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Abstract—The effect of profuse micro-cracking at the tip of a macroscopic crack is studied with emphasis
on the reduction in stress intensity, or shielding, within the micro-crack region. Shielding contributions
arise from two consequences of micro-cracking, reduction in stiffness and release of residual stress. For
the most part the study is limited to the lowest order effect of micro-cracking associated with relatively
low micro-crack densities. Shielding results for arbitrarily shaped micro-crack zones are obtained for the
case where the orientations of the micro-cracks are randomly distributed. Other possibilities are also
discussed and contrasted, and the major uncertainties in quantifying the phenomenon are identified.

Résumé—Nous étudions 'effet d’une microfissuration importante en avant d’une fissure macroscopique,
en insistant sur la diminution de la contrainte ou effet d’écran, dans la zone des microfissures. Les
contributions a I'écrantage proviennent de deux conséquences de la microfissuration, diminution de la
dureté et relichement des contraintes résiduelles, 1.°étude est limitée, en majeure partie, a I'effet au premier
ordre de la microfissuration associée a des densités relativement faibles de microfissures. Dans le cas d’une
distribution aléatoire de l'orientation des microfissures, on obtient un effet d’écrantage pour des zones de
microfissures de forme arbitraire. Nous discutons également d’autres possibilités en soulignant leurs
différences, et nous identifions les incertitudes majeures de la quantification du phénomene.

Zusammenfassung—Der EinfluB ausgiebiger MikroriBbildung an der Spitze eines Makrorisses wird im
Hinblick auf die Verringerung der Spannungsintensitdt (Abschirmung) innerhalb des Bereiches der
Mikrorisse untersucht. Beitrige zur Abschirmung kommen von zwei Konsequenzen der MikroriBi-
Bildung, die Verringerung der Steifigkeit und die Absenkung von Restspannungen. Der iiberwiegende Teil
der Untersuchung ist auf den Effekt kleinster Ordnung der Rilbildung, der mit einer vergleichsweise
kleinen Dichte an Mikrorissen zusammenhangt, beschrinkt. Ergebnisse zur Abschirmung belicbig
geformter MikroriB-Zonen werden fiir den Fall zufillig verteilter MikroriB-Orientierungen erhalten.
Andere Méglichkeiten werden ebenfalls diskutiert und gegeniibergestellt. Die wesentlichen Unsicherheiten
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bei der Quantifizierung dieser Erscheinung werden angegeben.

1. INTRODUCTION

There is growing evidence [1-8] that micro-cracking
in regions of high stress concentration or at the tip of
a macroscopic crack may postpone the onset of
unstable macroscopic crack propagation in brittle
solids such as ceramics and rocks. For this mech-
anism to operate it is essential that the micro-cracks
arrest at grain boundaries or particle interfaces and
be highly stable in the arrested configuration. Ulti-
mately the macroscopic crack advances by inter-
action and coalescence of the micro-cracks. But the
micro-crack zone can also have a shielding effect on
the macroscopic crack tip, redistributing and reduc-
ing the average near-tip stresses. This shielding pro-
cess is studied in the present paper in much the spirit
as in some earlier studies [4-8]. The discussion in [6]
provides a background for the work carried out here.

There are two sources of the redistribution of
stresses in the near-tip stress field of the macroscopic
crack. One is due to the reduction in the effective
elastic moduli resulting from micro-cracking. The
other is the strain arising from the release of residual

stresses when micro-cracks are formed. The residual
stresses in question develop in the fabrication of
polycrystalline or multi-phase materials due to ther-
mal mismatches between phases or thermal aniso-
tropies of the single crystals. The spatial variation of
these stresses is set by the grain size or by the scale
of second phase particles. These residual stresses play
an important role in determining the onset and extent
of micro-cracking. Moreover, the micro-cracks partly
relieve the residual stresses producing strains which
are manifest on the macroscopic scale as inelastic, or
transformation, strains.

A continuum approach is adopted in this paper in
which it is assumed that a typical material element
contains a cloud of micro-cracks. The stress—strain
behavior of the element is obtained as an average
over many micro-cracks. The paper begins with a
consideration of two prototype micro-cracking situ-
ations from which constitutive behavior is derived. A
characteristic tensile stress—strain curve is shown in
Fig. 1. The Young’s modulus E of the uncracked
material governs for stresses below o, where micro-
cracking first sets in. In this paper, as in most other
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Fig. 1. Characteristic tensile stress—strain curve.

studies to date, it will be assumed that micro-
cracking ceases, or saturates, above some stress a,.
The assumption of the existence of a saturated state
of micro-cracking is fairly essential to the analysis
carried out here, as will become evident. A strictly
saturated state, independent of applied stress, is
probably unrealistic. However, it does seem reason-
able to expect that the sites for nucleation of micro-
cracks will tend to become exhausted above some
applied stress level when local residual stresses are
playing a central role in the micro-cracking process.
Thus, it is tacitly assumed that there exists a zone of
nominally constant reduced moduli surrounding an
even smaller fracture process zone within which the
micro-cracks ultimately link up. A reduced modulus
E, governs incremental behavior for stresses above
g,. The offset of this branch of the stress—strain curve
with the strain axis, €T, is the contribution from
micro-cracking due to release of the local residual
stresses. It can be thought of as a transformation
strain.

Two of the most important assumptions involved
in the formulation of the constitutive law deal with
the distribution of the orientations of the micro-
cracks, whether the reduced moduli are isotropic or
anisotropic for example, and the stress conditions for
the nucleation of the micro-cracks. Recent micro-
scopic observation of a zirconia toughened alumina
[3] suggest that the micro-cracks which form in this
system have a more-or-less random orientation with
no preferred orientation relative to the applied stress.
This would be consistent with the random nature of
the residual stresses expected for this system. Never-
theless, there is not yet nearly enough observational
information or theoretical insight to justify any one
constitutive assumption. The approach taken in this
paper has been to consider a number of reasonable
alternatives, including some possibilities considered
by others. In this way, it is hoped that the results
discussed here will serve to bracket actual behavior
and give some indication of which uncertainties are
most crucial to further development of the subject.

A preview of the type of mechanics problem
analysed in this paper is shown in Fig. 2. In this
particular problem the micro-crack region, 4., sur-
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Fig. 2. Geometry of the zone of micro-cracking.

rounding the crack tip has reduced moduli which are
uniform and isotropic. A uniform transformational
dilatation 07T is also present associated with the
release of residual stress. The crack is semi-infinite
with a remote stress field specified by the “applied”
stress intensity factor K, modeling a finite length
crack under small scale micro-cracking conditions.
The near-tip fields have the same classical form
but their stress intensity factor, Ky, is different. It
is the ratio K,;,/K which is sought as a function of
the moduli differences, 8 and the shape of the zone.
The extent to which Kj;, is reduced below K reflects
the shiclding. However, knowledge of K,;,/K is not
sufficient to predict the toughening increment due to
shielding. One also needs to know the inherent
toughness of the micro-cracked material compared
to similar material which does not undergo this
same kind of stress induced micro-cracking. One
way or another, K§, must be determined or inferred
from experiments, Even without hard data on K3,
knowledge of K,,,/K for different situations, such as
stationary or growing cracks, can be used to make
comparative assessments of macro-cracking behavior
and to gain insight into phenomena such as stable
crack growth.

2. REDUCTION IN MODULI AND RELEASE
OF RESIDUAL STRESS FOR SOME
PROTOTYPE MICRO-CRACKS

The following two examples are chosen to illustrate
the way micro-cracking can reduce the moduli of a
brittle material and give rise to “‘inelastic” strain by
release of residual stress. Other possibilities can be
accommodated in the development of later sections.

2.1. Penny-shaped micro-cracks in a prestressed
spherical particle

Consider thc configuration indicated in Fig. 3
where an isolated spherical particle or grain of radius
his embedded in an infinite matrix. Both particle and
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Fig. 3. Two prototypical micro-crack geometries.

matrix are assumed isotropic with common Young’s
modulus E and Poisson’s ratio v. Suppose the particle
sustains a uniform residual stress prior to cracking.
Let oy denote the normal component (assumed posi-
tive) acting across the plane where the micro-crack
will form and suppose there is zero tangential traction
on this plane. Now suppose a penny-shaped micro-
crack is nucleated which arrests at the interface of the
particle and the matrix as shown in Fig. 3. The
volume of the opened micro-crack is

ORr
Av:%bJ(l—vz)f. Q2.1
The release of the residual stress creates an “‘in-
elastic” strain contribution. If the micro-crack forms
within a material element of volume ¥ and if inter-
action with other micro-cracks is ignored, the in-
elastic strain contribution is
Av 16 b* Or
i=—nn=——1—v)—nn 2.2
=g =g 7 (=) R 22)
where n; is the unit normal to the plane of the
micro-crack. This is a uniaxial strain contribution
with dilatational component

16 b? o
Acy =55 (1 —vz)fk. (2.3)

A€

The formation of the micro-crack also increases the
compliance of the material element [9]. With ¢, as the
macroscopic stress experienced by the material ele-
ment, the increase in strain due to a component of
stress acting normal to the plane of the micro-crack
(ie. 0,,=o,;mn) is

3
_ts(q ) 2w 2.4

Ae .
V E

nn
Any component of stress acting tangential to the
plane of the micro-crack (i.e. a,, = g;;1;¢,, where ¢, is

ittty
parallel to the crack face) gives rise to an increase in

the corresponding strain component which is
16 (1 —v*)b3g,
ey = —— .,

"3 Q2=v) VE

(2.5)

These contributions to the strain are also based on
the assumption that interaction between the micro-
crack and its neighbours can be ignored.

For the case in which the micro-cracks have
random orientation with no preferred alignment, the
micro-cracked material will be elastically isotropic on
the macro-scale and the strain due to the release of
the residual stresses will be a pure dilatation. Suppose
there are N micro-cracks per unit volume and let €
be the measure of micro-crack density where ¢ is
the average of Nb’ [9]. With E and ¥ denoting the
Young’s modulus and Poisson’s ratio of the micro-
cracked material, the total strain following micro-
cracking is obtained by averaging the contributions
(2.2)—(2.5) over all orientations with the result

v v
e,jzl%o,j—fokké,:,+%0T5,-j (2.6)
where

0T =51 —v)e 2. @.7)

The notation here is deliberately chosen to be the
same as that for a dilatational transformation since
at the macroscopic level the release of the residual
stress is indistinguishable from a transformation. The
modulus E and Poisson’s ratio v of the micro-cracked
material can be obtained from

G . 32(1-v)(5-V)

z=l FER (2.8)
and

B 16(1—v?)

where G and B are the shear and bulk moduli of the
uncracked material and G and B are the correspond-
ing moduli for the micro-cracked material. These
estimates of the moduli, which ignore micro-crack
interaction, agree with the dilute limit of estimates
which approximate interaction [9]. They are reason-
ably accurate for values of ¢ less than about 0.2 and
0.3, and it is expected that the residual stress con-
tribution in (2.6) will be accurate within this range as
well.

2.2. Annular micro-crack ringing a prestressed spheri-
cal particle

Now consider a spherical particle which has a
residual compressive stress due, for example, to trans-
formation or developed during processing as a result
of thermal mismatch between particle and matrix. As
depicted in Fig. 3, we suppose that the particle
nucleates an axisymmetric micro-crack at its equator
with the outer edge of the crack arrested by some
feature of the micro-structure. Usually such a micro-
crack runs along a grain boundary and arrests at a
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boundary junction, We model the situation by taking
the particle to be under a residual uniform hydro-
static compression g, = —agd, prior to cracking. If,
for example, this residual stress arises as a result of
a dilatational transformation strain in the particle of
er=10T5, , then

if 3V p i
o = 2EOT/[9(1 — v)]. (2.10)

The moduli of the matrix and particle are again
taken to be the same. The residual normal traction in
the matrix acting across the plane of the potential
crack is

o =ay(b/r) .11

where 6, = 6 /2 is the tensile circumferential stress in
the matrix just outside the particle, b is the radius of
the particle, and r is the distance from the center of
the particle.

An annular crack with outer radius a is assumed to
form around the equator of the particle as shown in
Fig. 3. The volume opening of the crack due to the
partial release of the residual stress (2.11) is given
approximately by

Av =11 —v}ab(1 —bjaYa,/E  (2.12)

This formula agrees with accurate numerical results
for this problem to within 1 or 2% over the entire
range of h/a [10].

Once the micro-crack is nucleated it gives rise to an
additional strain contribution (in a material element
of volume V) in the direction normal to the crack
plane

be? 2¢ c\o
Aey=n(1 —v) 2 (14 28 F () 2
fan = 7 V)V<+3b) (b)E

where ¢, is again the macroscopic stress component
normal to the plane of the crack and ¢ =a — b. The
function F(c/b)is 1 when ¢/b = 0 and monotonically
decreases to 0.81 when ¢/b — c0; 1t is very close to 1
for ¢/b < 1. (The formula (2.13) can be derived from
results given in [11]. The counterpart to (2.13) for the
shear strain contribution A¢,, is not available).

With N noninteracting annular, randomly orien-
tated micro-cracks per unit volume, the strain is still
given in terms of the macroscopic stress by (2.6)
where now from (2.12)

(2.13)

0T = average

x [Nm?(1 — v)ab*(1 — bja)’a,/E]l. (2.14)

The result (2.13) is not sufficient to determine esti-
mates for E and ¥ since Ae,, is also needed. However,
if one assumes that the ratio of A¢,, /o, t0 A€y, /0y, 18
the same, or at least approximately the same, for the
annular crack as for the penny-shaped crack, then £
and ¥ can still be obtained from (2.8) and (2.9). Now,
however, by comparing (2.4) and (2.13), one sees that
the crack density parameter must be taken as

3n%Nbc? 2¢ ¢
= — |1 +==|F|=-|]- A5
€ dverage[ T3 ( + 3 b) (b):l (2.15)
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This formula provides the density of annular micro-
cracks measured in an equivalent density of penny-
shaped cracks for the purpose of determining the
reduction in moduli. The parameter proposed in [9]
for arbitrarily shaped micro-cracks, ¢ = 2NA%/(nP)
where A and P are the area and perimeter (inner plus
outer) of the crack, provides an excellent simple
approximation to (2.15).

3. K;,/K FOR ARBITRARILY SHAPED REGIONS
CONTAINING A DILUTE DISTRIBUTION OF
RANDOMLY ORIENTATED
MICRO-CRACKS

3.1. Uniformly distributed micro-cracks

Some general results for the problem depicted in
Fig. 2 will now be presented. The derivation of these
results is given in the Appendix. Plane strain defor-
mation of the planar region of Fig. 2 is considered.
A semi-infinite crack lies on the negative x; axis.
Within the region r < R(00), the micro-crack region
A, the material is governed by (2.6) where 8T can be
thought of as a stress-free dilatational trans-
formation. Within A4_., E, ¥ and 8" are taken to be
uniform. Qutside this region the material is governed
by

1+v v
€ =——0

E YV E

Oy 3.1
The region A, is restricted to be symmetric with
respect to the x, axis. The remote, or applied, stress
field is specified to be

K
- &:/(0)5

Y S
where 6;;(6) are the universal functions characterizing
the mode I, plane strain crack-tip fields. We seek the
stress intensity factor governing the near-tip fields
within the micro-crack region, i.e. we seek K, where

p
K.
[ . &4/(0)9

i \/%

When £ =E and v =v, K,

1/2\'2 EQT
Ki,=K+-|=
P +3<rc) (1—v)

x J [R(O))'*cos30dd (3.4)
0

o (32

r—-x

r—0.

(3.3

is given by [12]

ip

When E and v differ from E and v, numerical work
is generally required to obtain the relation K, and K.
However, this relation can be obtained in closed form
to lowest order in the differences between the moduli
governing behavior within and without 4,. More-
over, to lowest order in these differences the con-
tributions to K,;, from 07 and from the reduction in
moduli within 4, can be superimposed. We proceed
by now considering the case when 67 = 0.

When 0T =0 one can conclude from dimensional

analysis alone that

Ktip/K = F(E/E’ v, V) (35)
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where F also depends on the shape of 4, but not on
its size. However, it can be shown [13] that this
relationship can be reduced to a dependence on just
two special combinations of the moduli. For present
purposes the most convenient choice of moduli

parameters is -
6, = =—1
-y I:G ]

1 |_G
62=1_v|:v-G——-vj|

which both vanish in the absence of any discontinuity
across the boundary of A4,. These parameters emerge
naturally in the analysis given in the Appendix. With
this choice

K /K =f(8), 8,, shape of A,). (3.8)

The following result is exact to lowest order in 6, and
%,

(3.6)

and

3.7

Kli
7;: =1+ (k,— )5, + (ky + )5, (3.9)
where
1 T
k, =—J (11 cos 8 + 8 cos 260 — 3 cos 38)
32n o
x In[R(0)] dO (3.10)

k,= —51—7; Jn (cos 6 + cos 26)In[R(8)]d0. (3.11)

Since the collection of terms in each integrand
multiplying In[R ()] integrates to zero, k, and k, are
unchanged when R(8) is replaced by AR(6) and are
thus dependent on the shape, but not on the size, of
A.. When 4, is a circular region centered at the tip,
k, =k, =0. The circular region has a special role in
the development of (3.9), and it is discussed at some
length in the Appendix. Numerical results for arbi-
trarily large moduli differences have been obtained
earlier for the problem with a circular region [14].
Some selected results will be compared with (3.9) in
the Appendix to give some sense of the range of
validity of the lowest order equation.

The above result for K;;,/K enables one to deter-
mine the jump in the J-integral from integration
contours which are entirely within or without 4.. For
all contours which circle the crack tip lying outside A4,

J=(0—-v)K*E (3.12)
while for all such contours lying inside A4,
Jop=(1—9)K,/E. 3.13)
Using the relation
(1-¥HE
== -4 3.14
(1—-v)E +o= 0 @.19)
one finds to lowest order in §, and 4,
Ji
g =142k, — D3, + 2k, +1)5,  (3.15)
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For exceptional shapes J,;, may equal J, but for most
shapes it will not.

Combining the contributions from (3.4) for the
release in residual stress with those from (3.9) for the
reduction in moduli, one finds to lowest order in §,
and &,

K 1 /2)\2
%= 1 +(k1"§)51+(k2+%)52+§(;)

EOT ("
X mﬁ (R()"cosi0 di. (3.16)

3.2. Nonuniformly distributed micro-cracks

The theory developed in the Appendix permits one
to derive expressions for K,;,/K for arbitrary distribu-
tions of randomly orientated micro-cracks, assuming
again that only the lowest order differences in the
moduli need be considered. One class of nonuniform
distributions leads to particularly simple conclusions
and is physically relevant, as will be seen in the next
section,

First take T = 0 and consider the effect of shield-
ing due to nonuniform, reduced isotropic moduli
within 4. Suppose, as indicated in Fig. 4, that E and
v govern behavior outside 4., as before, and that
uniform values E, and ¥, hold for r < R,(0). More-
over, suppose R (6) = AR(0) so that the inner uni-
form region has the same shape as A, itself. In the
transition region, R (0)<r < R(0), we take the
moduli to vary continuously from (E, v,) to (E, v) by
“scaling” the moduli differences such that on each
radial line from the tip

(61, 8,) = (83, 65)f(r/R(8)) (3.17)

where 83 and 83 are derived from E, and v, via (3.6)
and (3.7) and where f(x) is any continuous function
of its argument which decreases monotonically from
f=latx=4tof=0at x=1. It is shown in the
Appendix that (3.9) is still rigorously valid if 4, and
4, are replaced by 43 and 63, respectively. In other
words, for this particular class of nonuniform moduli
variations the result for K, /K is the same as for the
case where E, and ¥, hold uniformly throughout 4..
To lowest order in 6} and &3, the result is independent
of the details of the transition or of the relative size
of the inner uniform region compared to A.. A
numerical example which illustrates this indepen-
dence was given in [14] for the analogous mode II1

R(8] = AR(B)

Fig. 4. Geometry of zone with nonuniform micro-cracking.
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problem where A, is a circular region. The numerical
example was not limited to lowest order differences
and showed that the independence found above held
to good approximation even when the moduli
differences were quite large.

The contribution to K, due to release of residual
stresses can also be obtained from the result of [12]
when 07 is not uniform. Instead of the second term
in (3.4), this contribution is

1

AK, = ——
® 32

where the integral extends over the upper half of A..
This contribution does depend on the details of the
distribution of 0.

E
(T—)JGTcosgﬂr‘3/2 dA (3.18)
-V

4. K;,/K FOR TWO NUCLEATION CRITERIA
FOR STATIONARY AND STEADILY
GROWING CRACKS

The results of the previous section are now special-
ized to specific zone shapes dictated by two possible
micro-crack nucleation criteria. The first is based on
the mean stress; the second is based on the maximum
normal stress. In each case in this section it will be
assumed that there is no preferred orientation to the
micro-cracks so that the reduced moduli are iso-
tropic. Results for both stationary cracks and cracks
which have achieved steady-state growth conditions
will be given so as to assess the potential for crack
growth resistance following initiation. In every exam-
ple in this paper the zone shape and size are deter-
mined using the unperturbed elastic stress field (3.2)
since this is consistent with our limited aim of obtain-
ing just the lowest order contributions to K,. The
perturbation of the size of the zone is likely to be
relatively unimportant for the effect of the reduced
moduli even for non-dilute crack distributions since
the lowest order results for K,;,/K are independent of
zone size, as discussed in the previous section. The
effect of the perturbation on the contribution of the
release in residual stress is essentially the same as in
the pure transformation problem which was treated
in [12].

saturated
state

al
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4.1. Stationary crack with nucleation at a critical mean
stress

With ¢, = {0, as the mean stress, suppose micro-
cracks begin nucleating at ¢ and the nucleation is
complete at ¢ with a variation in micro-crack
density N as indicated in Fig. 5(a). To lowest order,
the elastic stress distribution (3.2) can be used to
determine the zone shape and the distribution of the
micro-crack density within the zone. The distribution
of the density and the relation of the inner region of
uniform moduli to the full micro-crack region fits
precisely into the situation discussed in Section 3.2
and sketched in Fig. 4. Thus, the change in K, due
to the moduli reduction is the same, to lowest order,
as when the micro-cracks are uniformly distributed
throughout the zone. We will therefore restrict atten-
tion to the simplified nucleation criterion indicated in
Fig. 5(b) and take

micro-crack density =0 for (6 )max < 0

=Nfor (o) 208 @.1)
The 9T-contribution to K, does depend on the
distribution of the micro-crack density, but this can
be evaluated fairly simply using (3.18) if desired. Here
only the results for the simplified nucleation criterion
(4.1) will be given. There will be a transition region
just within the boundary to A4, in which the micro-
crack density varies from zero to the saturated value,
but in the limit corresponding to the lowest order
problem the transition region shrinks to zero.
Imposing ¢, =0, on the elastic field (3.2), one

finds
R(O) = 9% (I+v) (%)2 cos? (%) . 4.2)

The boundary of the micro-crack zone is shown in
Fig. 6(a). Then, evaluating k, and k, in (3.10) and
(3.11), one obtains k; =3/16 and k, = —1/4. The
#T-contribution to (3.16) is found to be identically
zero, and thus (3.16) becomes

Ko/ K =1—(7/16)d, + (1/2)9,. 4.3)

m
saturated
state

C
6’m
|
|
|
simplified
criterion
N

b)

Fig. 5. Variation of micro-crack density N with means stress.
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To specialize the result even further we will use the
results (2.8) and (2.9) for the reduced moduli G and
B in terms of the crack density parameter ¢ which in
turn is given by the average of Nb’, or by (2.15), or
by any other appropriate choice depending on the
nature of the micro-cracking. To lowest order in ¢,
one can show that

1603 - v)(1=v?)

e FRC p 4.4)
and
5 =32(5—v)6 6’=16v(1—8v+3v2)
452 —v) : 452 —v)
=1.99%(v =1), =—0.095(v =1) (45
and thus
Kip _ | _235—11v +32y2— l2v3)€
K 452 —v)
=1-0919%(v =3). 4.6)

4.2, Steadily growing crack with nucleation at a critical
mean stress

A crack which has extended at constant K has a
wake of micro-cracks as indicated in Fig. 6(a). With
the nucleation criterion (4.1) in effect, the leading
edge of the micro-crack zone is given by (4.2) for
|6 ] < 60°, and the half-height of the zone is given by

2 2
e NEI(ER) ( K )
12% o

The values of k, and k,, which have been computed
by numerical integration, are

ky=0.0166 and k,= —0.0433.

4.7

(4.8)
Equation (3.16) gives

K.
% =1—0.6085, +0.7076,

1 (1+v)ERT
4n. /31 —v) o
=1-0.6080, + 0.7074,

T 1.2
. B (L) (4.9)
2(1 —v)K \ g \/3
where the 6T-contribution is the same as that ob-
tained in [12] and [15] for the corresponding trans-
formation problem. Equation (4.5) for 8, and 4, still
pertain and for v =1/3

Ky /K =1—1278¢ — 03215 EO"/H/K.  (4.10)

By comparing (4.6) and (4.10), one notes that the
shielding contribution due to moduli reduction is
about 40% larger for the growing crack than for
the stationary crack. This will add to crack growth
resistance but the major source of resistance is likely
to come from the release of residual stress (i.e. from
67). Even without growth, however, moduli reduc-
tion provides some shielding according to (4.6),

AM. 35/7—N
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although how much extra toughness this generates
cannot be predicted without knowledge of the
toughness of the micro-cracked material within A4, as
already emphasized.

4.3. Stationary crack with nucleation at a critical
maximum normal stress

Now suppose that the micro-cracks are still nucle-
ated with no preferred orientations so that within A4,
the stress--strain relation is still (2.6), but suppose that
nucleation occurs when the maximum principal stress
o, reaches a critical tensile value o, i.e.

micro-crack density =0 (0))n < 7.
=N (Ul)max =0, (411)

where, as before, ()., signifies the maximum value
attained over the history.
The boundary to 4, as determined by (3.2) is

2

and this is shown in Fig. 6(b). The values of &, and
k, have been obtained by numerical integration of
(3.10) and (3.11) with the result

k,=00779 and k,= —0.0756.
Equation (3.16) gives

1 o 1 2
R(0)=2n(005+§sin|9|) (Kja.)* (4.12)

4.13)

% =1—0.5473, + 0.6748, — EO"/[6x(1 — v)o.]

=1 —0.5478, + 0.6745, — 0.1060 EOT

x JH/(1 —v)K] (4.14)

where the half-height of 4, from (4.12) is obtained at
0 =74.84° and is

H = 0.2504(K /a. ). (4.15)

For v = 1/3 and with &, and &, given by (4.5), (4.14)
specializes to

4.16)

K.
o =1— 1153 =015 EOT/HIK

4.4. Steadily growing crack with nucleation at a critical
maximum normal stress

Now the zone A. is specified by (4.12) for
|0] < 74.84° and by | x,| = H for |0 | > 74.84° where H
is given by (4.15). Evaluating the integrals in (3.10),
(3.11) and (3.16) numerically, one finds

K
2= 106736 +0.822,

—0.1329 E07/[(1 — v)a,]
=1-0.6735, + 0.8225,

— 0.2656E0T/H/[(1 —v)K]  (4.17)
which for v=1/3 and 4, and 4§, given by (4.5)
becomes

K.
% =1-1417¢ —0.398 EOT/H/K.  (4.18)
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boundary of wake far
steady-state problem\
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2

rear boundary zone
for stationary problem

a) H
b) H
c) H (v=1§)

Fig. 6. Zones of micro-cracked material for stationary and steadily growing cracks for three nucleation
criteria. (a) Critical mean stress criterion. (b) Critical maximum principal stress criterion. (c) Criterion

based on a critical value of

The predictions for this case are not very different
from those based on a critical mean stress. The
shielding due reduction in moduli is larger in each
case by about the same amount for the steadily-
growing crack compared to the stationary crack. For
nucleation at a critical maximum principal stress
there is some shielding even for the stationary prob-
lems due to OT. This is not the case for nucleation at
a critical mean stress.

4.5. Effect of zone shape on shielding

For cases, such as those discussed above, in which
the moduli of the micro-cracked material are iso-
tropic and the release of residual stress gives a pure
dilatation 67, the general result (3.16) can be used to
gain qualitative insight on the effect of zone shape on
shielding.

For the §T-contribution, it follows immediately
that, because R(0)"? is modulated by cos(30/2) in
(3.16), decreases in R in the range |6| < 60° and

(0','}‘0',‘,'5 for v = 1/3

increases in R in the range |0|> 60° will increase
shielding.

The trend is similar for shielding due to the reduc-
tion in moduli. Note from (4.5) that J, is generally
much larger in magnitude than J, and will generally
be the predominate of the two parameters in deter-
mining K,. By (3.16), therefore, the influence of
shape on K, comes about mainly through k,. By
(3.10), the integral for k, involves In[R(0)] modulated
by

1
f(6) =9 (11cos @ + 8 cos 260 —3cos30). (4.19)
T

This function is plotted in Fig. 7, and it is seen to be
positive for |8 ] < 70.5° and negative for [0] > 70.5°,
Thus, with a circular shape as reference (k; = k, = 0),
shape changes involving decreases in R for
|8 < 70.5° and increases for |8 ] > 70.5° will increase
shielding. However, the influence of shape change is
not nearly as strong as in the case of the
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- -
5 f(8) = T (11cos B + 8cos 26 - 3 cos 38)
I——- increasing R(8)
A4 I increases shielding

0 .
0’ /| 9 18 8
=705

n |

_'2 4

decreasing RI8]
increases shielding

Fig. 7. Plot of the function f() appearing in the expression
for k, and its implication for changes in shielding stemming
from changes in shape of micro-crack zone.

#T-contribution. The examples worked out above
suggest that &, and k&, are generally quite small so that
shielding will not be markedly different than that
afforded by a circular zone centered at the tip. Even
the addition of the wake in the steady-state problems
only increases the shielding by 30-40% over the
circular zone.

5. SOME RELATED RESULTS

5.1. Anisotropic micro-cracking—stationary crack

A material which nucleates micro-cracks with
planes which are perpendicular to the maximum
principal stress o; was considered in [16]. A closed
form relation between K, and K was obtained which
is not limited to dilute levels of micro-cracks. In
monotonically increasing uniaxial tension the stress-
strain relation of the material was assumed to have
the form shown in Fig. 1 with

c=0/E g <0,
=g(o) 0, <0 <0,
=€e"+a/E, o>a, (5.1

where E, is the incremental modulus associated with
the saturated micro-crack density and g(og) is a
monotone function which characterizes the transition
from uncracked to fully saturated conditions. The
uniaxial “transformation” strain ¢* resulting from
release of residual stress by the micro-cracks was not
considered in [16] but can be included without any
alteration of the analysis. For monotonic propor-
tional stressing histories, the assumption that the
micro-cracks form normal to the direction of the
maximum principal stress leads to a relation between
o, and the maximum principal strain, ¢;, which is the
same as (5.1). The other two principal strain com-
ponents are taken to be unaffected by the micro-
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cracking, ie.
Eeyy = oy — v{o, +ay)

(5.2)

Eey = oy — vioy +oy).

The result of [16] is limited to a stationary macro-
crack. For then, one can reasonably expect the stress
history at every material point will be monotonically
proportional (at least to a good approximation) if K
is increased monotonically. It was noted in [16] that
a deformation theory (i.e. a small strain, nonlinear
elasticity theory) exists which coincides with
stress—strain behavior of the material described above
when the stressing is proportional. Thus it was
argued that for this material with a stationary crack
the J-integral is path-independent so that

Jo = (5.3)

ip

This, in turn, led to the relation

Kip _ B (E_NI
N PSR

where § =1.0942. The “transformation” strain ¢
resulting from release of residual stress does not affect
the relation for the stationary crack. The relation is
also independent of both o, and o, as well as g(o).

To draw comparisons with results in the previous
section, suppose that the micro-cracks nucleated are
penny-shaped with a density N per unit volume in the
saturated state. Since the planes of the micro-cracks
all lie perpendicular to the maximum principal stress,
if follows from (2.4) that

E
b?=]+‘j-°(] ~ )

S

(5-5)

where ¢ is the average of Nb’. [Equivalently, (5.5)
holds for annular micro-cracks if ¢ is given by (2.15).]
Of course, (5.5) ignores the interaction among micro-
cracks. Combining (5.4) and (5.5), one finds

K.
% =[1+5836¢]""2=1-2918c +--- (5.6)

Noting the corresponding lowest order estimates in
(4.6) and (4.16) for isotropically orientated micro-
cracks, one concludes that micro-cracks nucleated
perpendicular to the maximum principal stress result
in more effective shielding at the same level of
micro-crack density.

52 Anisotropic micro-cracking—steadily growing
crack

Results as general as those for the stationary crack
just quoted cannot be generated in the same way for
the steady-state crack growth problem since the
path-independence of the J-integral can no longer be
invoked. Complete lowest order results such as those
derived in Section 4 for the isotropic case could be
obtained but are not yet available. However, lowest
order results are available for the contribution to K,
due to release of residual stress.
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In the simplest case, suppose that all micro-cracks
nucleate with planes normal to the maximum prin-
cipal stress when

(5.7)

so that the “inelastic” strain resulting from the
release of the residual stress is

(Ul )max =0,

(5.8)

€=ecnn

where n is the unit vector in the direction of the
maximum principal stress. The lowest order approxi-
mation to the micro-crack zone is that shown in
Fig. 6(b) for the steadily growing crack. The micro-
cracks are nucleated along the leading boundary of
the micro-crack zone and this establishes the vari-
ation of the orientation of the micro-cracks through-
out the zone. The variation is independent of x, to
lowest order.

The problem characterized by (5.7) and (5.8) is
exactly equivalent to the uniaxial transformation
problem analysed in [17]. The result (which has been
rederived analytically by the present author) is

Ko EcT
D 02504 ——¢
K a0 =)o,
ET/H
—1- 0.5004,6—f (5.9
K(1 —v?)

where H is given by (4.15). An expression for €T in
terms of the residual stress and the micro-crack
density may be obtained immediately using either
(2.2) or (2.12).

5.3. Isotropic micro-cracking with a special nucleation
condition

A special small strain, nonlinear elastic constitutive
law (a hyperelastic law) was introduced in [18] to
model micro-cracking and, at the same time, to
preserve the path-independence of the J-integral
when stressing is monotonically proportional. Thus,

1]
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as in the example discussed above, it is possible to

link the near-tip X to the remote X for the stationary

crack problem using just the path-independence of J.

In this instance, however, the moduli of the material

with saturated micro-cracking are isotropic so that
1-7? 1 —v?

v
o Kép= z K?

(5.10)

where ¥ and E are the Poisson’s ratio and Young’s
modulus of the material in the saturated state.
The constitutive law proposed in [18] is

Ee, = (h(6) + v)a,; ~ vaudy .1
where ¢ = (0,0,)"* and
h(@)=11—Fe(@)] . (5.12)

The micro-crack density parameter ¢ is the same as
that used here. It is regarded as a function of ¢ and
is taken to be zero for ¢ < d, and to increase con-
tinuously until it attains the saturation value ¢, when
6 = d,. The claim in [18] is that the moduli in (5.11)
for a given value of ¢ are a good approximation to the
moduli derived from self-consistent theory in [9].

With A, =[1 — 16¢,/9] ", the values of ¥ and E for
the material at saturation from (5.11) are

E=hn"E and
Thus, (5.10) gives

Ky [ =vHaT?
K | hi=y?

which is plotted as a function of ¢, in Fig. 8 for v =1,

We have applied the theory of Section 3 to this
special constitutive law for the limiting case where
é.= 4, so that the material develops the saturated
level of micro-cracking ¢, as soon as ¢ = (0,0,)""?
attains 6,. The moduli within A, are uniform to
lowest order in ¢, and are given by (5.13). Then, by

V=hlv. (5.13)

(5.14)

lowest order result {5.18)

exact result (5.14)

0 :
0 2 b

Fig. 8. Comparison of exact and lowest order results for stationary crack in special material.
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Table 1. (K;,/K) — 1 for v = 1/3 from lowest order theory expressed in terms of crack density parameter ¢ measuring
equivalent density of penny-shaped cracks. Equation numbers from the paper are given in brackets
Critical mean Critical maximum Critical maximum
Nucleation stress principal stress principal stress Critical ¢ = /a0,
criterion O =05 o =0, o =0, 6 =a,
Orientation Isotropic Isotropic Anisotropic Isotropic
distribution of (micro-cracks
micro-cracks normal to maximum
principal stress)
Stationary —0.92¢ —1.15¢ —2.92¢ —1.11¢
crack (4.6) —0.16 B0 /H/K (5.6) —0.063 EOT./H /K
4.16) (5.18)
Steady-state —1.28¢ —1.42¢ @ —1.42¢
crack —0.32E0T/H/K  —039 E0"/H/K —0.56 BT /H/K —035 E6T/H/K
(4.10) (4.18) (5.9) (5.20)
® ¢.Contribution not available.
(3.6) and (3.7) v=1/3
16 —16v? K
5,:—2 o Oy = ———— ¢, £=1—1.42£s—0.194E9T/&C
9(1 — v*) 9(1 —v?%) K
=2,(v=1), =-2¢0v=1 (515 =1—1.42¢,—0.348 BT /H/K.  (5.20)

to lowest order in ¢,. [Note that these expressions do
not agree exactly with those in (4.5) since the consti-
tutive relation (5.11) is not exact in the dilute limit.
Nevertheless, the numerical agreement for §,, in
particular, is extremely good for v = 1/3 and is exact
for v=0]

The boundary of A, for the stationary crack is
specified by [see Fig. 6(c)]

1 /K\?
w42

0 1
X [(1 + 2v2)<:052§+‘—1sin2 0:] . (5.16)

One can show by direct, but nontrivial, integration
that

2,8, + 2k, 8, = 15, (5.17)

so that, by (3.15), the relation J;,=J is indeed
verified. Thus, to lowest order in ¢, the present
theory coincides with (5.14). For v =1/3, we find

Kip/K =1 —(10/9)c,— 0.0352 EOT/6,  (5.18)

where the contribution due to 67, which is not
included in (5.11), has also been computed. The
lowest order prediction (excluding the 67-
contribution) is also shown in Fig. 8 and it is seen
that it supplies a good approximation for values of ¢,
up to about 0.4 corresponding to about a 50%
reduction in K.

Application of the theory to the steadily growing
crack is straight-forward. The micro-crack zone 4. is
shown in Fig. 6(c), and the half-height of the zone for
v=1/3is

1
- 552

H =0311(K/é,)" 5.19)

Using numerical integration to evaluate the integrals
in (3.11) and (3.16), one finds to lowest order in ¢, for

Here, a 0"-contribution due to release of residual
stress has again been included, where 07 has also
been taken to be uniform within A, consistent with
assumption made about the micro-crack nucleation.

The shielding effects implied by this material model
are very similar to those found for the other two
models in Section 4.

6. CONCLUSIONS

All the lowest order results for the various models
for v = 1/3 have been assembled in Table 1 expressed
in terms of the crack density parameter ¢ which
measures the equivalent density of penny-shaped
cracks. The three models which assume isotropically
distributed micro-cracks all give very similar results.
In each of the three cases, the increase in shielding of
the growing crack over the stationary crack due to
the reduction in moduli (the ¢-contribution) is be-
tween 30 and 40%. Values of ¢ of about 0.3 near the
crack tip have been observed [3], corresponding to
about a 40% reduction in K, due to this effect. The
shielding contribution due to release in residual stress
(the 8"-contribution) is exactly the same as in the
corresponding transformation problem, and the
shielding is significantly greater for the steadily grow-
ing crack than for the stationary crack. It would
appear that strong resistance curve behavior would
stem mainly from the release of the residual stresses.

The results for the anisotropic case, where the
micro-cracks are nucleated perpendicular to the
maximum principal stress direction, are larger, by a
factor of about two, compared to the isotropic cases
at the same micro-crack density. If micro-cracks are
nucleated with a high degree of alignment, the satur-
ated density would likely be less than in the isotropic
case because of fewer available nucleation sites. A
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direct comparison of the two cases may not be
meaningful therefore.

The results of Table 1 probably bracket what
would be expected from any reasonable continuum
model. More observational data such as that in [3] is
needed before it will be possible to settle on any one
model. At issue are both the stress dependence of
nucleation and the orientation distribution of the
micro-cracks. In addition, a deeper understanding is
needed of the saturated micro-cracked state and its
relation to the inherent fracture toughness of the
micro-cracked material.

Finally, it should be re-emphasized that the present
results, for the most part, have been limited to lowest
order accuracy. Numerical calculations such as those
in [18] will be needed to obtain accurate estimates
of shielding when K, /K is less than about ;.
Approximate ways to extend the range of accuracy of
the lowest order formulas suggest themselves. For
example, without altering the lowest order accuracy,
one may modify the basic result (3.9) to

K.
=1 = (ky = 2)d, — (ky +3)8,]7".

X (6.1)

For each example considered here, this change en-
sures that K;,/K —0 as d, and d, become unbounded,
as should be the case. The improvement in the range
of accuracy can be quite dramatic as is illustrated
by the example for a circular region (k, =k, =0) in
Fig. 12 shown later in the Appendix. It is recom-
mended that the modified lowest order result (6.1) be
used when &, and d, are not very small.
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APPENDIX: K, ANALYSIS

The Appendix is divided into three main sections, The first
gives a basic solution for the stress intensity at a crack tip
induced by an arbitrary distribution of transformation
strain (i.e. plastic strain) in its vicinity. The general result
(3.9) for arbitrarily shaped regions is constructed using two
auxiliary solutions. One of these auxiliary solutions can be
written down immediately using the basic solution of the
first section. The other which pertains to a circular region
is then derived and is related to numerical results for
arbitrarily large moduli differences in the third section. A
short final section deals with zones containing nonuniform
micro-crack distributions.

K,, for Arbitrary Distributions of Transformation Strain

A solution was derived in [19] for the stresses and the
stress intensity factor at a semi-infinite crack induced by
two symmetrically placed *‘spots” of area d4 which have
undergone an in-plane transformation strain, as indicated in
Fig. 9. We consider plane strain, mode I behavior so that
if the transformation strain in the upper spot is (¢}, €5, € )
then the corresponding strain in the lower spot is
(e7), €L, —€,). Here we present only the result for the
stress intensity factor induced by the transformation in the
differential spots:

dK,, = @n) A1 —v) ' EdAr P h,(0), (Al)

where (r, #) are planar-polar coordinates to the upper spot
and

hy = i(cos 20 + 3 cos30)

hy =1 cosi —3cos]0)
3/.76 34

h,2=h2,=1(sm7—sm?).

The stress intensity induced by a symmetric distribution
of transformation strain is given by the superposition of
(Al) as long as

(A2)

fim r~'2¢T, = 0 (A3)
r—0
TTLT
(€. E.819)

I T T

Q/ (€ &p7Ep)

Fig. 9. Geometry associated with equation (Al).
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Ac E,v
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a = K '5 ; ¥ >
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E.v yanx
from B
v
K, /Kg‘ V(Keip)
SOLUTION TO PRIMARY PROBLEM: —KlE = 1lim \—%E}(%E}
p -0 R Ktip
from A

Fig. 10. Definitions of auxiliary problems A4 and B and their use in construction of the solution to the
primary problem.

Thus, assuming (A3) holds

E
(1—v?)
plus any contribution due to remote applied stresses. The
area integral in (A4) is taken over the transformed region in
the upper-half plane. This result is the same as that used in
[17); related developments are discussed in [20]).

The expressions given in the body of this paper for the
contributions to K, due to release of residual stress have
been derived from (A4). Their derivation is similar to one
given in [12] so we will not dwell further with this aspect.
We turn to the more difficult part of the derivation concern-
ing the change in K,;, due to the reduction in moduli within
a region A, surrounding the tip.

Ky, = (8m) "2 J‘r-‘ﬂha,,(o elydd (A4

K,, Due to Reduced Moduli Within A,

Our objective is the determination of K,,/K when the
symmetric region A, surrounding the semi-infinite crack tip
has different, but uniform, moduli (£, ¥) from the moduli
(E, v) outside A4,. Plane strain conditions are assumed and
only lowest order accuracy is sought, i.e. we seek the result
for K, /K which is linearized in the moduli differences , and
d, defined in (3.6) and (3.7). The solution is constructed
using solutions to two auxiliary problems denoted by “A”
and “B” in Fig. 10. The construction indicated in Fig. 10
is actually valid for arbitrary large moduli differences,
assuming the two auxiliary solutions were known for arbi-
trarily large differences. The reason for dividing the problem

into two in the manner shown will be clearer in the
exposition which follows. Curiously, the lowest order solu-
tion to problem A can be written down almost immediately
using (A4). The lowest order solution to problem B is also
simply obtained although a back-handed procedure has
been employed in the process. Once the solutions to the two
auxiliary problems are in hand, the ratio of the stress
intensity factors sought is given by

K K Kﬂp

where K /K is the ratio of the near-tip to remote intensity
factor in problem A and K9,/K,, is the corresponding ratio
in problem B.

To generate the solution to auxiliary problem A, let M
denote the compliances of the isotropic material outside 4,
and inside the circular region, r < p. Let M be the compli-
ances of the isotropic material inside 4., but excluding the
inner circular region, so that within this intermediate region

(AS5)

Eaz/! = Mﬂﬁxy ax'/

= Mapny ax-y + (Muﬂx'y - Muﬂx-y)axy - (AG)
With the identification
€=My, — Mop)o,, (A7)

one can use (A4) to write

E
Kﬂp:K+(8n)“/zm'|‘r’3/2hw(0)efﬂ d4 (A8
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where the area integral extends over the upper half of 4.,
excluding the inner circular region. Of course, for arbitrarily
large differences in M and M the stress, and therefore also
eIﬂ, is not known a priori. However, to lowest order in the
compliance differences, the stress in (A7) is the remote stress
field (3.2), which is the limiting solution when M = M. Thus,
to lowest order

€0 = K(@2nrr)~'2e1(0) (A9)

where
gu,‘i (0) = (Matﬂxy - Maﬂxy)ﬁxy(e)' (AIO)

The stress intensity K, in (AB) is the amplitude of the
near-tip singular fields within the inner circular region.
Next, (A10) is substituted into (A8) and the integration
with respect to r is performed with the result
¢ 1 1 E

tip

K 4n (1 —v?)
% .[ {In[R(9)] — In p }h,,(B)ET,(6) dO. (Al1)
[(]

A straightforward evaluation of A,5¢;, using the well-known
expressions for 6., gives

E
mhlﬁe”fﬂzéé, (11cos @ + 8cos 20 — 3 cos 30)

—28,(cos 8 +cos 20). (Al2)

It is here that the moduli parameters 6, and §, defined by
(3.6) and (3.7) emerge naturally. Since

_[ hoy€lydf =0,
0

it follows that
K?,p/K:I+k1(5,+k2(32 (A13)

where k| and k, are defined in (3.10) and (3.11). It is essential
to interpret K7 as the intensity factor of the singular fields
within the inner circular core with moduli (E, v) and not the
desired factor K,,. Condition (A3) on the transformation
strains excludes the identification of KJ, with K, and
thereby motivates the two-step solution procedure em-
ployed here. Equation (A13) implies that K /K is indepen-
dent of the radius p of the inner circular core, to lowest

order in the §’s.
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Fig. 11. Special geometry used to infer solution to auxiliary
problem B.

To generate the solution to auxiliary problem B, we
exploit a special region A, for which K;,/K is known. Then
by evaluating K?,P/K for this region, we can “back-out” the
desired universal result K?,p/th for problem B using (AS5).

The special region A, is the infinite strip with a centered
semi-infinite crack shown in Fig. 11. Either a simple energy
argument or application of the J-integral implies that (5.10)
holds exactly for this problem. By (3.14), this gives

K /K=[146— 5,171

which is not limited to lowest order.
The integrals in the definitions of k, and k, are easily
evaluated for this geometry giving for problem A4

K2 /K = 1448, - 36, (Al5)

Then, combining (A14) and (Al5) according to (A5), one
immediately obtains the lowest order result for problem B

K /Ky =1+368,—16,. (Al6)

Finally, the general result (3.9) for arbitrarily shaped regions
follows by combining (A13) and (A16) according to (A5).

(Al4)

K., for Circular Regions A,

An extensive study of the problem posed in Fig. 2 (with
0T = 0) has been given in [14] for the case of circular regions
A, centered at the tip of the semi-infinite crack. Techniques
from complex variable elasticity together with numerical
computation were used to compute K, /K for arbitrary
differences in the sets of moduli. We have independently
checked both the analysis and the numerical calculations in
[14], finding our results to be in complete agreement with
those in [14]. (The fact that the solution could be collapsed
to a dependence on just two moduli variables, such as §, and
8,, was not exploited in [14}.)

numerical

modified lowest
order result

10

12 14 16 18

G/G

~o-

Fig. 12. A comparison of selected results for circular micro-crack zore.
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A numerical example is shown in Fig. 12. In this example
¥=v=23/10 and the ratio of shear moduli is varied.
Included in Fig. 12 is the lowest order result for the circular
region from (3.9)

Klip/K =1- %‘51 + %52
=1-4G/G - D){(v =7 =3/10). (Al7)
The example again illustrates that lowest order results
capture trends but are not numerically accurate when the

moduli differences become large. The modified lowest order
Jormula (6.1) gives

Kip/K =[1 + @/7)(G/G — ]!
which is seen in Fig. 12 to have a much greater range of
accuracy. Similarly, the modified lowest order result for the

infinite strip problem, whose exact result is given by (Al4),
has a much improved range of accuracy.

(A18)

Nonuniform Micro-crack Distribution—Stationary Crack

In the lowest order calculation the unperturbed stress field
(3.2) can be used to determine the distribution of the
micro-crack density. Using the nucleation criterion based
on the mean stress in Fig. 5, we will illustrate the fact that
the lowest order result for the contribution to K, due
to the reduction in moduli is independent of the details
of the transition from uncracked to saturated cracking and

1619

is the same as the result calculated using the simplified
criterion. That is, the result is the same as that calculated
using the uniform moduli of the saturated state everywhere
in A.. This feature was observed to hold without limit to
lowest order in (5.4) and (5.14) for the two special materials
for which the J-integral permitted the near-tip and remote
fields to be linked.
From (3.2), the mean stress is

0= 3(1 + V)K(2rr) =" cos(8)2). (A19)

Based on the micro-cracking relation in Fig. 5(a), the inner
and outer boundaries of Fig. 4 are obtained by setting g,
to be o, and o, respectively. It is immediately seen that
R,(8) = (0% /05) R(6). Moreover, the level of micro-
cracking scales with r/R(#). Thus, the micro-crack distribu-
tion fits exactly into the assumptions of Section 3.2, to
lowest order. To see that K;, depends only on 4} and 483, as
claimed in Section 3.2, repeat the steps leading to (All)
taking the inner core radius p fully within the saturated zone
and noting that §, and 8, depend on position as in (3.17).
The result then follows directly when one notes that the
contribution to K9 from the transition region,
R, (6) <r < R(f), is zero. The conclusion also holds for
other nucleation criteria such as that based on the maximum
principal stress. It should be noted that the conclusion does
not apply to the growing crack. The above technique can be
applied to obtain lowest order results for the growing crack
when the micro-crack distribution is non-uniform.







