate-equations

The form of the rate-equations for the family of relations associated with (2.4) will be stated, and then
we will indicate how they become fully determined once the condition is imposed that each member of the
family coincides with Gurson’s relation for proportional stressing.

For simplicity, it will be assumed that all voids are present prior to stressing and that no new voids are
nucleated. The plastic strain-rate in a loading increment is given by '

1 0@ 99 =

p_ - 9% 9%
D, H 33, 82“2"[ (2.5)
where
@ 3B, . (33 )
= = —5 + = sinh| = — [§, 2.6
92, o2 of 20p) Y (26)

and where H is a function of the current state which will be determined later when the relation is brought
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into agreement with Gurson’s relation. The loading condition requires that the stresses are such that ¢ =0
and that
1 09 =
— o 2.,=0 .
H 33, k=0 (2.7)

The choice of stress-rate é will be discussed further below. At this stage we only insist that it be objective
and that its principal components coincide with true stress-rates under proportional stressing. By defini-
tion, proportional stressing at finite strain requires that the principal stress axes not rotate with respect to
the material and that the principal stress components increase in fixed proportion.

The evolution equations for o, and f are taken to be the same as those used by Gurson, i.c.,

f=Q—-f)D (2.8)
and
EijDiS':(l _f)aede/h(oe)' (29)

Here, h(o,) is the plastic hardening modulus of the matrix material at the current level of o,. In terms of
true stress—log strain data for the matrix material in uniaxial tension,

h=do/deP. (2.10)
The evolution equation for the center of the yield surface during a loading increment is taken to be

aP =

Aij= QB:jEEkI (2.11)

where Q is another function of the current state which will be determined below. With this choice, the
change in A4 is co-directional with B and vanishes continuously for stress increments approaching
unloading.

2.3. Coincidence with Gurson’s relation for proportional stressing histories

With b =1 so that o = o,, equations (2.5) through (2.7), reduce to those of Gurson, i.e., respectively,
1 09, 9P *

P_ _~
Dij HG aEij aEkIEkI’ (212)
A, 2, f (32,
5}::; =3 062 + —e SII'lh 5 Oc 8,--/ (213)
and
0D
HGIKZE,(,> 0. (2.14)

These equations, together with (2.8)-(2.10), and the consistency condition for plastic loading, ‘bc =0, lead
to Gurson’s expression for Hg, i.e.,

IJL( A0, A, aqu} (2.15)

HGz{(l _f) aEkIEkI) _(1_f) af aEkk

2
O,
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For proportional stressing, we bring each member (b # 1) of the family of rate-constitutive relations into
coincidence with Gurson’s relation by choosing the functions H and Q such that

B, /op=2,/0, (2.16)
and
* 0P, 0D, »
- 22 20 Su=HG' =2 =2 (2.17)

o 2u=H, o2
0%, 9%, ¢ 9z, 0z,
Satisfaction of (2.16) ensures that ¢ =0 when @; =0, while (2.17) ensures the coincidence of plastic
strain-rates; o, and f will then also evolve exactly as their respective counterparts. The determination of H
and @ is facilitated by noting that in proportional stressing 2, 4, A and B are all co-directional with 2.
The results of this relatively straightforward, but somewhat lengthy, determination are

ka0 \ 6, 30 D
H={(1—f) E(EB”) —(1—f);378‘25} (2.18)

and

a.
L 9 30 30 } (2.19)

-1
0=( _b)( 82,-jB’-’) {1 +(1-f)H! or of 8%, ,

We remark in passing that the ‘center’ of the yield surface, 4, has a mean component as well as a
deviatoric part. Moreover, in the limit f— 0, corresponding to the void-free solid, the mean component of
A persists even though it ceases to play any role in the equations. As already stated, the two special cases,
b =1 and b=0, reduce to the respective classical theories, J, flow theory and J, kinematic hardening
theory.

2.4. Elastic / plastic equations

As has already been emphasized, the volume fraction of voids is expected to be small, at most several
percent, in most applications of the theory, except possibly in the final coalescence stage of failure.
Accordingly, following Gurson, we neglect the effect of void volume fraction f on the elastic properties of
the material and assume an isotropic relation between the elastic strain-rate and the stress rate according to

1+»s2 3p x

Dy= 55, - £ 2.8, (2.20)

where E and » are the Young's modulus and Poisson’s ratio of the matrix material.
The total strain-rate, D = D°+ DP, can be expressed as

*
D;j=M,; 2, (2.21)
where
1+ v 1 3@ J9
Alijkl= 2FE (6lk6jl+8il§/k)_ E8lj8k/+ ﬁﬁ 82,([ (222)
iy

assuming loading takes place. The inversion is

*
2 =Ly Dy (2.23)
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where

L:jk/ = G(sikajl + 8:’18/1() + (K - %G)SU.B,(,

-1
HOIZ: G ’ ’ 2 G ’ G ’
_.( 6 + T‘%ququ+K¢X ) I:U_FBij+Ka8i-/]|:O_FBkl+Kaskl] (224)

and where G = E/(2(1 + »)), K = E/(3(1 — 2»)) and

a=1f sinh(}B, /oF).

The loading condition expressed in terms of the strain-rate is
G B/ 22
;F' U+Ka8u DI,I;O' ( 5)

In the flow localization studies presented in the next section, the rate of stress 3 and the rate of shift of
the yield surface center 4 will be identified with the Jaumann co-rotational rate. When large rotations of
the principal stress axes occur relative to the material, some other choice, such as those discussed by Dienes
(1979), Dafalias (1983) or Lee, Mallett and Wertheimer (1983) should be preferred. However, the shear
localization phenomena studied in this paper are already fully developed before the occurrence of any
significant rotations of the principal stress axes relative to the material, and therefore the Jaumann rate is
an acceptable choice. This point is illustrated in the Appendix.

3. Flow localization in plane strain

In this section a study of localization of deformation within a narrow band is carried out to demonstrate
the sensitivity of the localization phenomenon to the curvature of the yield surface. Following similar
studies by Yamamoto (1978) and Saje et al. (1982), we analyze the problem of an infinite planar band of
material with one set of uniform material properties sandwiched within an infinite block of material with
different, but uniform, properties. When specialized to plane strain, the geometry of the system is shown in
Fig. 2. For appropriately prescribed uniform stressing of the infinite block, the system is characterized by
two uniform deformation states, that in the band and that without. If the band material is the weakest, the
deformation in the bands develops more rapidly than that in the block until a point is reached where an

X

(a) (b)

Fig. 2. Band orientation in an infinite block of material in the (a) undeformed state and in the (b) deformed state.
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increment of deformation can occur within the band with no corresponding increment outside. This is the
onset of localization. Thereafter, additional plastic deformation is confined to the band and elastic
unloading occurs without.

3.1. Governing equations

The general framework for the infinite band localization analysis has been given by Rice (1976). We will
briefly summarize the governing equations for plane strain, and then present numerical results comparing
predictions from the isotropic and kinematic hardening versions of the constitutive law.

Let » denote the current unit normal to the band. Denote quantities characterizing the band states by a
superscript b and use a similar designation with a superscript o for quantities outside the band. Continuity
of velocities across the interfaces between the band and the material without requires that the difference in
velocity gradients has the form

om0 =ty vy, (3.1)
where ¢ is a unit vector parallel to the band in the (x;, x,)-plane. Thus, ¢, measures the rate of
development of the shearing difference and ¢, the relative normal separation-rate.

Let N, be the Cartesian components of the unsymmetric nominal stress tensor (i.c., the first
Piola—Kirchhoff stress). Continuity of traction-rates across the band interfaces requires

(82 K)o =0 and (% K5}t =0. (2)
Using the connection between N and the Jaumann stress-rate

. *

N;=2,-2, D+ 2, Wy +2 Dy, (3.3)

and with W), = 1(v, , — v, ,), one can write

Ny =04 (3.4)
where

Cijkr = Lijkl + %Ziks/'/ - %Zilsk/ - %Zjlsik - %ijsu + Zijskl' (3-5)
The two conditions on the traction-rates (3.2) provide equations for ¢, and ¢, as

b .
Cikt | Yi¥¥uly VP | G vy

— o _ b o
b e (Cijkl Cijkl) Uk
Coikl V,tjvkt, v,-tjvkv, q, v,.tj

(3.6)

Given an initial set of material properties and given a history of v? , one can use (3.6), together with the
equations governing the evolution of the two sets of constitutive moduli and associated quantities, and the
evolution of » and ¢, to solve for the two evolving deformation states. If (3.6) is written in matrix form as
Ag = b, then it is clear that the onset of localization occurs when det(.4) = 0. Either the velocity gradients
or some combination of stress-rates and velocity gradients consistent with plane strain may be imposed on
the block of material outside the band prior to localization. Because the deformation-rates within the band
become large compared to those outside the band as the onset of localization is approached, it is usually
convenient for numerical purposes to let some monotonically increasing quantity in the band such as g, or
some component of the velocity gradient, serve as the independent variable in the integration process. This
same quantity can be used to continue the deformation through the point where det(4)= 0.
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3.2. Numerical results

Two sets of computations have been carried out, for plane strain tension and for a simulation of necking
in plane strain tension. In each case, the material in the semi-infinite block outside the band is taken to be
void-free ( f? = 0), and the initial void volume fraction within the band is taken as either f* = 0.001 or
f=0.01. In all cases both inside and outside the band, the matrix material was prescribed by the uniaxial
stress—strain relation

o/0,, o<o

o/o,) , o>a0
(o/0,)" y

€/e, = (3.7)

where €, = o, /E is the initial elastic yield strain, which was taken to be 0.0033. Results will be reported for
two n-values, 5 and 10.
In plane strain tension, the semi-infinite block is subject to

DYy =uv7,>0, UT.2=U‘2),1 =0, 2‘(2)2=0 (3~8)

prior to localization. Let € denote the logarithmic strain in the material outside the band in the 1-direction
when the localization condition is met. This localization strain has been computed over a range of initial
band orientations ;. The results are shown in Fig. 3. In these plots, the solid line curves give € as a
function of the initial band orientation i, while the dashed line curves give € as a function of the
orientation of the band at localization .. In each plot, the upper set of curves corresponds to the isotropic
hardening version of the constitutive model (i.e., b = 1, Gurson’s version) and the lower set corresponds to
the kinematic hardening version with & = 0.

The difference between the predictions for the two versions of the constitutive model are fairly
significant, particularly if the localization strains are converted to stretches. In each example, the minimum
localization strain occurs at a band orientation in the range 40° <, < 50°, For a given level of f;°, the
range of initial band orientation ; over which the material is susceptible to localization is considerably
larger for the kinematic hardening solid because the localization strains are so much lower resulting in less
rotation from y; to y,. Perhaps the most dramatic difference is the level of initial void volume fraction £
needed to bring about a given minimum localization strain. From Fig. 3 and Table 1 it is seen that the
minimum localization strain for the kinematic hardening solid with £ = 0.001 is only slightly larger than
the minimum localization strain for the isotropic hardening solid with f,* = 0.01.

For the case with » =5 and flb = 0.001, curves of the void volume fraction in the band at localization,
®, are plotted as a function of , in Fig. 4, and the values associated with the minimum localization strain
are included in Table 1. (The dashed curves in Fig. 4 apply to the necking simulation which will be

n=5

n =10 n=5
10F =00l #0001
A
08 N e
L \y s
A ’
o 08F N P
& L A ” J -
04- Y L
L \\_// - .
02} -
00 1 1 1 L i Il 0.0 i ] i 1 i Il 0 ] 1 N Il i L 0 L L L 1 1 1
0710 20 30 40 50 60 0 10 20 30 40 50 60 %0 2 0w w0 0w W W %o
Vg O ¥ ¥ or ¥, ¥ ok ¥ or ¥,

Fig. 3. True strain in the block in the x,-direction at localization, €2, as a function of the angle at which the band is oriented, ¥ (_____
148: initial angle y,; ———: angle at localization ). Plane strain tension.
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Table 1
The minimum value of €2, (€2),,), and the corresponding value of f.
Isotropic hardening without necking Kinematic hardening without necking
n i (€ min fch n It (€2) min f
5 0.001 1.627 0.027 5 0.001 0.735 0.004
10 0.001 1.327 0.011 10 0.001 0.684 0.003
5 0.01 0.707 0.058 5 0.01 0.352 0.021
10 0.01 0.476 0.036 10 0.01 0.261 0.018
Isotropic hardening with necking Kinematic hardening with necking
n flh (cg)min fcb n flh (((c))min fcb
5 0.001 1.024 0.023 5 0.001 0.596 0.005
10 0.001 0.828 0.011 10 0.001 0.542 0.004
5 0.01 0.553 0.048 5 0.01 0.331 0.021
10 0.01 0.376 0.034 10 0.01 0.243 0.019

discussed below.) Here, too, the difference between the predictions of the two versions of the constitutive
model are striking. For the kinematic hardening solid the ratio of £* to f” is between 2 and 4, while the
corresponding ratio for the isotropic hardening solid is between 4 and 20. Particularly for the kinematic
hardening solid, it is evident that localization can set in at very low void volume fractions as discussed in
the Introduction.

To simulate the triaxial stress state that develops at the center of a neck in a plane strain tension
specimen, we follow Saje, Pan and Needleman (1982) and use the Bridgman expression for the transverse
component of stress in the neck,

In(1+ 3r)
29 = —— |39 39
2 11+ m(a+ L) 7" (3.9)

where r is the ratio of the thickness through the minimum section of the neck to its radius of curvature.

:No Necking
- === - Necking

b
n=5, ;= .00

06

04 Isotropic

Hardening

Kinematic
Hardening

Fig. 4. Void volume fraction in band at localization as a function of orientation of band at localization. Initial void volume fraction of
0.001 1n all cases.
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Fig. 5. True strain in the block in the x;-direction at localization, €¢, as a function of the angle at which the band is oriented,

(—

: initial angle ¢, ———:angle at localization ). Simulation of necking in plane strain.

This ratio is zero for ¢; < 1/n and is taken to be

r=0.833(¢, — 1/n) (3.10)

for €, > 1/n, although this latter expression was only established experimentally for round specimens.
Thus, in the localization study the material outside the band is subject to a plane strain history with

D >0, 09,=v3,=0 with 2%, =pZy, (3.11)
where p is derived from (3.9) using the constitutive relation for the material outside the band.

The results for the necking simulation are shown in Fig. 5 and are presented in the same manner as for
the plane strain tension case. The discrepancy between the predictions of the two versions of the theory is
somewhat less pronounced because the larger strains sustained by the isotropic hardening material leads to
higher triaxiality and thus accelerated void growth. The void volume fractions at localization are included
in Fig. 4. The large differences noted in connection with the plane strain tension case are evident in the

necking simulation as well.

4. Conclusions

Flow localization predictions have been shown to be highly sensitive to the curvature of the yield
surface. Specifically, the localization strains from isotropic hardening and kinematic hardening versions of
otherwise identical constitutive laws differ significantly. Even more sensitive is the initial void volume
fraction associated with a given localization strain. In some examples, the initial void volume fraction for
the isotropic hardening version was almost ten times that for the kinematic version for comparable
localization strains.

The sensitivity of the predictions to yield surface curvature is not surprising considering the well known
difficulties of applying isotropic hardening theory to plastic instability problems. In an earlier study,
Hutchinson and Tvergaard (1981) found that shear localization in plane strain is essentially impossible in a
J, 1sotropic hardening material with no voids present, while shear localization can occur in the correspond-
ing kinematic hardening material. Nevertheless, the issue of invoking isotropic hardening does not seem to
have received enough consideration for dilatant plasticity models. To some extent, this lack of considera-
tion may be because the dilatational aspects of the theory helps ameliorate the overly stiff response of the
classical isotropic hardening theory. Whether the dilatational response is sufficient in this regard is not yet
clear. The void volume fractions of interest for high quality materials are very small, as has been
emphasized. It seems to us unlikely that inclusion of the dilatational response alone, without modification
of the isotropic hardening assumption, will be sufficient to realistically model actual material behavior.
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Appendix. An alternative choice of stress-rate

The Jaumann co-rotational rate was used in carrying out the localization calculations presented in
Section 3. It has been shown that the use of this rate leads to erroneous results when kinematic hardening
theory is used to model a material block being subjected to extensive shearing deformation. A rate which is
objective and which gives plausible results for this deformation history and material model is based on
Q= R - R' rather than W (Dafalias, 1983; and Dienes, 1979). Here, R is the orthogonal rotation tensor (see
below) and W is the spin tensor. The relation of this rate to the material rate of Cauchy stress takes the
same form as the Jaumann rate, namely

* .
2, =2, 0,2+ 2,8, (A1)

To explore the appropriateness of the Jaumann rate for the calculations carried out in Section 3, the first
case shown in Fig. 3 is reexamined using the alternative rate described above. The usefulness of this rate in
incremental plasticity is not addressed here; only the effect of using it rather than the Jaumann rate is
explored. It is found that the predictions of localization strains obtained by using the Jaumann rate and the
alternative are not very different, and it is concluded that it is adequate to use the Jaumann rate in
affecting the localization calculations presented here.

Relation of @ t0o W
The development given below follows that of Dienes (1979), although different notation is used in some
places. A more general, but related, treatment is given by Nemat-Nasser (1983). As before, the components
of all tensors are referred to a single stationary Cartesian coordinate system, oriented as shown in Fig. 2.
The deformation gradient, F, can be decomposed as

F=V-R (A.2)

where V is the left stretch tensor and R is the orthogonal rotation tensor. The spatial velocity gradient, L,
can be split into its symmetric and antisymmetric parts, which are the rate of deformation tensor P and the
spin tensor W, respectively. It can be related to F by

L=F F! (A3)
and can be expressed in terms of ¥ and R by use of (A.2) as
L=V-Vv1i+v.Q.yv! (A4)

where 2=R - R".
Post multiplying this last equation by ¥ gives

V=L-V-V- (A.5)
and forming ¥ — V' (= 0 since ¥ is symmetric) gives

Z=V-H+H-V (A.6)
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Fig. 6. Comparison of results based on two choices of stress-rates used in formulating the constitutive model. True strain in block at

localization, €2, as a function of initial orientation of the band, . Plane strain tension with »n =10, €, =0.0033, f¥ =0 and
fe=001

where Z=D- -V — V-D is skew symmetric as is H=Q — W. In the present case H°=0 and the only

nonzero components of H® are H, = — H}, where, from (A.6),
v (v5-vh)
HYy= —2— (DN - Dh)+ ~—2—LD},. AT
12 I/]bl + 1/22( 11 22) Vlb] + 1/21,27 12 ( )

Numerical results and discussion

The case of f°=10.01, f = 0.0, n =10, and €, = 0.0033 is examined. The results of the calculations for
the true strain in the x,-direction at localization, €, as a function of the initial band orientation, ¥, are
shown in Fig. 6 for both the isotropic hardening theory and the kinematic hardening theory. The solid lines
are the results of the calculation when the Jaumann rate is employed, and the dashed lines are the results
when the objective rate is based on @ rather than W. Note that the only nonzero components of 2° are
2% = — 25 = W)+ HY, where W} = — 14,, and that the components of the stretch tensor are updated at
each step of the deformation via (A.5).

The results for the two rates are essentially identical for the kinematic hardening theory, and they are
close for the isotropic hardening theory except for a spreading of the €2 vs. Y, curve around y; = 20°.
Considering the assumptions involved in the infinite band calculations and the information which they
provide, we conclude that the Jaumann rate is an adequate objective rate to use in performing them.
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