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Models for the debonding of a fiber embedded in a brittle matrix are proposed and analyzed. Attention is restricted to
systems having a residual compressive stress acting across the fiber/ matrix interface. Debonding, as well as pullout after the
fiber breaks, is accompanied by frictional sliding. Fiber—matrix interaction is modeled by a cylindrical cell with two sets of
boundary conditions: one modeling an isolated fiber—matrix unit and the other a matrix containing an array of unidirectional
fibers. The elastic properties of the fiber are taken to be transversely isotropic about the fiber axis, while the matrix is assumed
to be isotropic. The debonding process is treated within the framework of fracture mechanics as a mode 2 crack. Two
idealizations of friction are considered: a constant friction stress independent of normal compression across the interface, and
Coulomb friction. Approximate closed form solutions to the model are presented. These are assessed using results from an
accurate numerical analysis.

Notation (Partial listing)

a; b;, ¢ nondimensional coefficients - Appendix B

E;, E, moduli of fiber and matrix

g energy release rate of debond crack

A mode 2 toughness

A maximum value of %, for mode 2 debonding

L1 debond lengths — Fig. 2

R radius of cylindrical cell

R, radius of fiber

) displacement between end of fiber and matrix — Fig,. 2

A additional displacement due to debonding — see (16) and (38)
€0 € axial strains in fiber and matrix

£-’:’ e;rT radial and axial mismatch strains of fiber — see (1) and (2)

€ =g,

Ve Poisson’s ratio of matrix

ve, §s ratios of transversely isotropic fiber — see (2)

A=e /e

M coefficient of friction

p=(R;/R)* area fraction of fiber

o, O axial stresses in fiber and matrix

o, radial component of stress at interface (unless otherwise stated)
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g average axial stress

g; o at initiation of bond

a, o at fiber break

oy o just after fiber break

G maximum value of & — see (9) and (26)

1. Introduction
1.1. Background and organization of the paper

Enhanced toughness of a ceramic matrix composite reinforced by ceramic fibers requires that a matrix
crack traversing the composite leave uncracked fibers behind its front to provide bridging restraint across
the crack. For this to occur, the toughness of the fiber / matrix interface must be sufficiently low relative to
the toughness of the fiber such that the matrix crack induces fiber debonding rather than fiber cracking as
it engulfs the fiber. If debonding is initiated, the toughness enhancement of the composite depends on the
extent of debonding before the fiber breaks and the work dissipated by friction during pullout, as
discussed in the review articles by Evans (1989) and Thouless et al. (1989). Friction effects will be most
important in systems which have a residual compressive stress acting across the fiber/matrix interface. If
the friction is too large the extent of the debond will be small when the fiber breaks and the energy
dissipated due to debonding and pullout will be limited. Conversely, if the level of friction is too small, the
extent of the debond will tend to be large but the pullout work will also be small. This suggests the
existence of an optimal friction level to maximize the toughness enhancement, but how this level depends
on the residual stresses, the elastic properties of the fiber and matrix, and the toughness of the interface
bond has not yet been established. The models presented in this paper are intended for this purpose, as
well as supplying a mechanics analysis for the experimental determination of interfacial toughness and
friction.

The correct characterization of frictional sliding of a fiber embedded in a matrix remains an open issue.
Fiber push-out tests (Marshall and Oliver, 1987; Bright et al., 1989) have been designed to directly
measure friction stresses. Theoretical models, guided by the experimental findings, have usually assumed
either a constant friction stress, presumably due to asperities, or Coulomb friction. Both characterizations
are considered in this paper.

The present study is confined to systems which have a residual compressive stress acting across the
fiber / matrix interface of the unloaded composite. Axisymmetric cylindrical models such as those shown in
Figs. 1 and 2 are analyzed. Cylindrical models of this type have been considered previously by a number of
workers. Wells and Beaumont (1985) review some of the earlier studies preliminary to their own modeling.
The present study is most closely related to those of Gao et al. (1988) and Sigl and Evans (1989) who also
considered the role of friction and residual compressive stress across the interface. The study by
Charalambides and Evans (1989) complements the present work in that it deals with fiber debonding when
the residual stress across the interface is tensile such that the debond crack is open and friction-free.

Debonding is viewed as mode 2 interface fracture and is treated by a fracture mechanics approach. Two
characterizations of sliding friction are considered: (1) a constant friction stress 7 over all portions of the
interface experiencing compressive normal stress o, and (2) Coulomb friction with 7= —po, where o, is
negative. The matrix material is taken to be elastic and isotropic with Young’s modulus E_, and Poisson’s
ratio »,,. The fiber is taken to be transversely isotropic with respect to its cylindrical axis. Let €' and ¢! be
the mismatch strains between the fiber and matrix in the sense that the free-standing fiber is too “fat” and

“long” for the unstressed matrix as measured by € and €.
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Fig. 1. Schematic of fiber debonding and pullout behind a matrix crack. Axisymmetric cylindrical cell model with two types of
boundary conditions: Type I = zero tractions modeling a single fiber—matrix unit, Type II = zero shear traction with constrained
normal displacement modeling a doubly periodic array of fibers.

If the fiber, and the matrix hole into which it fits, is imagined to be perfectly uniform and if misfit
strains are due to thermal expansion mismatch, then

T [(af-am)dT, = ["(af-a™)dT 1
= [ (of=am)dT, &= ["(ai-am)dT, (1)

where AT is the temperature change from bonding, and the coefficients of thermal expansion are a™ for
the matrix and af and «f in the radial and axial directions for the fiber. Mismatch can also arise from
nonuniformity in the fiber. For example, if there is a variation in the radius of the fiber along its length of
magnitude AR,, there will be a radial misfit strain proportional to AR;/R; after the fiber has slipped
some distance. The mechanics of the misfit arising from this source has not yet been worked out.

Thus, with the misfit strains taken to be associated with the fiber, the general relation between strains
and stresses in a transversely isotropic fiber undergoing axisymmetric deformation (with o, =0, and
€y = €,) can be written as

Ef(‘z - EI) =0, 2Vfor9

Ef(er— ET) = gfor— Pi0;.

)]
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Fig. 2. Conventions and definitions for cylindrical models.

When the fiber is isotropic, {;=1 - »;. When it is not, {;= (1 —v».}(E;/E.) where », and E, are the
Poisson’s ratio and Young’s modulus governing behavior in the plane perpendicular to the fiber axis. The
relation for the matrix under axisymmetric deformation is

Eg,=o0,—v (o, + o)

m-z 2z

Emer:or_pm(ol)+02) (3)

E¢y=0,—v,(0,+a,).

From (2), it is clear that the strains in the fiber, ¢, and ¢,, are measured from a stressed state such that the
fiber just fits into the undeformed matrix, while the strains in the matrix in (3) are measured with respect
to the unstressed state of the matrix.

Following earlier approaches, the fiber / matrix system is modeled by a cylindrical composite comprised
of a fiber of radius R; surrounded by the matrix with a circular cylindrical outer boundary of radius R
such that the area fraction of the fiber is p = (R;/R)? as depicted in Figs. 1 and 2. Two boundary
conditions are considered on the outer cylindrical surface. Type I has zero normal and shear tractions, as is
appropriate for experimental models with the same geometry. Type II boundary conditions have zero shear
traction, o,,, on r= R but with u, constrained on r = R to be everywhere equal to its value far above the
debond crack front (i.e., u(R)). Far above the debond crack, o.(R) is taken to be zero under the
assumption that the only nonzero overall stress component is a, = &, thus determining u_(R). Type II
conditions are intended to model a typical fiber/matrix cell in an aligned fiber reinforced matrix. The
cylindrical model with Type II conditions is commonly used to approximate an array of fibers in a double
periodic hexagonal arrangement. The approximate analysis of the models leads to relatively simple closed
form formulas for all the basic results, although some of the nondimensional coefficients turn out to be
rather lengthy expressions. Throughout the paper the approximate analysis will be compared with results
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Fig. 3. Overall stress versus pullout displacement for constant friction case.

from an accurate numerical analysis of the models. Details of the numerical analysis are given in Appendix
A.

Since there is a multitude of parameters characterizing the models and a variety of behaviors predicted
depending on these parameters a synoptic overview will be presented in the remainder of this Introduction.
The synopsis will be limited to systems where the fiber and matrix are both isotropic with the same
modulus, E, and Poisson’s ratio, », since most coefficients simplify considerably under these cir-
cumstances. It turns out that there is no difference in the models for the two types of boundary conditions
when the fiber and the matrix have the same elastic properties, but some important differences emerge
when there is a significant mismatch in the elastic properties. Following the Introduction, the sections are
organized as follows: Section 2 — Basic results from the Lamé problem; Section 3 - Steady-state energy
release rate in absence of friction and upper limit to interface toughness for mode 2 debonding; Section 4
— Debonding with constant friction; Section 5 — Debonding with Coulomb friction; Section 6 — Fiber
Pullout with constant friction; Section 7 — Fiber Pullout with Coulomb friction. Appendix A — Numerical
Analysis of Axisymmetric Model. Appendix B — Nondimensional Coefficients.

1.2, Synopsis for case of identical matrix and fiber properties

A sketch of overall stress ¢ as a function of the pullout displacement & is shown in Fig. 3. This figure
applies to the constant friction model, but the behavior for the Coulomb friction model is similar in most
respects.

The steady-state energy release rate ¥ for the mode 2 debond crack (the crack is assumed to be closed
according to conditions discussed below) in the absence of friction is

@ 3 2
= [og vee]. | “-
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Fig. 4. Comparison between accurate numerical results (curved lines) and predictions of the model. Identical elastic properties of the
fiber and matrix with » = 0.2. The surfaces of the fiber and matrix are free to slide over one another without friction and without loss
of contact. # = (1—v?)K2?/E.

where

a=[A-)1-0)]""/@0) ;=3[ -p)/(1 -] (1 +w) (5) *

and where throughout the paper ¢ =¢! and A=¢' /¢.. This is an exact result for a semi-infinite debond
crack in an infinite cylinder. As mentioned above, the results in the synopsis apply to both sets of outer
boundary conditions. Accurate numerical results (see Appendix A for solution details) for a crack of
length / are shown in Fig. 4 for several p-values. The crack attains steady-state conditions, to a good
approximation, when / equals the fiber radius.

No attempt will be made in the modeling to account for the behavior of the debond crack when / is
smaller than about one fiber radius. It is assumed that the debond has been formed and is ready to
propagate up the fiber. (In a fiber reinforced composite the main matrix crack might be expected to start
the debond crack.) The “initiation” stress &; in Fig. 3 is the stress required to propagate the debond crack
up the fiber. If %, is the mode 2 toughness, measured by the critical value of the energy release rate, then

by (4)

_ 12
o 1( % ) _& (6)

T 7. | %om T2 .
Ee €1\ ER;e" 51

The initiation stress &; can be negative if the nondimensional combination, %,/( ER;¢"?) is sufficiently
small. (In such cases, a finite length debond zone would be induced before any overall stress is applied.)

* An asterisk by an equation number indicates that it applies only to the case where the elastic properties of the fiber and matrix are
identical.
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Once the debond has initiated, as defined above, its length increases with increasing  according to

I/R;=p"'(1—p)(3-5)/(27) (M *
while the pullout displacement increases as

s _Q-)( @Vt A1y 8 *

Rf o pCy ERf Rf (1—p) E Rf :

Equations (7) and (8) apply either until the fiber breaks or until ¢ attains the value
o, =pEe! /v ) *

This is the overall stress at which the compressive stress acting across the fiber / matrix interface vanishes
at the bottom of the cylinder (i.e., at z =/) due to Poisson contraction of the fiber. This is the maximum
value of overall stress which can be sustained. As depicted in Figs. 2 and 3, a steady-state is then attained
where friction acts over a fixed zone of length /;, below the debond crack front while the remaining zone
below has o, =0 across the interface with zero friction stress. Now /; is given by (7) with 6 =g,. In
steady-state the debond crack moves up the fiber at constant overall stress a, with 8/R; given by (8) with
! = [, plus an extra contribution

g 0]

Note that neither a; nor o, depends on the friction. Further, note that

_ - 1/2

g a; c 1 g,

st e ol mem (10) *
Ee Ee v & G\ ERge

It will later be shown that the condition for the debond crack to be closed below the tip (i.e., for a mode 2

interface crack) is g, > 0;. The maximum allowable value of the mode 2 toughness %.* consistent with

mode 2 cracking is given by (10) with g, = g, i.e.,

g* Jop 2 "
ER; 7 [T " C2] ' (11)

If the mode 2 toughness exceeds 4.* the debond crack will open all the way to the tip where mixed mode
conditions will prevail. The present model is restricted to mode 2 debonding.

If the fiber breaks at o =g, on the rising portion of the pullout curve, such as at point A in Fig. 3,
compression acts everywhere over the interface below the break. If / is the instantaneous length of the
embedded portion of the fiber just after the break, then the associated overall stress o, is given by

a,=2ptl/R;. (12)
By (7), this is 3, = (g, — 0;)(1 — p) if the fiber breaks at the debond crack tip. Following the break
do/ddé=2pt/R;. (13)

The above formulas apply if the fiber breaks on the steady-state branch of the debond curve (i.e. at B in
Fig. 3) as long as the embedded length of the broken fiber satisfies

l/R; < ay/(2p7). (14)
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If, however, the inequality in (14) is reversed, there will be a zone of zero compression at the bottom of the
cylinder. Friction acts below the break over a length given by

lo/R; =05,/ (2pT). (15)
No overall stress drop will occur when the fiber breaks, as depicted by point C in Fig. 3, until the
embedded fiber length is reduced to /,. Thereafter, (13) applies.

There is some confusion in the published literature on the appropriate displacement quantity for
application of the stress—displacement relation to crack bridging calculations. The appropriate quantity,
A, should be defined such that  dA is the extra work increment per unit area which occurs due to
debonding and frictional sliding. Following the fiber break, dA = d§ to a very good approximation; but
prior to the break it will be shown later that

A=(1-p)s (16) *
for the case of common elastic properties of the fiber and matrix. Note that both § and A differ by a factor
of 2 from their usual definitions in crack bridging applications.

2. Basic results from the Lamé problem

The essential approximation made in the analysis of the models in the frictional sliding zone is that the
axial and radial stresses in any section transverse to the z-axis are characterized by a Lamé problem given
below. The approximation is valid as long as the axial stress in the fiber (and matrix) varies slowly over
distances comparable to the fiber radius. Elementary equilibrium of the fiber below the debond tip in the
axial direction gives

do,/dz=(2/R{)r, a7
where o; is the average axial stress in the fiber. It follows that validity of the approximation requires that 7
be small compared to o;.

The stresses and strains well above the debond are given by the Lamé problem (see Fig. 5a) with the
condition that e;=¢,, together with continuity of normal stress, o,, and displacement across the
fiber / matrix interface. In addition, the radial stress o, on the outer cylindrical surface at r= R is zero.
The relations needed are

of =0~ a,E. £ (18a)
o =ag—a,E" (o at r=R;) (18b)
+ + — T
€& —en=as(a/E,) +age'. (18¢c)
Cn AGn AG,
[o78
«-00,=0
O.-0
- TYPE i B.C.
A U=0
G=-p O +(1-0C,, pAGn + (1-pAC, = 0
£f =€4 AEn #AE,
a) PROBLEM FOR STRESSES b) PROBLEM FOR CHANGES IN
FAR ABOVE DEBOND STRESSES BELOW DEBOND

Fig. 5. Conventions for Lamé problems.
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Unless otherwise stated, o, will denote the normal stress at the interface. The overall modulus for the
bonded, composite cylinder is £ =do/de = E_, /as. The a’s are nondimensional and are functions of

p, \=¢€ /e E./E., v, v, and {;. (19)

Explicit expressions for the a’s and for the other coefficients arising later are given in Appendix B for two
cases: (1) identical elastic properties of fiber and matrix and (2) an isotropic fiber with v, =p_ but with
arbitrary E;/E,,. Otherwise, a simple computer program can be written for computing all the coefficients,
as prescribed in Appendix B. Note that ¢ =¢; the effect of ¢! enters through the A-dependence of a,,
a,, and a,.

The relations (18) reflect the feature of the Lamé solution that the axial stress and strain are uniform
across the section in the matrix as well as the fiber. At any cross-section

G=po;+(1—p)a, (20)

since ¢ is by definition the average axial stress which is independent of z.
Let o, o, €, etc. denote quantities below the debond crack tip, and let

m?
Ao, =0;— o0, Ae=¢.— ¢, etc. (21)

denote changes from values well above the debond front. The Lamé problem for the changes (see Fig. 5b)
is governed by the stress—strain relations, (2) and (3), but with the mismatch strains deleted. Now, Ao, and
Au, are still continuous across the fiber—matrix interface at r = R;, but there may be relative sliding so
that Ae, # Ae . In addition, overall equilibrium (20) requires pAo, + (1 — p)As,, = 0. With Ao, as the free
variable in the solution (it will be related to 7 in the models)

Ac,=p(1—p) 'Ag; (22a)
A, = bjAo; (Ao, at r=R;) (22b)
Ae; = byAo;/E,, (22¢)
Ae,, = —byAc,/E,,, (22d)

where the b’s depend on the parameters in (19). There are two sets of b’s (see Appendix B): for Type I
conditions with Ag, =0 on r= R and for Type II conditions with Au, =0 on r=R.

3. Steady-state energy release rate in absence of friction and upper limit to interface toughness for mode 2
debonding

Consider the geometry and loading in Fig. 6 where the debond crack is long and well away from either
end of the cylinder. Suppose that the mismatch strains and applied stresses are such that o, < 0 across the
interface below the debond and, further, suppose that frictionless sliding occurs. The energy release rate,
%, for the steady-state debond crack (a semi-infinite crack in an infinitely long cylinder) can be
determined exactly and simply by evaluating the stored energy difference between sections well above and
well below the debond crack tip, including the potential energy change of the applied loads, for a unit
distance propagation of the crack. Expressions (23) apply to both sets of outer boundary conditions. The
derivation of (23) for Type II conditions requires consideration of the fact that the potential energy of the
applied loads is nor twice the strain energy. Care must be taken to properly separate the contribution from
the residual stress due to the mismatch strain. For later purposes, it is useful to consider a non-zero axial
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f

matrix stress a,, below the debond as indicated in Fig. 6. The steady-state energy release rate is

= (Rf/Em)[p(l —P)Vlclcs("f_ _°f+)]2 (232)
= (Ri/En)| (5 cx05) + 2En™] (23b)

where
o= (20) (1 - pay) (b, + b;)"?, (24)

cr=4ar(b+5,)"” c3=(1-p)/(1-pay).

For identical fiber and matrix elastic properties, the ¢’s are the same for both types of boundary
conditions and are given by (5) with ¢, = 1. For dissimilar properties, ¢; and ¢, depend on whether Type I
or 11 conditions are in effect.

The form (23a) will be used below. It expresses the energy release rate in terms of the jump in the fiber
stress from below to well above the debond crack tip. Note that (23a) is valid for the general case under
consideration where €' 0 and o *0. Gao et al. (1988) have given an expression equivalent to
@=(R;/E,)Xc,6)>. We have verified that their expression for the equivalent of our ¢, is in complete
agreement with the present results for the Type I boundary conditions, for which their modeling applies,
for the case of the isotropic fiber with E; and »; arbitrarily distinct from E_, and »,,.




J.W. Hutchinson, H.M. Jensen / Fiber debonding / pullout 149

When the crack is closed below the debond, it is a mode 2 interface crack. The relation between the
mode 2 stress intensity factor, K,, and the energy release rate depends on the elastic properties of the fiber
and matrix. If, for example, the fiber is isotropic and if the second Dundurs parameter, B, is zero (cf. Suo
and Hutchinson, 1990), then

1{1—-»} 1-3}
=3 (Tf tE—

)Kzz.

When the second Dundurs parameter does not vanish, or more generally for the case of an anisotropic
fiber, when there exists an oscillatory-type singularity at the crack tip, the crack is no longer strictly in
mode 2. Even so, the energy release rate expressions (23) still hold. Although we will regard the debond
crack as a mode 2 interface crack, the models only require that a critical value of the energy release rate,
9., be maintained by the advancing debond crack.

The steady-state energy release rate is approached rapidly as the crack moves up from the end of the
specimen as has already been discussed in connection with Fig. 4. The models use the steady-state
expression for the energy release rate at all positions of the crack front in a way which is discussed later.

An important quantity in the models is the overall stress 6, at which contact between the fiber and
matrix is first lost at the bottom of the cylinder where o, = 0. Using (18a), (18b), (22b) with Ao; =06/p — o,
one obtains

a,=(a3+b1(p—1—a1))6—(a4—blaz)Ech (25a)
and, therefore, o, = 0 when

(‘14 - blaz)Eme

3, = = . 25b)
0 (a3+b1(p 1—al)) (
For Type I boundary conditions, a direct elementary calculation gives
3y = pE;e; /v;. (26a)

For Type I boundary conditions the formula for 4, is not a simple combination of the parameters; thus
let

0 = capErel /vy, (26b)
where by (25b)

_ viE (ay— biay)
4= PAE, (a3+b1(p~1—al)) . (26¢)

For Type I conditions &, is always positive. For Type II boundary conditions &, can be negative for
certain combinations of fiber and matrix properties. When the fiber and matrix properties are identical,
¢,=1 and 6,>0; but when »; is sufficiently small compared to », and/or E; is sufficiently large
compared to E_, ¢, can be negative. Using the results in Appendix B for the Type II conditions with
¥; = ¥, one can show that b, becomes negative as E;/E, increases; then by (26¢) since a; =0, ¢, = o0 as
b, becomes zero and ¢, <0 with b, <0. By (22b), a system with b; <0 has the property that the
compressive stress on the fiber /matrix interface increases with distance below the debond front and is
greatest at the bottom of the cylinder. We suspect that such systems will not be particularly effective for
fiber reinforced matrix composites, but that issue deserves closer consideration. Recall that Type II
conditions model fibers in a composite, while Type I applies to the single fiber/ cylinder configuration.
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In summary, coefficients b, and ¢, are the most sensitive to whether Type I or II conditions are
invoked (c, =1 for Type I). Moreover, both play important roles, as will be seen below. In the remainder
of this paper we will focus on systems for which b, >0 and ¢, > 0 and thus 6, > 0. Some of the results
below are insensitive to the signs of these quantities, but others are not.

Assuming &, is positive, there exists a mode 2 interface toughness ¢.* such that for &, > 4* there will
be no contact between fiber and matrix anywhere below the debond when the crack is advancing. If
9 > 4* the assumptions underlying the model will no longer be in effect. To obtain this upper limit to
the toughness, identify % with .* in (23b) with 6 = 6, and o, =0 to obtain

G* = (Ry/Ep)| 16 + 2 Ene™| (27a)
or, by (26b),
@ E; A 2
W = [clc4pE_m Tf + 6‘2] . (27b)

Thus, if 4. = .*, the debond crack would propagate up the fiber at 6 = §, with no friction since o, =0 at
the interface everywhere below the crack tip. If ¥. > %.*, the crack would necessarily be open below the
tip, and mixed mode conditions would pertain. Charalambides and Evans (1989) have considered mixed
mode fiber debonding for conditions when the debond crack is open below the tip.

4. Debonding with constant friction

In this section the friction stress between the fiber and matrix is taken to be a constant value, 7, where
0. > 0 and zero where o, = 0. From this point onward, a symbol decorated with ( )~ denotes its value just
below the debond crack tip. Below the tip the average stress in the fiber varies according to (17) so that for
0 <z <, (cf. Fig. 2)

o =0 +2'r(z/Rf) (28)
while
om =0, —20(1—p) 'v(2/R;). (29)

If the zero-friction zone shown in Fig. 2 exists (i.e. if 6 =4;), then o,=0/p and 6,=0 for /; <z </
When 6 < g;, then /=1, and o;=6/p and o, =0 at z=[,. In either case,

lo/Ry=(6/p—0; )/(27) (30)

To determine o; (and thus o, ), we impose the fracture condition ¥= ¥, at the debond crack tip using
(23a) to obtain

12
— (1 — p) __1_ Emgc
o =o0f t+ T p 0o, ( R, (31)

where o, is given by (18a).

In the absence of friction (31) provides the exact jump in the average fiber stress from well above the tip
to just below the tip when the debond crack is in steady-state. Friction will primarily affect the distribution
in the stress in the fiber below the tip as reflected by (28). The jump condition (31) in the presence of
friction will have an error of order 7/6; since only the friction within about one fiber radius of the tip is
not treated accurately by the steady-state relation. (Thus a “load” of order 27R%r on the fiber is
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Fig. 7. Comparison of accurate numerical results (curved lines) with model prediction for friction contribution to K,. Identical elastic
properties of fiber and matrix with » = 0.2. The surfaces of the fiber and matrix have equal and opposite constant shear stress 7
applied to them. The surfaces are constrained to remain in normal contact.

inadequately modeled compared with the load wR7o; .) The accuracy of the approximation is illustrated in
Fig. 7 for a system with identical elastic properties of the fiber and matrix. Figure 7 isolates the effect of
friction loading. The fiber and matrix surfaces as loaded by a uniform shear stress = and are free to slide
but not to lose contact; =0 and ¢, =€, = 0. The variation of K, is shown as calculated by the full
numerical method described in Appendix A. Also shown is the present approximation obtained using
(23a), i.e.,

Ky/(TRY*) = (1-p) V(I/Ry). (32)

Figure 7 demonstrates that the approximation becomes increasingly accurate as //R; increases. It has
already been noted in connection with Fig. 4 that, in the absence of friction with & # 0, the energy release
rate, or equivalently X,, approaches the steady-state value when //R; is about unity. Since the full
problem for X, is a linear superposition of results such as those in Figs. 4 and 7, it follows that (23a) and
the jump condition (31) are good approximations in the presence of friction once ! exceeds 2 or 3 times
R;. This assumes o; is regarded as the average fiber stress just below the debond tip.

Let o, denote the overall stress level at which the debond crack begins to progress up the fiber. As
discussed earlier, it is assumed that an initiating flaw on the order of R; in length is already present. With
o =0,/p in (31) and with o;" given by (18a), one obtains

- 12
G — _.1._ _._gc_ — 2 (33)
Ef" &l E Rie™ ¢’

where the expression for c; has been used along with the identity

(L=p)ey=peicsa;. (34)
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Similar manipulations show that (30) can be re-expressed as

I/Ri=p (1= p)(5-5)/(2¢s). (35)

The debond region 0 < z </ increases linearly with 6 — &, until the condition o, =0 is reached at the
lower end of the fiber / matrix interface at z = /. This condition occurs when 6 = 6;,, where 6, is given by
(26). Thereafter, the length of the region of the debond over which 6, <0, and thus over which friction
acts, has fixed length [, given by (35) with & = a;. Once ¢ attains 6,, the debond moves up the fiber at
constant overall stress with a region in which ¢,=0 (and no friction) of increasing length /—1,, as
depicted in Fig. 3. It is readily shown that the condition ¢, < ¢* required for a mode 2 debond crack is
equivalent to a; < gy, assuming &, > 0. In fact, the two pairs of quantities are related by

C1(60_‘7i) = (Emg}*/Rf)l/z_ (Emg}/Rf)l/z- (36)

Formulas for the displacement difference § between the end of the fiber and the matrix (see Fig. 2) and
for the additional displacement A with arises from debonding are readily derived. First, the displacement
difference from the model is defined as

5= fol(cf —€,)dz= fol(bz +b,y)(Ao;/E,) dz

(l—p)( 4. )1/2 i

=(b2+b3){ veer | ELR, +E;0Tf+[(p_l——al)EO/Em+azeT](l—lo)}. (37)

For 0 <g,, /=1, and is given by (35). For = 5, I, is given by (35) but / — [, (or §) can be regarded as a
free parameter which increases monotonically.

The additional displacement A due to debonding is the displacement difference at the lower end of the
fiber between the specimen with and without debonding. It is this quantity (and not §) which should be

A (1-02)GRy  (1.02)C R4 A (1-v2)C Ry

| Ly

6 0 5 p 1.0

\ 4

Fig. 8. Fiber pullout & and additional displacement due to debonding A versus / /R, for the case of identical elastic properties of the

matrix and fiber with » = 0.2. The system is subject to overall stress & with no friction or residual stresses. The surfaces are

constrained to remain in normal contact across the interface. The curved lines are the accurate numerical results. The curve on the
right shows the contribution omitted by the curved model for debond lengths greater than about 2Rf,
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taken as the half-separation distance between the crack faces in a bridging model. Since the strain
difference in the fiber, with and without debonding is €; — ¢}, it follows that

A= /(')l(ef —¢f)dz= bZ/:(Aof/Em) dz = (b,/(b,+b;))8, (38)

which reduces to (16) for identical fiber / matrix properties.

A comparison between predictions for 8 and A from the full numerical analysis and those from the
model are shown in Fig. 8. The comparisons, which focus just on the effect of the overall loading o, reveal
that the model prediction becomes increasingly accurate as the debond length grows, but fails to account
for a “crack-like” contribution which is independent of debond length when //R; exceeds about 2. This
extra contribution to 8 is plotted as a function of p on the right in Fig. 8. In principle, the extra
contributions to § and A could be added to (37) and (38), but the relative effect decreases as //R;
increases and should not be of much significance when //R; has exceeded about 5. Also omitted from (38)
is the contribution to A due to the matrix crack alone when / = 0. This contribution also becomes relatively
small as //R; increases.

5. Debonding with coulomb friction

The overall stress at which the debond begins to advance up the fiber (assuming the existence of an
initial flaw) is &; in (33), and the relation between the fiber stress just below the debond tip and the stress
state well above the tip is still given by (31). This latter result, together with (18b) and (22b), gives the
normal stress acting across the interface just below the debond tip:

LUELIESAN 9)

o
€1C3 p R;

- T
. =a;0 —asE g +

Recalling that o, = 0 when 6 = 6, and ¥. = ¥.*, one can then rewrite (39) using (36) as

o = _P_l(l‘P)(b1/03)[60*61+k1(30_6)] (40)

where
ky=p(1 ‘"P)hlaaca/bl- (41)

In Appendix B it is seen that a; = 0 when the fiber is isotropic with »; = »,, for arbitrary E;/E,, and thus
k, = 0 for this case. In the discussion which follows it will be assumed that o, is compressive. If for Type
II conditions b, is negative, one should proceed from (39) without introducing &;. This is not pursued here.

With o, as the normal stress across the interface at any point below the debond tip, the friction stress is
taken to be

T=—uo, (42)
assuming o, < 0. Using (17) and (22b) one obtains
dAc 2u
dzf = - E(o,"' + b,Ag;). (43)

The solution to (43), subject to (31) at z =0 with (39), is

1-p 1 E % o,
Aog=o0;—0ff = —— — — —
R P GG R b,

[1-e7f], (44)
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Fig. 9. Overall stress versus debond length and pullout displacement for the Coulomb friction case.

where

¢{=2ubz/R;. (45)
Then using (22b) and (39) again, one finds

o,=0_ ¢ ‘. (46)

The solution has the required property that the sliding is one-signed, consistent with the direction of the
friction stress. In addition, from (46) it is immediately noted that o, is everywhere negative below the
debond tip if o, is negative.

The length of the debond region can be found from (44) noting that o;=6/p at z =/ After some
algebraic manipulation, one finds

/ 1 o, —0,+k(a,—7)

R; B 2ub, In 0,— 0 ’ (47)

where k; is given by (41). A sketch of this relation is shown in Fig. 9. Note that quasi steady-state
behavior, similar to that for the constant friction case, is achieved when the debond has attained the length
(using { = 3 in (45))

I/R;=3/(2pby). (48)

This becomes [/R, = 3/(uv) for identical properties for the fiber and matrix. Once this level of debond
has been achieved, the overall stress has nearly attained its limit a,. As the debond advances further up the
fiber, the zone where most of the friction stress acts is of length 3/(2ub,) below the tip.
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Finally, the opening displacement § and the additional displacement A can be calculated using their
definitions in (37) and (38), together with (44). The results are

8=((b,+b;)/by)A

1—p 1 iA 172 Rio | _
:(b2+b3){ > —c—lc—s(Eme) _2pb%Em[e 9+§,—1]}, (49)
where {,=2pb,l/R;. A sketch of the relation between 8 and ¢ is also shown in Fig. 9.

The present analysis is similar in a number of respects to that of Gao et al. (1988). These authors
considered the Coulomb friction problem with Type I boundary conditions. As in the present approach,
debonding is controlled by a critical value of the energy release rate. In their study the initial state of stress
in the fiber is one of compressive radial stress with no axial prestress. Thus their analysis is applied to the
special case considered here where € and ¢! are such that ¢, = 0 in the unloaded bonded fiber. It should
be noted that the axial prestress in the fiber makes a significant contribution to the energy release rate.
Gao et al. identify quantities equivalent to a; and &,, and derive an expression for the smallest value of
initial compression across the interface consistent with mode 2 debonding.

6. Fiber pullout with constant friction

As depicted in Fig. 3, let o, be the overall stress at which the fiber breaks and let 5, be the overall stress
just following the break before any additional pullout has occurred. There are two possibilities which must
be considered: (i) g, < 0 everywhere below the break and (ii) a zone of friction with g, < 0 extending only
part way towards the end of the cylinder with a second friction-free zone in which o, = 0 above the end.

If o, < &,, full contact over the debond region occurs after the break, and (12) applies. From (35), the
debond length at fiber fracture is

/R = p~' (1= p)(5 ~ 5,)/(2¢57). (0)
Thus, if the break occurs at the debond tip,
5b=2P"’(l/Rf)=(1_P)(Ec_ai)/cs (51)

Then during pullout

SR E o= — . (52)

If &, = a,, the two possibilities mentioned above must be considered. Let / be the length of the fiber
below the break at the instant of fracture. If 2p7l/R; < 5,, then friction will act over the full zone below
the break and

a,=2p7l/R; (53)

Equation (52) will apply during pullout. If, however, 2p7l/R; > o,, there will be a zone of friction of
length

ly=0,R./(2p7), (54)

which does not extend all the way to the end of the cylinder. In this case , = g, and the overall stress
remains at g, until the length 7/, of the broken fiber remains in the matrix. Beyond that point, the overall
stress drops according to (52). The two possibilities are indicated by breaks at B and C in Fig. 3.
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7. Fiber pullout with coulomb friction

Equation (43) continues to apply after the fiber breaks except that now o; must vanish at the break and
thus the condition at z = 0 (the top of the break) is Ao, = —o; . The solution to (43) gives

o=—(a°/b)[1—ef] o=0"e"" (55)
Here o is the normal stress across the interface at the top of the broken fiber:
a?=0" + b,Ao,= ot — blaf+

= —(albl_a3)a_(a4_blb2)EmET (56)

A

= m%_——z-(l—p)EeT, (56a) *
where (56a) only applies for the case of identical elastic properties for the fiber and matrix. A further
reduction of the expression for ¢° can be obtained using the equation for the unbroken fiber stating that

a, = 0 when 6 = g, and ¢, = 0. Combining this later equation with (56) gives

o’ = —bi3,/p— (a,b, — a3)(6 — &). (57)
Since o;=0/p at z =1, (55) gives
a=—(pa?/b)[1~e7¥], (58)

where {,=2pb,l/R,. This relation holds as the fiber is pulled out where !/ is the current length of the fiber
remaining in the matrix. Using (57) in (58) and solving for 4/4,, one finds

g (Q-k)1-¢%

% 1-ky(1—ef)’ (59)
where

k2=P(‘11_(03/b1))- (60)

For an isotropic fiber with v;= v, k, = pE;/(pE;+ (1 — p)E,)).
If the fiber breaks such that {, > 1 (i.e,, I/R;> 3/(2ub,), say, with 6, = 4,), then o, = 5,. There is only
a small drop in & associated with fiber fracture, as at point C in Fig. 9, and the overall stress remains near
o, until //R; decreases to a length of about 3/(2ub;). On the other hand, if the fiber breaks when a, < a,,
the overall stress experiences a sudden drop with fiber fracture and immediately begins to fall with pullout,
as illustrated by the breaks at A and B in Fig. 9. From (59), the slope of the pullout curve after fiber
fracture is
dg _ dd _ b, (1-k,) e ¥ (61)
o d/ R; [1—k2(1—e‘f’)]2’

which approaches a constant value, —2ub,8,(1 — k,)/R;, as | = 0.
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Appendix A. Numerical analysis of axisymmetric model

The full numerical method used to solve the several problems presented in the body of the paper is
discussed briefly in the following. More details will be published elsewhere. The method is based on the
use of a continuous distribution of dislocations in an integral equation formulation to replicate the crack
(Rice, 1968). The relevant dislocation solution for the semi-infinite cylinder cannot be obtained in closed
form, and a new feature to the present solution method is the use of the finite element method to obtain all
but the singular part of the desired dislocation solution. Thus, the dislocation solution which forms the
kernel of the integral equation is represented by its known singular part times an additional nonsingular
contribution which is obtained using the finite element method. The nonsingular portion of the kernel is fit
to the functional representation and thus is obtained “once and for all”. Thereafter, standard solution
procedures for solving integral equations, such as those employed by Thouless et al. (1987) and Suo and
Hutchinson (1990) for plane strain problems, can be used to solve the various cases.

The Green’s function u(z, £) and v(z, £) that denote surface displacements at position z following a
point force at position § (see Fig. 10) are found for both the fiber and the matrix by the finite element
method. When u« and v denote radial and axial displacements, superscripts ( )F and ( )M refer to the fiber
surface and matrix surface, and subscripts ( )p and ( ), refer to displacements due to normal and shear
tractions, the following eight functions are represented numerically: ug, ug, vy, 0§, up, uy, vp and vy.

For a given variation of normal and shear tractions o(§) and 7(£) the surface displacements are given
by expressions such as

u(z) = [

interface

{up(z, §)o(§) +ui(z, £)7(4)} d&. (A1)

Inversely, for a given variation of displacements across the interface, the corresponding o(£) and 7(£) can
be determined.
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Fig. 10. Conventions for the numerical analysis.

The stress variation caused by a dislocation at position z, at the interface is found by imposing the
following boundary conditions

uF(z) —uM(2) =0 (A2)
0,z=:z
F _ M = > 4= 4d
() =)= {12 (A3)
At the same time equilibrium requires
F(2)+t™M(z2)=0
TF( ) M( ) (A%)
af(z)+aoM(z) =0.
Close to the dislocation origin at z,, plane strain conditions exist and the stress field is
Grz(Z)=Cb/(Z_Zd), (AS)

where ¢=E_E,/(2n(E_,+E;)) and E=E/(1—»?) (Suo and Hutchinson, 1990). Here attention is
restricted to the case of an isotropic fiber and it is assumed that the second Dundurs elastic mismatch
parameter, B, is zero. The finite element method is used to generate the solution for the dislocation in the
cylindrical geometry. That solution, with the correct singularity built-in, supplies the kernel functions for
the integral equation as described below.

The accuracy of the FEM representation of the dislocation stress is illustrated in Fig. 11. For R;/R
near unity, plane strain conditions hold for the solution sufficiently near the dislocation. The plane strain
solution for a dislocation a distance /& below a free surface is (Thouless et al., 1987)

ch 4x? 8x? 4(x* - 12x?)

a, = —

rz - + + bl
1 4+xt 0 (d4+x?)? (xP-12x)" + (8 - 6x2)

(A6)

for the case where the elastic mismatch vanishes with x = (z — z4)/h. Shown in Fig. 11 is the numerical
solution for the cylindrical geometry with R;/R =10/11 along with the distribution from (A6).

It is useful to have an analytical approximation for the stress in the dislocation solution when one solves
the integral equation. Two functional approximations were considered:

0,.(z, 29) =cb(z~z4) "' F(z, z4) (A7)
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Fig. 11. Comparison of FEM representation of dislocation stress distribution in the cylindrical configuration with the plane strain
distribution for a dislocation located beneath a free surface.

where, with n =2z — z,,

F(z, zg)=1+a,|n|+bm* |n|<mn.

(A8)

or
F(z, Zd)=(1+az|77|)(1+b2|77|s)_1- (A9)

For a given location z, of the dislocation the free parameters a,, b, and 7_ or a,, b, and s were chosen to
fit the numerically generated solution. Thus the free parameters depend on the distance of the dislocation
from the bottom of the cylinder. The results for the energy release rate shown in Fig. 4 were found to be
only weakly dependent on small variations in these free parameters, which indicates that a highly accurate
representation of F in (A7) is not very critical.

After the results for F have been generated, the solution procedure follows along the lines as in
Thouless et al. (1987). With reference to Fig. 12, make the change of variable

(t - 1)Rr

so that the shear stress along the interface due to a continuous distribution of dislocations a(¢) = b(zy) is

o.(z)= f_llc(u — 1) 'G(u, 1)(dz,/dt)a(t) dt, (A11)
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Fig. 12. Geometry and loadings for integral equations formulation.

where G(u, t) = F(z, z;) and where z and u are related in the same manner as z; and ¢ in (A10). The
stress from (A11) is used to cancel the stress from a calculation with perfect bonding, as depicted in Fig.
12. Friction stresses may be included by simple superposition. In (A11), a(r) is represented by Chebyshev
polynomials. Standard solution procedures are employed as described in Thouless et al. (1987).

Appendix B. Nondimensional coefficients
B.1. Coefficients for state far above debond crack tip
Continuity of u, and ¢, at r = R, require

o /E
i/ Enn +Bl<
€

€,

c } (B1)

_ A[of/Em

EZ

CE R

where

=01+ Vm)(l +p(1~ 2Vm))/(2VmP) en=—(1-p)/(2v,p)

== +r,+o(1-5,))/(2vap) Cn= —Cn

ay = (§ — 207 ) En/ (20, Ey) ay, =1/(Q2v,)

ay = —§/(2v) a,,=—E/(2vE,)
by =1, by; =0, by, =§/(2v) by, = E;/(2vE,,).

The stress acting across the interface is
0,=a,0;+a,E e +byyE ¢ (B2)

Using (20) and writing €7 as Ae! with €T = ¢!, one obtains

o/E, o _Cll/(l_P):l T[A+b12]
H = — + , B3
[ € E, [ _621/(1 - P) ) by, ( )

z
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where

-1 _
hyy = _P(l_P) chn—ay hy= “P(l—P) 1021_021

hyy=cp—ayp, hy=cpn—ay.
Then, based on their definitions in (18), the a’s are obtained as

[a]=—a-oe ] [l -

A3 =and, T ay»as a,=d;a,—daas—b;,.

B.2. Coefficients for state changes below debond crack tip

B.2.1. Type I boundary conditions
Continuity of u, and o, at r = R, together with g, =0 on r = R both above and below the crack tip

require
Ao, /E,, Ao /E,
C[ A, J‘A[ Ae; | (B3)

where the coefficients of C and A are given above. By (22a),

Acf}=£¢ﬁ|:p(l—p)_lcu+auJ (B6)
Ae, L2 p(1-p) "¢y +ay ’
where M, = —a,,, M, = c¢;,, M,; = —a,, and M,, = c,,. Thus, by (22),
[ b, }=M_l[p(l—p)lcn+au} (B7)
—b, p(1=p) ey +ay
Since Ao, = ay Ac; + ande K,
by =a, + ayb,. (B8)

B.2.2. Type II boundary conditions

The constrained boundary condition (see Fig. 1) requires Au, = 0 at r = R. This condition, together
with continuity of ¢ and u, at r= R,, requires that (B5) hold where 4 is unchanged but now the
coefficients of C are

=—(1-p)(A+2,)(0—20,)/(2v,0) cu=(p+1-22,)/(2v,p)
c=(1-p)1—2,)/(2v,p)
622=(um—(1—um)(1+(1—2um)p_1)(2um)'l)/((l+um)(l—2um)).

Equation (B6) holds with the components of M determined from the new c,;. The coefficients, b,, b, and
b;, are again given by (B7) and (B8).
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B3. Coefficients for case of identical elastic properties of fiber and matrix

a=1, a,=1=p)1+»A)/(1—»?), a;=0,
ag=3(1-p)A+»)/(1-¥*), as=1, as=p (B9)
by=%v, by=1-»" by=p(1-»)/(1-p).

The above b’s apply to both types of boundary conditions on the outer surface of the cylinder.

Coefficients ¢; and ¢, are given by (5) (with ¢;=1 and ¢, =1) and these also apply to both sets of
boundary conditions.

B.4. Coefficients for isotropic fiber with v;= v, =v

E (1-p)E; 7

a1=ff “T 1+ (E+ (1-20)E) (2vA+1=y+ (1 +»)(E/E))
0 ge(=P)EM+Y) B 5
BTV T Oy (E+(-20)E) T E °° PE

where E = pE; + (1 —p)E,, is the overall modulus of the bonded system.

B.4.1. Type I boundary conditions
vE _ (1 +»)E.(E+(1-20)E)
T A+0)E+(1-»E * E(Q+»)E+(1—»)E)
b — p(1+v)(Ef+(1—2v)E)—
T -p) (A +»)E+(1-»)E)

b,

2 (1+V)(1—p)E§1(Ef+(1—2V)E) __é

T T 4EE (1 +#)E+(Q-v)E) O En

2_ 1 (I_P)Ef((l'*'”)Ef'*'(l_”)E) + 2VAE

2T T A+ mE((Q-20)E+E) (1+»)E,+(1—-»)E |’

B.4.2. Type II boundary conditions

{A=HE* + Q-0 E, - (1+»)[20=») E + (1 -20)(1— v + p(1+ »))(Ep,— Ep)]}
B 2v(1-»)[A+»)E*+(1—»)E_]

by
(L) EL{20=»)E + A —29)[1-v+p(1 +»)|(E,— E,))
2 (1-»)E[Q+v)E*+(1—»)E,]

_p(i+ »){(1—p)Q +»)(1 - 20)(E - E,) +2(1 - »)’E, }
’ Q-»)(1-p)[(1+»)E*+(1-»)E,] ’
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where E* =pE,  + (1 — p)E,. The coefficients ¢, and ¢, can be evaluated using the general relations (24)
and ¢, by (26¢); the explicit expressions are too lengthy to be useful. Coefficient ¢, is the same as in Type
I.

B.5. Coefficients for transversely isotropic fiber

When », # v, and {;# 1~ »,, the expressions for the various coefficients are extremely lengthy and
unrevealing. For such cases it is recommended that a simple computer program be written based on (B1)
through (B8). A copy of such a program can be obtained from the first author.







