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The effect of crystal anisotropy on the formation of grain-
boundary microcracks is analyzed, by considering a planar
array of hexagonal grains as a model of a polycrystalline ce-
ramic. The stress singularities at triple-grain junctions are
analyzed by an asymptotic method as well as by a numerical
solution, and the critical size of a grain-boundary defect is
investigated by a crack analysis. It is found that elastic anisot-
ropies can significantly increase the siress levels near triple
points, which results in a smaller critical grain size for
microcracking.

I. Introduction

IN SINGLE-PHASE polycrystalline ceramics thermal expansion ani-
sotropy of the grains gives rise to residual stresses during cooling
from the fabrication temperature, and these residual stresses can
result in spontaneous cracking, primarily along grain boundaries.
A number of experimental investigations'” have shown that such
cracking is grain size dependent. Thus, fine-grained materials do
not crack, whereas some cracks are observed when the grains reach
a certain critical size range, and for larger grains cracking is more
severe. For a number of different ceramics Rice and Pohanka® have
listed critical grain size values corresponding to spontaneous crack-
ing, based on experimental observations, and they also specify the
thermal expansion anisotropies.

Evans* and Fu and Evans® analyzed grain-boundary stresses due
to thermal expansion anisotropy by considering a group of planar
hexagonal grains embedded in an infinite isotropic elastic matrix.
Various relative orientations of the thermal expansion anisotropies
of the grains were considered, while the grains were taken to be
elastically isotropic, thus allowing for a closed-form solution. It
was found*® that the stresses near a triple-grain junction exhibit a
logarithmic singularity, which is clearly important in considering
microcrack nucleation. For a crack on a grain-boundary facet,
extending from the facet corner, Evans® has calculated the stress
intensity factor, to estimate the critical crack length that will result
in a full facet microcrack. Similar analyses and comparison with a
number of laboratory studies for the effect of thermal expansion
anisotropy in rocks have been presented by Fredrich and Wong.°

A considerable interest in the effect of microcracks in ceramics
has recently been devoted to the toughening associated with a
microcrack process zone around the (ip of 2 macroscopic crack
(Rithle et al.,” Hutchinson,® Ortiz®), somewhat analogous to trans-
formation toughening in ceramics. The process zone gives a
redistribution of the stress field near the tip of the microscopic
crack, partly due to the reduction of the effective elastic moduli
resulting from microcracking, and partly due to the volume expan-
sion arising from the release of residual stresses when microcracks
are formed. In this situation the nucleation of microcracks is pri-
marily a result of the very high stresses near the tip of the macro-
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scopic crack, whereas the stresses further away from the tip are not
large enough to nucleate microcracks. Thus, the grain size is so
small that the residual stresses resulting from thermal expansion
anisotropy are not sufficient to nucleate microcracks, without the
additional influence of very high applied stresses.

The elastic anisotropy of the grains was incerporated into a
simple model by Boas and Honeycombe," who investigated the
effect of thermal expansion anisotropy during cyclic heating and
cooling of pure metals. According to this model the stresses are
relatively insensitive to elastic anisotropy; but the model neglects
a number of effects, such as stress singularities. Even in the ab-
sence of thermal contractions, elastic anisotropies of the grains can
give rise to singular stress fields, which may have a significant
effect on microcrack nucleation. This type of singularity is not
present for isotropic elastic grains, and therefore elastic anisotropy
could significantly amplify the residual stress peaks resulting from
thermal contraction.

In the present paper the effect of both elastic anisotropy and
thermal expansion anisotropy of the grains is investigated. The
polycrystal is approximated by a planar array of grains, with differ-
ent orientations of the anisotropies in each grain, and grain-
boundary stresses as well as the effect of a crack in the grain
boundary are investigated. The elastic anisotropies considered are
not chosen to modetl a particular ceramic material, but the order of
magnitude of the deviations from isotropy is taken to be like that
found for a number of crystals.*"

II. Polycrystal Model

A planar array of hexagonal grains is used as a two-dimensional
model of the polycrystalline solid (Fig. 1). Each grain is assumed
to be elastic orthotropic, but the orientation of the orthotropy
differs from grain to grain. The grain size is specified by the length
d of a grain-boundary facet.

In each grain a local Cartesian coordinate system x;* is chosen
with axes paralle! to the principal axes of the elastic orthotropy,
while a global Cartesian coordinate system is denoted by x;. The
x¥ axis is paralle] to the x5 axis for all grains in the planar array,
and the rotation of the in-plane principal axes relative to the global
coordinates is specified by an angle w, defined in Fig. 1(&). The
type of pattern of crystal orientations to be considered here is
shown in Fig. 1(e), where the direction of the x¥ axis is indicated
for each grain, There are three different orientations, correspond-
ing to the grains numbered 1, 2, and 3, respectively, and thus all
crystal orientations for the model aggregate are specified in terms
of the angles @, wz, and ws. Furthermore, to retain certain sym-
metries, the consideration is limited to cases where w; = 0 and
s = —uw, so that all crystal orientations are given by the value of
a single angle w, (the orientation in grains of type No. 1).

The stress—strain relations are specified for a single grain, with
reference to the orthotropic axes x

£R)

Here, & is the stress tensor, £q is the strain tensor, g5 arc the
strains resulting from thermal contraction, and Ci is the tensor of
orthotropic elastic moduli. Latin indices range from [ to 3, Greek
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indices (to be used subsequently) range from 1 to 2, and the
.summation convention is used for repeated indices. Because of
orthotropy, Cizin = Cizzz = 0, and in some of the following dis-
cussion the nonzero in-plane components are denoted by
Cinr = Ciiy Cazzz = Caz, Come = Chz, and Crapp = Cug.

The thermal contraction £5; results from cooling below the fab-
ricaton temperature. When AT denotes the cooling range and ay, is
the tensor of linear thermal expansion coefficients, the thermal
contraction strains are given by

SE‘ = *ATak, (2.2)

It will be assumed here that the thermal expansion anisotropy has
the same principal axes as the elastic orthotropy. Then, on the x ¥
axes ap = 0, and the nonzero in-plane components are denoted by
&y = ) and oz = (X3,

When the aggregate is subject to thermal contraction, an as-
sumption of plane strain (£33 = 0) would give rise to unrealis-
tically high tensile stresses o3;. Instead, generalized plane strain
wilt be assumed, with the uniform strain £.s = £33 in the x5 direc-
tion, so that the contribution of thermal contraction to the average
value of o3 is essentially relaxed. With this assumption the in-
plane part of the stress—strain relations (2.1) takes the form

Fop = Capys(evs — £50) (2.3a)
els = —ATa,s ) (2.35)

It is noted that choosing & uniform strain e;; different from e%,
would result in constant stresses o}, and o2, to be added to the
right-hand side of Egq. (2.3a).

For the analysis of the stress distribution in the full polycrystal
the stress—strain relationship written with reference to the global x;
ceordinates is needed. This refationship is still of the form of
Eqs. (2.3), but the elastic moduli and the thermal expansion coef-
ficients have to be transformed. For a grain characterized by the
angle @ between the local and global coordinates (Fig. 1(5)), the
tensor of elastic moduli € gy, and the thermal expansion tensor a5
on the x; coordinates are given by

Copve = Crpwrlialupluy s (2.4a)

@S = byl (2.4b)
lhy=1n=cosw (2.4¢)

{oy = =l =sinw (2.4d)
The special orientations of the crystals indicated in Fig, 1(a)
correspond fo choosing w; = —~60°. This configuration has the

property that the macroscopic response of the aggregate is isotropic
(the same is true for w; = 60%). Note in Fig. 1(a) that the aggrepate
is symmetric about the x, axis, and about other similar lines paral-
lel to the x, axis. Note also that rotation of the whole aggrepate
around point F in Fig. 1(@), by either 120° or ~120°, gives a
configuration identical with that shown in the figure. Therefore,
the macroscapic elastic moduli are identical for the x, axis pointing
in any of these three directions, and it is easily proved that in such
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Fig. 1. (a) Planar array of hexagonal grains, with
the direction of the xy" axis indicated in each grain,
(b} Principal axes of the anisotropies are in the x*
directions.

circumstances the macroscopic response is isotropic in the plane.

The present investigation will focus on the stress distributions at
symmetric tilt grain boundaries, such as those on the x; axis in
Fig. 1(a). Also the influence of a small crack at such symmetric
boundaries will be analyzed. Although this symmetry is satisfied
for any choice of the angle w, = —ws, the investigation here is
concentrated on the cases where the in-plane macroscopic elastic
response is isotropic.

One particular crysta] anisotropy to be considered is defined by

Cu = fC, (2.5a)
1

Cap = ? 52 (2.5b)

C]2 = C‘;z (25C)

Cu = Chy (2.5d)

where C1,, C%,, etc., denote isotropic elastic constants. The
amount of thermal expansion anisotropy is specified by

Aa = é(ﬂh - ag) (26)

Thus, all anisotropies in this case are given by the values of three
parameters —f, Aa, and w.

Also cubic crystals will be considered. In this case there is no
thermal expansion anisotropy, Ae = 0 (as was used in the experi-
ments of Boas and Honeycombe'' to show the difference from
other types of crystals). Here, two nondimensional parameters, R
and Q, are used to characterize the cubic material

C;] = ng (270)
Cpz+ 2Cw
R = ——— 2.7b
c. (2.7h)
2C,
= 2.7¢
g c (2.7¢)

where R = | identifies an isotropic material.

1. Stress Singularity at a Grain-Boundary
Triple-Point Junction

Where three or more elastically anisotropic grains come together
along a line junction, the stress field becomes singular whether due
to thermal stressing or overall applied stress. The nature of the
singularity depends on the geometry at the junction and on the
elastic anisotropies of the grains. In some instances the stresses
may be unbounded, in others the stresses may go to zero at the
junction with unbounded gradients. Examples will be analyzed
which illustrate a variety of possibilities. Anisotropy of the coeffi-
cients of thermal expansion in the absence of elastic anisotropy
generally results in stresses, which are logarithmically infinite at
the junction when the polycrystal is subject to temperature
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Fig. 2. Geometry at triple-point juncticn.

change.” In this section we focus on the effect of elastic anisotropy
on the form of the singularity at the junction in the absence of
thermal stressing. When the singularity due to elastic anisotropy is
stronger than logarithmic, that singularity will generally be domi-
nant even in the presence of thermal stressing. In subsequent sec-
tions we will carry out the full coupled stress analysis.

Consider the triple-point junction of the plane strain hexagonal
grain model shown enlarged in Fig. 2. Within each 120° sector the
crystal moduli are uniform and orthotropic, or possibly cubic, in
the crystal axes (the axes marked * in Fig. 2) with

o =Chneng + Coen (3.1a)
Oz = Cuey + Co&n (crystal axes) (315)
Tz = 2Cautn2 (3.1¢)

The crystals are oriented symmetrically with respect to the x, axis
in Fig. 2, with the crystals in the first and third sectors oriented at
= B. It is noted that this corresponds to considering point F in Fig.
1, when 8 = —w, = w;. We will primarily confine attention to
stress fields which are symmetric with respect to the x; axis.

The singular stress field at the junction is amenable to a
Williams-type' singularity analysis, which is outlined in the
Appendix. The form of the stress variation associated with each
eigencontribution is

where r and 6 are polar coordinates centered at the junction in
Fig. 2. The local singularity analysis provides A and (), but not
the amplitude factor &, which must be obtained from an analysis of
the ful] problem.

For the first example, take the crystals to be cubic (C), = Cz)
and, for the moment, take 8 = 60° so that 120° symmeiry exists
at the junction; let R in Eq. (2.75) be the measure of planar anisot-
ropy of the single crystals, with R = 1 corresponding to isotropy.

A polyerystal of cubic crystals {planar or three-dimensional)
experiences a uniform hydrostatic stress when subject to a macro-
scopic hydrostatic field. This means that one eigenficld always
exists with A = 0 and &8 = ;. That is

a; = k5,, (33)

is always a solution to the equations of the singularity analysis for
cubic crystals at any junction. The exponent A of the most singular
nonhydrostatic eigenfield of Eq. (3.2} is plotted as a function of R
for several values of C./C,; in Fig. 3. The search for the most
singular eigenfield is limited to values of A greater than —1, to
ensure bounded strain energy. When R > 1, A is negative and the

02 Sij=krr&y@
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Fig. 3. Exponent of the r variation of the most singular nonhydrostatic
eigenfield for cubic crystals with 8 = 60°,

stresses at the junction will be unbounded except under pure hydro-
static loading. However, when R << 1, A is positive and the non-
hydrostatic contribution to the stresses at the junction go to zero.
Sufficiently near the junction one must expect the stresses to be of
the form of Eq. (3.3) when R < 1.

Representative ¢ variations, a,(f), associated with the eigen-
fields are shown in Figs. 4(a) and (»). In this instance (because of
the symmetries) there is both a symmetric and an antisymmetric
field associated with the same A. Only the symmetric field with
respect to x, is shown. Continuity of tractions across the grain
boundary at # = 120° requires §o and &, to be continuous across
¢ = 120° &, is discontinuous, as is dir.e/d@. The variations
&;(8) have been normalized by taking e = L at 8 = 0.

An example illustrating the influence of the crystal orientation 3
on the exponent A for the cubic case is shown in Fig. 5. For 8 less
than 30°, unbounded stresses occur when R < { rather than
R > 1. Thus, it is seen that whether or not the stresses at a

~ triple-point junction become unbounded depends not only on the

nature of the crystal anisotropy but also on details of the geometry,

Next consider crystals with planar orthotropy (Cy; # Cyp) and
take 8 = 60°, so that 120° symmetry exists at the junction. In this
case the simple hydrostatic field of Eq. (3.3) is not an eigen-
solution, s0 we have obtained the two lowest, physically relevant
exponents A of eigenfields. These are shown as a function of the
orthotropy measure (C1 — C2)/2C.; in Fig. 6. In this particular
example, the moduli are taken to be specified by Egs. (2.5), and
the isotropic reference moduli CY,, C%s, etc., in Egs. (2.5) corre-
spond to Poisson’s ratio, » = 0.2. Thus, for any value of the
parameter f in Eqs. (2.54) and (2.5b), the ratios

Co 2

e _ 2 3.4
Cu 3 (@
CnCy 64

Cule 64 3.4b
ch 9 (3.4)

are held constant.

In this example, the stresses associated with the eigenfields are
unbounded (i.e., A << 0) at the junctions when C,, > Cy, but go
to zero (i.e., A > 0) when C,; < Cy,. Evidently, increased stiff-
ness in the circumferential direction (Cy1 << C22) tends to isolate
the jumction. The 120° symmetry at the junction gives rise to
special syminetries in the eigensolutions. The stress field associ-
ated with the A values on the curve labeled “single eigenfield” in
Fig. 6 has 120° symmetry as can be seen in Fig. 7. This field is the
counterpart of the hydrostatic field of Bq. (3.3) in the cubic case.
The other eigenvalue A, plotted as the curve [abeled “double eigen-
field,” has both a symmetric and an antisymmetric stress field
associated with it. The symmetric field is displayed in Fig. 8 for
one set of the moduli,
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Fig. 4. Variations of o'.,(B) for symmetric eigenfield for cubic crystals with B = 60°% (@) Cu/C = 0.5 and R = 1.5; (b)
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Fig. 5. Exponent of r variation of the most singular non-
hydrostatic eigenfield for cubic crystals as a function of the
orientation f3.
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The examples discussed above are far from being exhaustive.
Nevertheless, they do suggest that a triple-point junction can be a
vicinity of significant stress concentration, or, depending on the
anisotropies and the crystal orientation, a region of lowered stress.
It will be seen that these implications from the local singularity
analysis are bore out by the full stress analysis for the two-
dimensional polycrystalline model.

IV. Numerical Analysis of Stresses

In a numerical solution for the stress state inside the grains it is
advantageous to make use of the periodicity of the grain distribu-
tion and crystal orientations shown in Fig. 1(a). The aggregate is
assumed to be subject to a cooling range AT and to external
in-plane loads such that the average stresses are 21 and Xa,, while
the average shear stress is zero, Z;; = 0. Then there are sym-
metries, such that the stress and strain states inside one of the
triangles indicated in Fig. 9(a) are identical with those inside each
of the other triangles (note that the pattern remains identical after
180° rotations around any triangle corner, or after translation of any
corner into another). Therefore, it is only necessary to analyze one
triangle, as that shown in Fig. 9(b).

C11=Cop

single
eigen -Field

2

Fig. 6. Expounent of the r variation of the two most
singular, physically relevant eigenfields for ortho-
tropic single crystals with moduli specified by
Egs. (2.5) and (3.4), and 8 = 60°.
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Fig. 7. Variations of &;(8) associated with the eigenvalue with
a single eigenfield: (C\\ — Cz)/2Cs = 2 in Fig. 6, where
A = —0.251

The requirement of equilibrium is specified in terms of the
principle of virtual work

J’ Uaﬂssaﬁ dV - J’ Ta 8“,1 dS (4' 1)
v §

where V and § are the volume and surface, respectively, of the
body analyzed, u, arc the displacement components in the
X.-coordinate directions, and T, are the components of the surface
tractions, When the stress—strain relations of Egs. {2.3) are substi-
tuted, referred to the global x, coordinates of Eqs. (2.4), the
equiltbrium requirement of Eq. (4.1) takes the form

JCstsyaBsﬂﬁ dv = fT,,Sua ds
v 5

- J CopysSsAT8E op dV (4.2)
v

where the last term on the right-hand side represents the effect of
thermal contraction.

The boundary conditions to be specified for the triangular region
ABC in Fig. 9(b) represent symmetry on the side AB

T'=0, =0 (atx, =0 (4.3)

The conditions on AC and BC are such that equilibrium and com-
patibility with the neighboring triangles are satisfied. This is ex-
pressed by using the length-measuring coordinates & and 7 on AC
and CB, respectively (Fig. 9(&))

W) — ut = wiln) — uf (4.4)
) — ud = —us(n) + ui (4.5)

Fig. 9. (@) Dashed lines indicate triangles inside
which stress and strain states are identical. (b) The
triangular region analyzed.
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Fig. 8. Variations of &;(8) for the symmetric field associ-
ated with the eigenvalue with a double <cigenficld:
(Cn — C2)/2C4 = 2 in Fig. 6, where A = —0.091,

T(& = —T(y 4.6)
(&) = Tm) : 4.7

Here, u’ and «? denote the displacement components at points A
and C, where u5 = 0 according to Eqs. (4.3), and the value of uft
is a parameter to be chosen. The values of the two remaining
displacement components »7 and «$ are calculated such that the
average siresses are as specified

In= 2 de d 4.8

11"% UTl(f) £ (4.8a)
2 3d

2p = QL T dé (4.8b)

An approximate solution of the equilibrium equation (4.2) is
obtained by the finite-element method, using the boundary condi-
tions (£4.3) to (4.8). The element approximation of the displace-
ment components is based on eight-noded isoparametric elements,
and the integrations in Eq. (4.2) are carried out using 3 X 3 point
Gaussian quadrature within each element. In the solutions a special
Rayleigh—Ritz finite-element method (Tvergaard'®) is used to in-
corporate the periodicity conditions (4.4) to (4.8). The mesh used
for the analyses consists of 14 X 6 elements, as shown in Fig. 10,
where it is noted that no element crosses a grain boundary. The
mesh is strongly refined near the triple-grain junction denoted by
F in Fig. 1(a), since the present work will focus on the stress
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0.24d

concentrations at this particular type of triple-grain junction. The
six elements in the first ring around the triple point are wedge
shaped, so that one side is collapsed to a point, and the 13 nodes
meeting at the triple point are tied together as a single node (analo-
gous to crack tip elements, Shih and Needleman'®),

Isotropic elastic grains have been analyzed under various ex-
ternal loads or temperature changes, to test that the numerical
solution does give the appropriate uniform stress and strain fields.
Furthermore, the uniaxial plane strain tension modulus E of the
aggregate has been calculated for a number of anisotropies
(222 = Fe&,; fortension in the x, direction), since this modulus will
be used for normalization in some of the following diagrams. For
anisotropy orientations characterized by w, = —60°, where the
macroscopic response of the aggregate is isotropic as discussed in
Section H, it has been checked that the computed values of F are
identical for tension in the two coordinate directions.

For the cubic crystal described by Egs. (2.7) there is no thermal
anisotropy, but the elastic anisotropy can still lead to stress singu-
larities at triple-grain junctions. Such a cubic material, with
@, = —60°, has been analyzed for 25 > 0 and Z;, = 0, and
distributions of the normal stress o, on the grain-boundary facet
considered (AF in Fig. 9(b)) are shown in Fig. 11. The figure gives
the stress distribution over half of the facet, emphasizing the part

11 Cr2

0 ! L 1 L
0 01 0.2 03 C.4 X1/d G5

Fig. 11. Normal stresses g, on the grain-boundary facet AF, for
a material composed of cubic crystals, subject to uniaxial plane
strain tension.

Fig. 10. {a) Mesh used for the numerical analysis. (&)
Mesh near the triple-grain junction F.

closest to the triple point F, where the mesh is refined (Fig. 10).

For R = 1 the cubic crystal is isotropic, which gives a uniform
stress state with ¢,,/2,; = | in the case analyzed. ForR = 1.5the
anisotropy leads to a high stress peak at the triple point, and this
could lead to microcrack nucleation in a very intense stress field
such as that at the tip of a macroscopic crack.”” On the other hand,
for R = 0.5 the normal stress decays toward the triple point.
Varying the value of ) in the range from 35 to 1 has less influence
on the normal stress distribution. It is noted that these results agree
perfectly with the singularity analysis (Fig. 3), which gives A > 0
for R < 1, whereas the stress fields are singular (A << ) for
R > 1.

The same analysis is carried out for an aggregate composed of
orthotropic crystals characterized by Egs. (2.5) and (3.4), again
taking @, = —60°. Normal stress distributions on the grain-
boundary facet in the vicinity of the triple point F are shown in
Fig. 12 for uniaxial plane strain tension with no temperature
change, X, > 0, 2,y = 0, AT = 0. For f =1 the grains are
isotropic, which gives ¢,/Z, = 1. For f = V2, where the most
stiff directions point toward the point F in all three grains adjacent
to I, there is a significant stress increase at the triple point. In the
opposite situation, where f = 1/ /2, the normal stress on the facet
decays toward the triple point. Also these results agree with the

On T T T T
222
—d
2 A>______<: ]
Xq
~—
£=V2
1+ E
.
vz
.0 L 4 1 L
0 0.1 02 0.3 04 0.5

X1/d

Fig. 12. Normal stresses o, on the grain-boundary facet AF, for a
material composed of orthotropic crystals, specified by Eqs. (2.5) and
(3.4), subject to uniaxial plane strain tension.
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Fig. 13, Normal stresses o, on the grain-boundary facet AF, for a material
composed of orthotropic crystals, specified by Egs. (2.5), (2.6}, and (3.4),
subject to thermal contraction corresponding to the cooling range AT.

singularity analysis in Section III. Thus, Fig. 6 shows that there
is a stress singularity (A < 0) for Ci; > Cz, whereas A > 0 for
Cll < C22v

It is noted that the elastic anisotropies of the grains considered
here do not model a particular ceramic. However, choosing
f=V2orf=1/V2 means a factor 2 between the values of
the stiffnesses C,; and Ci2, and this factor is considered reason-
ably realistic, comparing with the values found for a number of
crystals, "

In contrast to the cubic crystal, the orthotropic crystal considered
in Fig. 12 does have thermal expansion anisotropy, as specified by
Eq. (2.6). The residual stresses due to cooling, but in the absence
of external loads, AT > 0, X, = 3 = 0, are shown in Fig. 13
for the polycrysta! also considered in Fig. 5. These normal stresses
are proportional to A AT, and the stresses are here normalized by
the factor EAaAT, where E is the uniaxial plane strain tension
modulus mentioned above. In this case elastic isotropy (f = 1}
does give a stress singularity at the triple peint F, as was also found
by Evans® and Fu and Evans,” but a logarithmic singularity as
opposed to the power-type singularity analyzed in Section III. The
analysis of Fu and Evans® considers a few grains embedded in an
infinite isotropic material, and the relative orientations of the direc-
tions of maximum contraction are not quite those considered in
Fig. 13. However, it is noted that the result for f = 1 in Fig. 13 is

of the order of magnitude expected, based on a comparable result .

of Fu and Evans.®

The stress distributions for f = V2 and f = 1/ V2 in Fig. 13
show that the elastic anisotropy has a significant influence on the
stress levels near the triple point. For f = V2 the normal stresses
are smaller in the central part of the grain-boundary facet; but it is
more significant that the stress level is increased near the triple
point, since this is the location where microcracks are likely to be
nucleated, Also the stress distributions at the other end of the facet,
near point A, have been analyzed (by using @ = 60° in the present
computational scheme). However, here the stress level is lower, so
that the value of o./(EA«AT) only exceeds unity over a short
interval of about 0.002d near point A.

The increase of the residual stress peak found for f = V2 in
Fig. 13 is even more interesting when seen in comparison with
Fig. 12. The residual stresses are present in the material because
of cooling from the fabrication temperature; but when loads are
applied to the material, the stress concentration found in Fig. 12 is
added to the residual stresses, and this stress concentration was not
present in the elastically isotropic material, Thus, for f = V2 the
two different effects of the elastic anisotropy add up, so that
the likelihood of microcrack nucleation at the triple point is
much increased.
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Fig. 14. Grain-boundary crack of length 2a at
the triple point F.

Fig. 15. Mesh in the near vicinity of the
grain-boundary crack, applied in the com-
putation for 2a/d = 0.05.

V. Grain-Boundary Microcrack

The condition for the onset of grain-boundary microfracture
depends on the size of small defects in the boundary. The most
critical location of such defects is at the triple-grain junctions,
where high stress peaks occur. To investigate the critical size of
such defects, dependent on the grain size and the anisotropies, an
analysis is carried out here for a small crack of length 24, extending
from the triple point denoted by F in Figs. 1 and 9, as illustrated
in Fig. 14. The crack tip at the triple point is essentially locked, but
if the stress intensity factor at the other tip exceeds the fracture
toughness for the grain boundary, the crack will grow to create a
fully cracked grain-boundary facet.

In the numerical solution, the periodicities shown in Figs. 1 and
9 are still used, and the mesh at some distance from the crack is
identical with that shown in Fig. 10(¢). The mesh used near the
crack is shown in Fig. 15 for a case where 2a/d = 0.05. In this
calculation the mesh consists of 22 X 6 ¢lements. The six ele-
ments in the first ring around the crack tip to be investigated are
wedge shaped, and the 13 nodes meeting at the tip are tied together
as a single node. At the other end of the crack (the triple point #)
four of the elements are wedge shaped, and also here the nodes are
tied together. The boundary conditions (4.4) to (4.8) are un-
changed, but Egs. (4.3) have to be modified:

h=T=0 {atx;=0,0<x <2a) (5.1a)
T,=0, uz=0 (atx;=0,x =0,x, =0o0rx, =2a
(5.1h)

The stress intensity at the crack tip will here be characterized by
the path-independent / integral (Rice'”), which can be used for any
material inhomogeneity that is independent of x,, but may depend
on x,. In the x,-coordinate system used here, J is defined by

J = J‘ (Wnl - O-jjnju,‘_l) ds (5261)
r

3%
W(ew) ‘_“J‘ oy deg; (5.2b)
¢
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Fig. 16. J integral as a function of crack length, for a material com-
posed of cubic crystals, subject to uniaxial plane strain tension.

where I is any counterclockwise contour surrounding the crack tip,
n; is the outward normal to I, and ds is the arc length along I'. The
value of J for a crack tip is equal to the energy release rate, and
this value can be compared with the grain-boundary fracture en-
ergy for a particular ceramic material, to check whether or not the
size of the defect exceeds the critical crack length (Evans®).

First the aggregate composed of cubic crystals is analyzed, sub-
ject to uniaxial plane strain tension, 3, > 0, %, = 0, AT = 0.
The relative orientations of the crystal axes are chosen as
@ = —60°, and the anisotropies are characterized by R in Eq.
(2.76), choosing 0 = 1 in the present cases. The cracks consid-
ered here are so small relative to their spacing that interaction can
be neglected. Thus, in the isotropic case, R = 1, the value of the
curve integral of Egs. (5.2) should be directly given by the expres-
sion corresponding to an isolated crack, J = Shma(l — 1)/E,
where » is Poisson’s ratio and E is Young’s modulus.

In the numerical calculations the integral of Egs. (5.2} is evalu-
ated on contours that follow the rings of elements around the crack
tip (see Fig. 15}, where each contour passes through the central
integration points of the elements, The J integral is evaluated for
six different contours, and the average value is used in Fig. 16. It
is noted that the maximum deviation from this average value is
about 2%, which confirms the path independence of Egs. (5.2).
Furthermore, for the isotropic case, R = 1, the average J value
deviates at most 2% from the value of the expression given above
for an isolated crack. A better approximation could be obtained by
# finer mesh, but the present accuracy is considered sufficient.

For anisotropic cubic crystals, with R = 1.5, Fig. 16 shows that
the value of the ratio J /¢ increases when 2a/d decreases. Thus, in
a given stress state a crack of a given length 24 is more severe the
larger the grain size. This was also expected based on the stress
distributions shown in Fig. 11, since a smaller crack refative to the
facet length ¢ is more engulfed in the highly stressed region near
the triple point. For R = (.5 the opposite effact is found, as also
expected based on Fig. 11.

Figure 17 shows values of J for an aggregate composed of the
orthotropic crystals characterized by Eqs. (2.5) and (3.4), under
uniaxial plane strain tension, 3; > 0, %, = 0, AT = 0, and for

@, = —60°. Again, the values found for the isotropic material,
f =1, deviate less than 2% from the J value cor\r;gponding to an
isolated crack. The anisotropy described by f = V2 increases the

value of J significantly, so that J is more than doubled for
2a/d < 0.04. This is a much stronger effect of elastic anisotropy

_strains, ul, =

f=y2
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Fig. 17. J integral as a function of crack length, for a material composed
of arthotropic crystals, specified by Eqgs. (2.5) and (3.4), subject to uniaxial
plang strain tension.

than that found in Fig. 16. On the other hand, the anisotropy
characterized by f = 1/V2 gives a reduced energy release rate,
which also agrees with the stress distribution found in Fig. 12.

The effect of thermal expansion anisotropy is illustrated in
Fig. 18, for an aggregate subject to cooling, AT > 0, but no
external loads, X,; = X, = (. Here, the value of J/a increases
for decreasing 2a/d, even in the case of isotropic elastic behavior,
£ =1, as would be expected since the corresponding stress distei-
bution in Fig. I3 has a singularity at the triple point (see also
Evans®). The values of J are also here significantly increased by
the elastic anisotropy characterized by f = V2, and the values are
decreased for f = 1/V2.

The expression (Egs. (5.2)) for the J integral is not directly
applicable under a temperature change. However, it is seen that the
expression still applies when &; and u,, are replaced by g; — €7
and u., — uly, respectively, where g7 are the thermal contraction
ehand i, = 0.

It was already noted above that the increased stress levels found
for f = VZin Figs. 12 and 13 add up when a ceramic material,
which contains residual stresses due to cooling from the fabrication
temperature, is also subjected to external loading. The same effect
is clearly seen from Figs. 17 and 8. For both types of loading the
elastic anisotropy characterized by f = V/2 has the effect that the
value of the ratio J/a is significantly increased. For a given value
of the grain-boundary fracture energy this means that the critical
size of a defect that will result in & fully cracked grain-boundary
facet is significantly smaller in the material with elastic anjsotropy.

YI. Discussion

The predictions of the two-dimensional model of a polycrystal
analyzed here can be compared with observed critical grain sizes
for spontancous fracture, reported by Rice and Pohanka.® For
Al;Q, the thermal expansion anisotropy is® Ae = 0.55 x
107° °C™" and the uniaxial planc strain tension modulus of the
aggregate is £ = 3.6 X 10° MN/m’. The grain-boundary fracture
energy e is well below the fracture energy for the uncracked
polycrystal, and here we will assume®* y,, = 1 J/m”. Cooling
from the fabrication temperature gives AT = 1000°C, and further-
more the largest defects observed in a polycrystal that has not
cracked spontancously are 22 = (0,024, Using these values and the
fracture criterion f, = 2v,,, the curve for f = 1 in Fig. 18 gives
the critical facet size d¢ = 216 um at spontaneous fracture, which
is in reasonable agreement with the critical grain size of about
400 pm observed experimentally.® Thus, the predictions of the
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Fig. 18. T integral as a function of crack length, for a material composed
of orthotropic crystals, specified by Egs. (2.3), (2.6), and (3.4), subject to
thermal contraction corresponding to the cooling range AT.

two-dimensional model of a polyerystal are of the right erder of
magnitude.

The present investigation has shown that elastic anisotropy of
the grains can significantly affect the values of the applied load or
the cooling range that result in grain-boundary cracking. Both the
asymptotic analysis for the stress field near a triple-grain junction
and the numerical analyses show that the elastic anisotropy can
result in a stress singularity at the triple point, or in stresses that
decay toward zero, dependent on the relative orientations of the
crystal axes in the grains adjacent to the triple point. A significant
effect of the elastic anisotropy is that in a location where it ampli-
fies the stresses due to thermal contraction anisotropy, it also
amplifies the stresses due to external loading, so that these two
stress increases add up. For the order of magnitude of the devia-
tions from isotropy that are relevant, the increase of the energy
release rate for the tip of a grain-boundary defect can typically be
a factor of 2.

Elastic anisotropy of the grains has the additional effect that it
results in an influence of multiaxial stress states on microcrack
nucleation. This is illustrated in Fig. 19, which shows the variation
of the J integral with the stress 3, in the direction tangential to a
grain-boundary crack with length 2¢ = 0.0254. For %, = 0 these
results are identical with those shown in Fig. 17, corresponding to
Za/d = 0.025. In an isotropic solid it is well-known that for a
given applied stress normal to the crack the value of the stress
intensity factor is independent of the mean stress, as also shown for
f =1 in Fig. 19; but this is not the case for anisotropic crystals
(f # 1). Thus, for f = /2, where it has been found that the
elastic anisotropy amplifies the stress peak, the value of the J
integral is further increased by a tensile siress %, tangential to the
crack. This is important in the highty stressed region around the tip
of a macroscopic crack, where the high level of triaxial tension will
then further increase the likelihood of microcrack nucleation.

APPENDIX

Plane Strain Singularity Analysis at a
Grain-Boundary Triple Point

The singularity analysis leading to stresses of the form of Eq.
(3.2) is now well-known, $0 here only a very brief outline of the
analysis will be given. The radial and circumferential components
of the displacement, # and v, are used as the dependent variables
and a separated solution of the form

(u,v) = kr* "' (a(0), ¥(8)) (A-1)
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Fig. 19. J integral as a function of the applied stress %, in the
direction tangential to the crack. The crack length is 2a = 0.0254, in
a material composed of orthotropic crystals, specified by Eqs. (2.5) and
(3.4), subject to a biaxial plane strain tension.

is sought. In each sector at the junction (see Fig. 2) the equilibrium
equations are expressed in terms of the displacments via the strain—
displacement relations and the constitutive equations (3.1). The
resulting ordinary differential equations for # and ¥ can thereby be
reduced to a set of four first-order equations in the form

¥y = AlA, Oy (A-2)

where y = (&', v, &, %), { ) =d( )/d8, and where A is a
4 % 4 matrix with coefficients which depend on A and 6.

Jump conditions across the radial grain boundary at § = 120°
foltow from continuity of tractions and displacements and can be
expressed asy” = By~ where B is a4 X 4 matrix also depending
on A. These equations together with homogeneous symmetry (or
antisymmetry) conditions at 8 = 0 and 7 constitute an eigenvalue
problem for A and the associated y(£). A standard finite-difference
procedure was used to solve for the physically relevant eigenvalues
and eigenmodes. The eigenvalues A were computed to at least
four-place accuracy.
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