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Abstract

Transformation toughened ceramics display a resistance to crack advance requiring an
increasing level of applied stress intensity to advance the crack tip. In this paper the initial slope of
the resistance curve is determined. Two material models are considered. In each, only a net
dilatational transformation is considered. In one, the transformation is assumed to be triggered at a
critical value of the mean stress. In the other, the transformation is assumed to take place when the

maximum shear stress reaches a crtical value.

1. INTRODUCTION

Tearing resistance in transformation toughened ceramics was predicted in [1] and [2] and
R-curves have been experimentally measured in [3] for monoclinic zirconia containing a second
phase of partially stabilized tetragonal zirconia. The high stresses at the tip of a macroscopic crack
cause tetragonal particles of zirconia to transform to monoclinic form producing an irreversible
transformation strain in the particles. Transformation of an unconstrained particle involves a
dilatation of approximately 4% and a shear strain of about 16%. A particle embedded in an
untransforming matrix transforms into a number of paralle] twins with alternating signed shears so
that the net shear in the particle is a small fraction of 16%. As discussed in [4], preliminary
modeling which includes both shear and dilatational transformations indicates that the dilatational

component is the more important in transformation toughening of ceramics. This will be the

assumption made here. The dilatational transformation strain in the particle is denoted by 6,7 and
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the dilatational transformation strain of the matrix-particle combination is given by 6 = c6,T,

where c is the volume concentration of the particles which is typical in the range from 20 to 40%.

Conditions for nucleation of the transformation in the matrix constrained particles are not
well established [4]. Several candidates have been put forth and used in the various investigations
of the mechanics of transformation toughening. Two of these will be used in this paper. The
simplest from a mathematical point of view is the assumption that transformation will occur when
the mean stress reaches a critical value, i.e. 6T occurs in the particle-matrix combination when

Oy = Oy = Op, (Case A) 6))

The second is based on attaining a critical value of the maximum shear stress, i.e. 6T occurs in the
particle-matrix combination when
T max = Te (Case B) @)

This paper focusses on the behavior of a macroscopic crack immediately following
initiation of crack growth. In particular, a theoretical calculation of the initial slope of the resistance
curve is made for each of the two nucleation cases, A and B. the calculations are natural
extensions of the work in [1], [2] and [4], and it is assumed that the reader is familiar with these
papers. The present calculations invoke the following:

O All particles in a volume element transform, resulting in the full dilatational
transformation 6T when the critical stress condition, either A or B, is reached. In the
nomenclature of [2], supercritical transformation is assumed.

(II)  To determine the zone of transformation, the stress field at the tip of the
crack without transformation will be used to locate the boundary where the critical stress
condition is met. The perturbing influence of the transformation on the zone size and shape
1s ignored.

The limitations of these and other assumptions will be discussed at the end of the paper.
The analysis is carried out within the framework of plane strain. The transformation zone

is assumed to be small compared to all in-plane geometric lengths so that small scale transformation
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may be assumed. Thus, the field surrounding the transformation zone is the classical singular field

for an elastic mode I crack of the form
K

| p—

N2rr

&; ) 3)

where K will be called the applied stress intensity factor and where r and ¢ are planar polar
coordinates centered at the crack tip as indicated in Fig. 1. In particular, the distributions of the

mean stress and the maximum shear stress are given by

K(1+V) ( r)12
Cp = 3 (7) cos(9/2) 4)

and
Ty = K@nr)y 2 sin ¢ (5)
where Vv is Poisson's ratio.

A singularity of the form (3) exists at the tip of the crack within the transformation zone
except that its amplitude, Ky;p, is altered by the existence of the transformation itself. The solution
to the small scale transformation problem supplies the relation between Ky;p and K, and it is this
relation which is used to predict the effects of transformation on the crack growth behavior. In [1],
[2] and [4] it is assumed that a constant, critical value of crack tip intensity, Kiip®s is required to
initiate and sustain crack growth, and this assumption will be invoked here. The main aim of this
paper is the prediction of dK/da just after initiation of crack growth under the assumption that

Kyp = Kip (6)
is maintained. It will be argued at the end of the paper that the full resistance curve should be
computed under assumptions which are less restrictive than (I) and (II) invoked above. Such
calcualtions will almost certainly require reasonably heavy numerical work. The present results,
which are simple and exact under the stated assumptions, bring out essential trends.

The main result needed to carry out the present analysis is that for the effect on Kyip of
spots of transformation. As in Fig. 1, suppose the material in the two symmetrically disposed
cylinders undergoes an unconstrained transformation dilatation 6T. With dA denoting the element

of area of each spot, the change in K, due to the transformation in the two spots is [2]
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dK ;,=T'dA d3?cos (% B) @)
where
I = EO1/[3(1-v)V2n) (8)

and E is Young's modulus.

2. dK/da FOR CASE A
Assuming the mean stress is given by (4) and assuming that transformation occurs when
(1) is met, the transformation zone associated with any history of crack advance is the union of all
material points for which (1) is attained at any time in the history. For a stationary crack

experiencing a monotonically increasing K the boundary of transformation zone is given by (see

Fig. 2)
2
R(¢) = C A(%) cos2(/2) 9)
where
Cp =2(1+V)2/97) (10)

From (7), the near-tip intensity factor is given by

- Kgp=K +fA I'r2 cos(36/2)dA (11)

The integral in (11) is taken over the area A of the transformation zone in the upper half plane. For
Case A, this integral is exactly zero giving for the stationary crack K, = K. Thus, by (6),
initiation of crack growth in Case A occurs when
K=K.=Kj, (12)
Now consider a small (infinitesimal) increment of crack growth Aa with K increased so as
to maintain (6). That is, Aa and AK must be such that AK;, = 0. Refer to Fig. 3 which shows
the initial transformation zone and the region for which 6, 2 6,,° for the crack of length a+Aa

loaded at K+AK. Since the transformed zone is the union of all points which have experienced a

mean stress greater or equal to 6,,C, it follows that Kip is given by (11) where A is the union of A,
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and A, in Fig. 3. Furthermore, the integral over A, in (11) is identically zero for Case A, as is
readily verified. Thus, for the initial increment of crack growth we require
AK;p,=AK +L It 2 cos(30/2)dA =0 (13)

where A" that part of A; not contained in A,, i.e. the cross-hatched region in Fig. 3.

With the tip of the crack of length a+Aa as origin for the planar polar coordinates,

.32 (" RO
T cos(39/2)dA = . do r “cos(36/2)dr
A ¢ Ra(9)

'
- 2L‘ [R; @' -R,@®'"1cos3 ¢ do (14)
By (9),
2
Ry@ = Cu(BAKY coon) 1)

while a direct calculation for small Aa gives

2
R @ = Ca () cos? @)+ g0 (16)
Gm
where
2(9) = sin o /sin(¢-at) a7n
and
tan o0 = (R'sin ¢ +R cos ¢)/(R' cos ¢ -R sin ¢) (18)

with ()' =d()/d¢. The term g(¢)Aa simply represents the change m the radial coordinate due to a
small shift of the origin to the tip at a+Aa.
For Case A, a direct reduction of (18) gives o = 3¢/2-1/2 and (17) gives
g(9) = — cos(3¢/2)/cos(9/2) (19)
The angle ¢* satisfies R, (¢*) =R,(¢"). Equating the expressions in (15) and (16), dividing by Aa,
and taking the limit as Aa — 0, one finds

K. dK __ cos(3¢72)
(05)? 92 cos’(@r2)

l = 2CA (20)
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Another direct calculation using (16) and (17) gives

12 172 1 ©5 cos(3¢/2)
Ry =R, = —=cos(®/2) |- —=——=-A|Aa 21
1 2 2CA1/2 Kc (¢ )[ C083(¢/2) ] ( )

to lowest order in Aa. Lastly, (13) with (14) and (21) require

T
A=C f [cos(3d/2)(cos@/2)) + AJcos(®/2)cos(3¢r2)dd 22)
¢‘
where _ :
_ 2 (Lev)EOT |
&= 9n (l-v) ot 23)

Equations (20) and (22) provide the relation between the initial slope of the resistance
curve, as measured by the nondimensional combination A, to the nondimensional parameter C.
The integration in (22) must be performed numerically. the simplest way to generate the relation
between A and { is to treat ¢* as an independent variable and evaluate A from (20) and { from (22);
¢* must be in the range (n/3, xt). The results will be presented in a different nondimensional form
whicﬁ may be more convenient for comparison with experiment. The half-height of the

transformation zone at initiation is given by

g o ¥Ba+vy (lic)z

12n Opy 24)
By eliminating K in favor of H, it is readily shown that
1-v WH
a-v) dk __1 A (25)

and this relation has been used to generate the plot in Fig. 4.
Before turning to Case B, we relate the present calculation for the initial slope of the
resistance curve to an earlier calculation by McMeeking and Evans [1] which was performed to

indicate the character of the resistance curve of a transformation toughened material.
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3. McMEEKING AND EVANS' CALCULATION OF AK;;, VERSUS Aa FOR CASE A

From (7) it can be seen that transformed material lying behind the wedge specified by
|6 < /3 reduces the near-tip stress intensity. Figure 5 shows the reduction in crack tip intensity
—AKy;p as a function of finite amounts of crack advance Aa when the crack is advanced with K
held constant. Using (11), one can show that this result is obtained from

(1-v)AK;, 16
"TEONH | over

Real {f; ([z(6) - AwH] - [z(¢)]'”2)cos(¢/2)cos(3¢/2)d¢}
(26)
where H is given by (24) with K replacing K. and

2(¢p) = 8 cosz(¢/2)[cos ¢ +1sin ¢]
3V3

with i = V=1. The curve in Fig. 5 is the result of McMeeking and Evans [1] which was also

plotted in their Fig. 5. This curve is not a resistance curve since it is computed with K held fixed

so that K;;, diminishes as Aa increases. Nevertheless, it does clearly reveal the source of tearing
resistance.

The full curve of ~AKy;, versus Aa in Fig. 5 is also useful for present purposes in that it
enables us to see how rapidly the curve departs from its initial slope. In the limit as Aa — 0, (26)
gives

_ (-v)VH Kip
g’

=.9518 27

and this initial slope is shown in Fig. 5. Note that the full curve departs from the initial slope after
very small amounts of crack advance. Similarly, we should expect that the initial slope of the
resistance curve determined in this paper governs behavior only for a very small amount of crack

advance.
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4. dK/da FOR CASE B
The calculation of the initial slope of the resistance curve for Case B with the
transformation condition in (2) follows closely that of Case A so less detail need be given. The
main difference between the two cases is that Kip and K are not equal for monotonic loading of the
stationary crack in Case B, and this must’be taken into account.

The zone boundary for the stationary crack (see sketch in Fig. 2, Case B) is given by

: 2
R($) = %: @9 sin2 ¢ (28)
and, from (11), one can show by direct integration that
2 EO'K
Ky, =K-—=*2- ——
P 15 (1-v)r,
(29)
_x._8 _EoT
15v2 (-V)
where, now,
2
1
H= o (§) (30)

(We mention in passing that the result for the szeady-state problem where the boundary is given by

(28) for |¢| < /2 and by R sin ¢ = £H for |¢| > n/2 can also be obtained analytically as

_'4(1+\2) Ee"VH

Kyp =K
o 15 (=)
(31)
_x 3632 E9VH
(1-v)

An approximation to this result for Case B was obtained and discussed in [4].)
Imposition of the condition for crack advance (6) on (29) gives the value of K as})ciated
with initiation of crack advance, i.e.

K=K.=Kjp[1-4" (32)

where

2 _Ef
I5S® (1-v)t,
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Note that K. becomes unbounded for g — 1. The present analysis, which neglects the perturbing
influence of the transformation on the zone shape, is only accurate for relatively small values of |1,
as will be discussed in more detail at the end of the paper. Nevertheless, there is an effect of
transformation on initiation of growth from the stationary crack in Case B whose ramifications
have not been fully considered.
The equation governing the first increment of growth in (13) is replaced by
Ay, = (1-RAK + f Ry 312 co5(30/2)dA = 0 (34)

where A* is again defined in Fig. 3, except that now regions A; and A, are defined by the

transformation condition (2). Equation (14) continues to hold where now

2
Ry(@)= o (K—“;AE) sin?¢ (35)
and
2
R0 =g (&) sinto+ g aa (36)

In addition, after some algebraic manipulation one finds that g(¢) = ~3 cos ¢. The angle ¢* for

which R;(¢*) = Ry(¢") satisfies

1 K. dK 3cos ¢
Ap= — —o E& __ 2059 (7)
8" 4n 12 da sin2 ¢"
Finally, in the limit Aa — 0, (34) gives
n N
(1-p)Ap = %pj;. [3cos ¢ (sin¢)” + Aglsin¢ cos (3 ¢)do (38)

Equations (37) and (38) provide the relation between Ag and the parameter . With
2
- L (%)
He g \% )
as the half-height of the zone at initiation of growth, one also finds

(-vWH gk __ 4 M
B’ %@ 5v7p M

(40)



-10-

This is the equation used to plot the curve in Fig. 6. The curve becomes unbounded as p - 1, but

the results are not trustworthy at values of W this large as already mentioned.

5. LIMITATIONS OF PRESENT ANALYSIS AND SUGGESTIONS FOR FURTHER WORK
As it becomes available, resistance curve data should supply valuable additional
information to which the mechanics models can be compared and calibrated. The present
calculations are just a first step in predicting resistance curves from the mechanics models.
Hopefully, a comparison of theoretical predictions with experimental resistance curve data should
shed further light on which, if either, of the two transformation conditions, A or B, is appropriate.
Given either A or B as a starting point, there are three main limitations to the present results.

Firstly, as indicated by the example in Fig. 5, the initial slope of the resistance curve which
has been computed here is expected to replicate the resistance curve for only small amounts of
crack growth. For comparison with experimental data it is essential that the full resistance curves
be calculated.

Secondly, the results in this paper, which were computed using the unperturbed stress field
to locate the boundary of the transformation zone, are valid only for small { or . Analyses which
account for the perturbation of the zone were carried out in [2] and [5] for the steady-state, small
scale transformation problem for Case A. Those analyses indicate that the results of the
unperturbed analysis are accurate for values of { as large as about 1/2, and we expect the present

results to be similarly limited. Comparable results for Case B do not exist. The unboundedness of

K, and of the nondimensional parameter involving the initial slope of the resistance curve in Fig. 6
should also emerge from a full analysis of Case B, but the value of W at which the unboundedness
occurs will not necessarily be unity.

Lastly, there is increasing evidence [4] that supercritical transformation in which the
material element undergoes complete transformation to 6T may be the exception rather than the

rule. Observations indicate that the density of transformed particles falls off smoothly, and not
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abruptly, with distance from the crack tip. This suggests that models based on subcriticial

transformation should also be analyzed.
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Fig. 1 Conventions at the crack tip.

Cose A Case B

Fig. 2 Notation and sketches of boundary of transformation zones.
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A,: Transformation zone of initial stationary crack

A,: Region for which o, > o for crack of length

o+Ao ot K+AK

Fig. 3 Zone of stationary crack at initiation of crack growth at K, and region for which mean
stress exceeds o, following crack advance Aa with applied stress intensity increased to

K+AK. Sketches are for Case A with similar sketches for Case B.
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Fig. 4 Nondimensional initial slope of resistance curve for Case A where H is the transformation
zone half-height at initiation of growth.
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Fig. 5 Reduction in near-tip intensity as a function of crack advance when applied stress intensity
factor is held constant [1].
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Fig. 6 Nondimensional initial slope of resistance curve for Case B where H is the transformation
zone half-height at initiation of growth.






