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The flow stress of dual-phase, non-hardening solids
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A dual-phase composite comprised of an isotropic distribution of two elastic—perfectly plastic phases is considered. Each
phase is characterized by a Mises yield surface and its associated tensile flow stress. The limiting tensile flow stress of the
composite is computed in terms of the flow stresses of the phases and their respective volume fractions using a fully non-linear
self-consistent model which identifies one phase as particulate and the other as matrix. It is found that the uniform strain-rate
upper bound, which is just the rule of mixtures in terms of the phase flow stresses, provides an excellent approximation to the
composite flow stress as long as the flow stresses of the phases do not differ by more than a factor of two. The results are
applied to obtain some insight into the effect of a non-uniform isotropic distribution of rigid particles in reinforcing an
elastic—perfectly plastic matrix. By identifying the tensile flow stresses of the two phases with flow stresses of particle-rich and
particle-poor regions, one can predict the dependence of the limit flow stress of the composite on certain types of non-uniform

distributions of the rigid particle reinforcements.

1. Specification of the model

The composite solid to be analyzed is depicted
in Fig. 1. It is comprised of an isotropic distribu-
tion of two perfectly bonded elastic—perfectly
plastic phases. Each phase is characterized by a
Mises yield surface:

(3s,,5,) " =af, i=1,2, (1.1)
where s, is the stress deviator. Attention is limited
to the limit tensile flow stress o, of the composite.
Under uniaxial stressing the elastic response of the
composite and the transition to the limit stress
depend on the elastic moduli of the phases, but o,
does not. Thus &, depends on of" and ¢{?, on the
volume fractions of the phases, f" and f® =

1—f™, and on details of how the phases are
distributed. It is this dependence which is addre-
ssed in this paper.

The uniform strain-rate upper bound to g, is
readily found to be

&, = VoV + f @@, (1.2)

which is just the rule of mixtures for the flow
stresses. Two types of approximations are made in
obtaining an improved estimate of ¢,. Firstly, any
possible dependence of the limit yield surface of
the composite on the third stress invariant,
5,815k, 18 neglected, and thus

3= =
(2susu

) =3, (1.3)

0167-6636,/91 /$03.50 © 1991 - Elsevier Science Publishers B.V. All rights reserved




86 G. Bao et al. / Dual-phase solids

€ £
Tensile Behavior of Tensile Behavior of
i th Phase Composite
Fig. 1. Geometry of composite and self-consistent model.

Tensile stress—strain behavior of the phases and the composite.

is taken to describe the composite limit yield
surface. Secondly, a self-consistent scheme is used
to model the distribution of the two phases and to
thereby determine o,,.

The geometry of the self-consistent model is
shown in Fig. 1. Versions of this same model have
been used recently by Christensen (1990) for elas-
tic systems and by Taggart and Bassani (1991) for
particle-reinforced elastic—plastic solids. Weng
(1990) has employed another self-consistent
scheme to study the stress—strain behavior of
dual-phase solids. His work will be discussed later.
In the present model phase No. 1 is regarded as
the “particulate phase” and occupies the spherical
inclusion in the model with volume f. Phase
No. 2, which is considered to be the “matrix
phase”, occupies the concentric spherical shell with
volume f®. The two phases are embedded in an
infinite solid whose limit yield surface is that of
the composite (1.3). As already noted, the limit
yield stress of the actual composite (or as predic-
ted by the self-consistent model) does not depend
on the elastic moduli of the phases. The self-con-
sistent prediction of g, is also independent of the
elastic moduli assigned to the infinite outer region
and to its transition stress—strain behavior. Thus,
without any approximation to the self-consistent

computation of g, one can take the elastic moduli
of the two phases and that of the outer region to
be identical. Moreover, for computational pur-
poses, one can take the outer region to be elastic—
perfectly plastic. That is, one need not correctly
model the transition stress—strain behavior of the
composite within the outer region in order to
compute o,. These two steps were taken in perfor-
ming the computations carried out below.

The self-consistent model is fully nonlinear in
the sense that each of the two phases is taken to
be non-hardening and to obey flow theory plastic-
ity, as is also the case for the infinite outer region.
A finite element method is used to solve for the
stresses and strain-rates in the limit state, as will
be described later. To compute 6,, a strain rate
with non-zero components,

E33:E’ En:Ezz:‘"%E’ (144)

is imposed remotely on the outer region. The
remote strain £ is incremented until a limiting
stress distribution is attained. Since the self-con-
sistent model is isotropic, the choice of the axes of
principal straining is immaterial.

Two different self-consistent equations for de-
termining o, were considered. For stress averaging
we require that in the limit state

aOE'=fVoUE'U dv, (1.5)

where the volume average is carried out over the
unit volume comprising phases No. 1 and No. 2.
This condition is equivalent to 3a,= [, 55, dV.
For strain-rate averaging we require that the
strain-rates in the limit state satisfy

E= feﬂ av. (1.6)
LS
These conditions are implicit equations which re-
quire iteration on g, in the computational process.
2. Numerical implementation
At any iterative step, a value is assigned to g,

the limit state is computed, and one or the other
of the self-consistent conditions (1.5) or (1.6), is
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evaluated. Then a new estimate of g, is assigned
using standard zero-crossing methods and the pro-
cess is repeated until an accurate solution for g, is
obtained.

The model geometry of Fig. 1 was truncated to
a finite region with an outer spherical surface
where the total volume of the three regions was 20
times the volume of the two inner regions contain-
ing the two phases. Uniform straining displace-
ment rates, U, were imposed on the outer surface
where U = E,]x].

For a given value of g,, the computational
problem for the limit state is axisymmetric. The
ABAQUS computer code employing 8-noded
quadrilateral elements was used to carry out the
calculations. Numerical experiment together with
mesh refinement was used to arrive at the meshes
used. Typically, a total of 432 elements were used
with 216 of these employed in the outer region. As
described in the previous section, the stress and
strain-rate distribution in the limit state were ob-
tained by incrementing E. The process was started

from a uniform state of zero stress, although this
1s not essential. One advantage of the computa-
tional procedure is that errors incurred during the
approach to the limit state are ““washed out” as E
increases. [t was convenient to replace (1.5) and
(1.6) by their respective equivalents:

o, E = /o,/n]Ui ds (2.1)
s
and
E:fﬂ3n3 ds, (2.2)
S

where the integration is over the surface of the
sphere containing phases No. 1 and No. 2 and n is
the outward unit normal to this surface.

Values for , were calculated for of" /o{* = 0.2,
0.5, 2, 5 and 20 at each of the following values of
fM: 041, 02, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9 and
0.95. Of course, &,=ga" for all f® when
o5 /P =1.
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Fig. 2. Normalized limit flow stress of composite as a function of the ratio of the phase flow stresses for /) = @ =1 Phase No. 1 is

the particle phase and No. 2 is the matrix phase.
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3. Predictions

To begin, take the volume fractions of the
phases to be equal, i.e. fV'=f®=0.5. Figure 2
displays the dependence of a,/0(” on the flow
stress ratio of the phases as determined from the
two self-consistent equations. There is some dif-
ference in the predictions depending on which
self-consistent condition is used. When the par-
ticulate phase (No. 1) is very hard compared to
the matrix phase, o, as predicted from the strain-
rate averaging condition is about 10% higher than
the stress averaging prediction. For each condi-
tion, the particle phase is predicted to be effec-
tively rigid when its flow stress is about 2.5 times
the matrix flow stress. The composite flow stress is
then a little more than 1.5 matrix flow stress. The
other limit, when the particle phase is very soft
compared to the matrix, corresponds to a matrix
containing regions which are free to distort but
which are not free to dilate. This limit is not the
same as that for a matrix containing voids with
traction-free surfaces.

The uniform strain rate upper bound to a,
from (1.2) is also shown in Fig. 2, i.e. for fV) = f
— 1

= 72
G0/03P = 3(1 + 0§ /ai?). (3.1)

The bound is a good approximation to o, for a
phase flow stress ratio satisfying

1 sa(;”/oéz)sl (3.2)

There exists other examples which corroborate the
ability of the uniform strain-rate upper bound to
provide a good approximation to more elaborate
models for predicting the limit flow stress of elas-
tic—perfectly plastic systems as long as the hetero-
geneity of the local flow stresses is not too large.
For example, it has recently been shown (Den-
dievel, Bonnet and Willis, 1990) that the uniform
strain rate bound for a polycrystal comprised of
randomly orientated fcc single crystals is only
slightly higher than a new, tighter upper bound.
The result was obtained for pure power law behav-
tor and the conclusion applies for all values of the
stress exponent from about 2 to oo (perfect plas-
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Fig. 3. Effect of interchanging the roles of the particle and matrix phases for the case of equal volume fractions of the two phases.
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Fig. 4. Normalized limit flow stress of the composite versus volume fraction of the particle phase based on the stress averaging
self-consistent equation.
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Fig. 5. Normalized limit flow stress of the composite versus volume fraction of the particle phase based on the strain-rate averaging
self-consistent equation.
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Fig. 6. Normalized limit flow stress of the composite versus volume fraction of the matrix phase based on the stress averaging
self-consistent equation.
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Fig. 7. Normalized limit flow stress of the composite versus volume fraction of the matrix phase based on the strain-rate averaging
self-consistent equation.
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ticity). Similar favorable performance of the uni-
form strain rate upper bound has been found by
Hutchinson (1976, 1977) based on comparisons
with self-consistent calculations for polycrystals
comprised of single crystals whose slip systems
have differing hardnesses, as long as the relative
differences are not larger than about a factor of
two.

The results of Fig. 2 are replotted in Fig. 3in a
way which reveals the differing roles of the par-
ticle and matrix phases. Here, to avoid confusion
with prior notation, the two materials are denoted
by A and B. The solid curve, which is taken
directly from Fig. 2, has A as the particle phase,
while the dashed curve gives the prediction when
B is the particle phase. For both curves, o, is
normalized by the flow stress of material B. Within
the range,

V<ol /ei® <2, (3.3)

there is relative little difference between the two
predictions. This suggests that the flow stress of a
composite with equal volume fractions of isotropi-
cally distributed phases may not depend very
strongly on other details of the geometry of the
phases within the above range of flow stress ratios.
Moreover, the upper bound (1.2) provides a good
approximation to o, within this range.

The complete set of numerical results from the
stress averaging condition are plotted in Fig. 4
and those from the strain-rate averaging condition
are plotted in Fig. 5. In these two figures &,/6.”
is shown as a function of £ for various of" /a{?.
For completeness, the same data is replotted in
Figs. 6 and 7 as g,/a." versus f® for various
flow stress ratios. The following observations are
based on the results in these figures.

Noting that the uniform strain rate upper bound
to g, 91.2) is a linear function of 'V (or f®)
with end values of ¢/" and a{?, one sees that this
bound provides a good approximation to the self-
consistent predictions for phase hardness ratios
satisfying of" /a{® < 2. In words, the bound (1.2),
which is simply the rule of mixtures, is a reasona-
bly accurate estimate of ¢, as long as the flow
stress of the particle phase is not more than about
two times the flow stress of the matrix phase.

Thus, the conclusion drawn from the results in
Fig. 3 for f"'=f@=0.5 holds for all volume
fractions of the phases. It appears that the geome-
try of the phases has relatively little effect on 4,
when there is less than a factor of 2 difference in
the flow stresses of the phases.

The simple bound (1.2) overestimates 6, when
the particle phase hardness exceeds the matrix
phase hardness by more than a factor of 2. The
only significant differences between the stress-
averaging and strain-rate averaging predictions
show up in this range. In Figs. 4 and 5, the
composite with af! /0{® =20 is, for all practical
purposes a matrix containing rigid spherical par-
ticles. It has already been noted that the particle
phase is effectively rigid for of? /0{? > 2.5 when
f=0.5. When of" /o{? = 5, the particle phase is
effectively rigid for volume fractions as large as
f®=0.7, or possibly 0.8, according to the self-
consistent model.

Weng (1990) has carried out a study of the
tensile stress—strain behavior of dual phase
hardening metals using both a uniform strain rate
procedure (the Taylor method) and an approxi-
mate version of Hill’s (1965) incremental self-con-
sistent model. While it is not possible to make
direct comparisons between his predictions and
those for the non-hardening solids considered here,
there is a close parallel in some of the findings. As
in the present study, Weng finds that the uniform
strain rate procedure gives accurate predictions
when the flow stress of the particle phase is less
than that of the matrix phase while it overesti-
mates the composite flow stress when the particle
phase is significantly harder than the matrix phase.
The effect of interchanging the particle and matrix
phases predicted by the self-consistent model used
by Weng is similar to that found in the present
study.

4. Application to an elastic—perfectly plastic matrix
reinforced by a non-uniform, isotropic distribution
of rigid particles

The results of the previous section are now
used to gain some insight into the role of non-uni-
formity in the distribution of rigid reinforcing
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Fig. 8. Ratio of limit flow stress to matrix flow stress for a
uniform distribution of equi-sized, rigid spherical particles with
volume fraction ¢ embedded in an elastic—perfectly plastic
matrix. The curve is based on the cell model calculation by Bao
et al. (1991).

particles in strengthening an elastic-perfectly plas-
tic matrix. The limit tensile flow stress X is shown
in Fig. 8 for an elastic—perfectly plastic matrix
with tensile flow stress oy which is reinforced by
a uniform, isotropic distribution of perfectly
bonded, equi-sized, rigid spherical particles with
volume fraction ¢. This result, 2(¢), for the uni-
form distribution was computed by Bao et al.
(1991) using a cell with approximate periodic-type
boundary conditions to model the interaction be-
tween particles.

Now consider a non-uniform, isotropic distribu-
tion of equi-sized particles where, as depicted in

0-0(1 )

Z(©)
0.0(2) __________

C

Fig. 9, the matrix has sub-regions which are either
particle-rich or particle-poor. To apply the results
of the previous section, assume that the character-
istic size of the sub-regions is large compared to
the average spacing of the particles. Further, as-
sume that the particles within each sub-region are
distributed uniformly with volume fraction ¢, in
sub-regions 1 and ¢, in sub-regions 2. For defi-
niteness in applying the results of the previous
section, suppose sub-regions 1 comprise the “par-
ticulate phase” with volume fraction f‘V, and let
sub-regions 2 be the “matrix phase” with volume
fraction f@, as in Fig. 9. The average volume
fraction of the rigid particles, taken over both
“phases”, is

c=fWc, + fPc,, (4.1)

where [ + f@ = 1. The flow stresses of the sub-
regions are identified according to (cf. Fig. 9)

o’ =3(¢;) and ol =23(c,). (4.2)

Now the results of Section 3 can be applied to
predict the dependence of the composite limit
flow stress g, on the non-uniformity as measured,
for example, by ¢, —¢. With /" (and therefore
/@) taken to prescribed, (4.1) requires

e—c=~(fP/fP) e, —0). (4.3)

"Particulate” Phase: f", ¢, , ¢,

"Matrix" Phase: @ ¢, , 5,2

Fig. 9. Scheme for applying the results for the dual-phase composite to a matrix reinforced by equi-sized rigid particles which are

non-uniformly distributed.
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A specific example will be displayed below, but
first a general result will be derived which applies
when the non-uniformity is not too large.

Suppose that ¢, — ¢ 1s such that the “phase”
flow stresses in (4.2) differ by less than a factor of
two. Then, as emphasized earlier, the simple rule
of mixtures formula (1.2) can be used to predict
6,. For sufficiently small ¢, — ¢, truncated expan-
sions of (4.2) can be used, i.e.

9=(c)
dc

= 3(0) + =5 (0= )

a E(c)( &), i=1,2. (4.4)

Substitution of (4.4) into (1.2) using (4.1) and (4.3)
leads to

¢x(e) /1

dc? f(z)( ]_C) (45)

=2(c) +
This result is interesting in several respects. It is
independent of d3(c¢)/d¢ and depends on ¢, — ¢
only quadratically. Since 3°3/dc¢? is generally
positive (see Fig. 8 for the case of spherical par-
ticles), non-uniformity increases o, above 2(c),
which is the flow stress for a matrix with uni-
formly distributed particles and the same average
particle volume fraction. The increase occurs if the
particle-rich sub-regions are identified with the
“particulate” phase (c, > ¢) or if they are associ-
ated with the “matrix” phase (¢, <¢). Of course,
(4.5) is limited to the range of non-uniformity
such that (1.2) and (4.4) remain accurate.

A specific example which shows how non-uni-
formity influences g, for arbitrary ¢, — ¢ is shown
in Fig. 10. Here, f"'=f® =4, and ¢, is de-
termined from of" and of” from the stress-aver-
aging curve in Fig. 2. The results apply to rigid
spherical particles with Z(c¢) given in Fig. 8. Curves
of 6,/0y versus ¢, — ¢ are plotted for three values
of ¢. The curves are plotted over the full range of
¢, consistent with the constraints that ¢; and ¢,
are non-negative and that neither exceed about
0.62 corresponding to particle touching with X
becoming unbounded.

The curves of Fig. 10 display the quadratic
dependence of ¢, —¢ in the vicinity of ¢, =¢
which is implied by (4.5). Now, however, the ad-

ale

Particle - Rich
"Matrix" Phase

Uniform

w
T

fO=f@=1/2

G,
Fig. 10. Dependence of limit flow stress on the degree of
non-uniformity of the distribution of equi-sized, spherical rein-
forcing particles. Predictions for three levels of average particle
volume fraction, ¢, are shown. Non-uniformity in this plot is
proportional to ¢; = ¢. The volume fractions of the particle-rich
and particle-poor regions are equal, 1 = & =

vantage of distributions with a particle-rich matrix
phase becomes evident when ¢; is well below c.
This trend is consistent with the fact that the
composite must become rigid if the matrix phase
becomes rigid but can have a finite flow stress if
the particle phase becomes rigid. Perhaps the most
significant, non-obvious implication of (4.5), to-
gether with the example in Fig. 10, is that, for the
class of non-uniform particle distributions mod-
elled here, the uniform distribution is associated
with the lowest overall flow stress.
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