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Abstract—The topic addressed in this paper is transverse cracking in the matrix of the 90° layers of a
cross-ply laminate loaded in tension. Several aspects of the problem are considered, including conditions
for the onset of matrix cracking, the evolution of crack spacing, the compliance of the cracked laminate,
and the overall strain contributed by release of residual stress when matrix cracking occurs. The heart
of the analysis is the plane strain problem for a doubly periodic array of cracks in the 90° layers. A fairly
complete solution to this problem is presented based on finite element calculations. In addition, a useful,
accurate closed form representation is also included. This solution permits the estimation of compliance
change and strain due to release of residual stress. It can also be used to predict the energy release rate
of cracks tunneling through the matrix. In turn, this energy release rate can be used to predict both the
onset of matrix cracking and the evolution of crack spacing in the 90° layers as a function of applied stress.
All these results are used to construct overall stress—strain behavior of a laminate undergoing matrix
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cracking in the presence of initial residual stress.

1. INTRODUCTION

The macroscopic tensile properties of uni-directional
fiber-reinforced brittle composites have been studied
extensively since the 70’s, where matrix cracking with
intact fibers plays an important role in longitudinal
strength. The transverse and shear strengths of such
composites are invariably lower than the longitudinal
strength. Consequently, in applications where multi-
axial stress states are encountered, cross-ply lami-
nates are commonly used. While there has been
considerable attention to the elastic properties of
cross-ply laminates, relatively less has been done to
establish their fracture performance in terms of the
properties of the constituent phases. This is the topic
of the present paper where emphasis is on brittle
matrix composites and explicit results for the effect of
matrix cracking on overall stress—strain behavior are
developed and presented. Studies of the topic have
been carried out within a framework of damage
mechanics where the effects of cracks are not explic-
itly predicted as represented by [1,2]. More closely
related to the present work are studies in [3, 4] where
explicit results for the effect of cracks are given
for general laminates. These four papers provide
additional references to the general problem area.

Recently, a comprehensive experimental study was
conducted on a laminated 0°/90° ceramic/matrix
composite [5]. When the tensile stress was applied
along one of the fiber directions, cracks were first
observed in the 90° layer and always spanned the
entire ply, but arrested at the interfaces between
layers, as sketched in Fig. 1. With further increase of
the applied stress, additional matrix cracks developed
in the 90° layers in the same way as previous cracks.

These cracks spread as 3D tunneling cracks from
small flaws located on the matrix of the 90° layers in
the direction transverse to the applied stress, as
depicted in Fig. 1. At even higher applied stress, it
was observed that the pre-existing cracks began to
extend into the adjacent 0° layers stably and without
any fiber failure, until these transverse cracks began
overlapping in the 0° layers.

The work in this paper deals with conditions for
the onset and subsequent multiplication of tunnel
cracks in the 90° layers of cross-ply laminates. In
addition, the effect of the tunnel cracks on the overall
stress—strain relation of the composite will be deter-
mined, including the contribution from the release of
residual stress. Such constitutive relations are re-
quired if progress is to be made in the effort to
understand the role of micro-cracking in altering
stress concentration at holes and notches in these
materials. The paper is organized as follows. We
begin by posing the problem for the energy release
rate of steady-state tunnel cracks. This problem can
be solved using information from a 2D plane strain
problem, which also provides the results needed
for the desired constitutive changes. Extensive finite
element calculations are then reported, providing
conditions for the onset of tunnel cracking and for
subsequent multiple crack formation. The results
permit one to predict the spacing expected between
the 90° layer matrix cracks as a function of the
applied stress. Given crack spacing in terms of
applied stress, one can then predict the overall
stress—strain behavior. This point is illustrated by
giving examples of stress—strain behavior as a
function of the basic geometry of the composite, the
toughness of the matrix, and the residual stress in the
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Fig. 1. A schematic of the 3D tunneling cracks in the 90°
layers.

next section. An approximate analysis is carried out
in the final section leading to closed form expressions
for the overall compliance change and the tunneling
energy release rate as a function of crack density.
These results, which are quite accurate, will be very
useful for practical applications.

2. BASIC MECHANICS

2.1. Basic equations for laminates

The elastic properties of an undamaged uni-
directional fiber reinforced ply are accurately taken
to be transversely isotropic about the fiber direc-
tion. With the fibers aligned with the l-axis, the
constitutive relation for the undamaged ply is
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where the subscript L stands for longitudinal
properties and the subscript T stands for transverse
properties. Notice that pp=FE;/[2(1+v;)] but
generally p; # E, /[2(1 + v)].
To limit the number of material parameters in the
subsequent development, the difference between the
fiber and matrix Poisson’s ratios will be neglected
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(i.e. v, =v=v). This approximation is known to
involve little error. The moduli of the ply are related
to the constituent properties by

E =cE+ (1 -¢)E, 2
=)+ u,(1—c)
ot marot O
and
V=V =V )

where ¢ is the fiber volume fraction. Formula (2) is
the rule of mixtures for the longitudinal stiffness, and
(3) was given in [6] using the composite cylinders
model. The remaining modulus, F;, has a somewhat
greater dependence on the spatial arrangement of the
fibers. The approximation used here is taken from [6]
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The above formulas apply under the condition that
no debonding occurs between the fiber and matrix in
the plies. To obtain some insight into the role of
fiber/matrix debonding, results will be computed in
addition for the limiting case where it is assumed that
the complete debonding has occurred. To model this,
we have followed the suggestion in [5] and have taken
E;=0 in (6), thereby reducing the transverse modu-
lus. The effect of debonding on the longitudinal shear
modulus is ignored since this effect is relatively
unimportant.

Now consider a cross-ply laminate with equal
thicknesses of 0 and 90° plies subject to in-plane
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Fig. 2. Conventions for the 3D cross-ply laminate.
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loading only, as illustrated in Fig. 2. A standard
derivation based on the assumption that the in-plane
strains are identical in every ply and that there are an
equal number of 0 and 90° plies, gives the overall
relation for the laminate to be

1 vy
€ =—0,——0C
1 E, 1 E, 2
) 1
Ellz_Egll"'EJZZ
0 0
l U]
€En=5—"0n
24

where

2v,
vy =
E
)
+5
Ho = po ®

are Young’s modulus, Poisson’s ratio and shear
modulus of the laminate, respectively, in the defined
coordinates.

The plane strain Young’s modulus defined as

E,
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will appear frequently in the sequel. Since the trans-
verse modulus E; depends on whether the
fiber/matrix interfaces are bonded or not, E, also
differs for these two cases.

2.2. Concept of steady-state tunneling cracks

Cracking in layered materials often occurs in the
tunneling mode within individual layers, as illus-
trated in Fig. 1. The energy release rate at the tunnel
front can be computed in principle by a three dimen-
sional analysis. However, as the length of the tunnel
becomes long compared with layer thickness, a
steady-state is reached in which the same mode I
energy release rate Gy is attained at every point on
the front and is independent of tunnel length [7].
From an energy argument, the steady-state energy
release rate Ggg can be computed using quantities
from the two-dimensional plane strain solution to the
crack problem depicted in Fig. 3. The result is

1{1 (*
Gy = 3 {Z J“‘ ao(x) d(x) dx}

where 2¢ is the layer thickness, o, is the stress normal
to the crack surface prior to cracking, and J is the

(10)
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crack opening displacement. This is applicable to
linear elastic anisotropic materials and can be used
when residual stress is present.

3. FINITE ELEMENT ANALYSIS

3.1. Isolated cracks and the onset of tunnel cracking

A complete analysis of the isolated crack problem
depicted in Fig. 3, is performed by finite element
analysis for all practical ranges of fiber volume
fraction ¢ and the ratio of Young’s modulus of fiber
to matrix, for both bonded and separated
fiber/matrix interfaces. The results for propagation of
an isolated tunneling crack will be used to generate
the conditions under which extensive matrix cracking
first occurs.

Figure 3 shows the cross section of a laminate with
a single transverse crack spanning the entire central
90° layer. The stress—strain behavior of each of the
plies is taken to be elastically orthotropic obeying (1),
with due regard for the two orientations. The inter-
faces between the layers are assumed to be perfectly
bonded. Plane strain conditions are assumed in the
z-direction and v, =v;=0.2. The average tensile
stress applied at infinity is o, and the tensile stress in
the 90° layer, prior to cracking, is

2E;
—_— .
E_+E;

One can readily show that the normalized steady-
state, tunneling energy release rate,
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Fig. 3. An isolated crack in a 90° layer.




2368 XIA et al: TRANSVERSE CRACKING IN FIBER-REINFORCED LAMINATES

2 T I 1 , T 1 T | 1 ) l T T 1 I T I I

R —

1.5 — —_— N . 2 ]

B k\"'—'—--——.-’_'.’_—_' E!/Emz 3 -1

L -\‘___.____.___,/ 5 -]

N“J .\‘\ 7

{o . r_ . \‘\ = Bonded fibers _:

'ml o N \‘\ .

o i s w - » Separated fibers |

. q:\\ =

b — -

0 . Ly

0 2 1

Fig. 4. The function, f(E;/E,, c), providing the tunneling energy release rate in (11) for an isolated crack.

defined from (10) is a function only of fiber volume
fraction ¢ and the modulus ratio E;/E,,, assuming the
Poisson’s ratios have been assigned, i.c.

=
?—f@;”)

where E| is defined in (9) for the two cases, bonded
and unbonded fibers mentioned in connection with
(6). Results displaying the dependence are shown in
Fig. 4 for the two cases. These results were computed
using a 7-layer laminate model with the crack in the
central layer, but they should apply for an arbitrary
large number of layers with high accuracy. In
fact, results computed using a 3-layer model and
normalized in exactly the same way differ only very
slightly from those shown in Fig. 4.

Denote the toughness of the layers in the tunneling
cracking mode by I', measured in units of energy per
unit area. For a crack propagating entirely in the
matrix, this would be the mode I toughness of the
matrix, I';,. For a tunnel crack front encompassing
the unbonded interfaces between the fiber and matrix,
I’ would be some fraction of I',,. The minimum stress
Oonset TeQuired for propagation of tunneling cracks in
the 90° layers is obtained from (11) as

an

(12)

This sets the condition for the onser of extensive
cracking in 90° layers. Note that this first cracking
stress is inversely proportional to the square root of
the ply thickness. If an initial residual tensile stress,
og, exists in the 90° layers acting parallel to the
applied stress, then the sum of g (E; + E)/(2E;) and
Oonsee Should appear on the left hand side of (12). In

other words, residual tension in the layer, modified by
the factor (E, + E;)/(2Ey), is equivalent to an overall
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Fig. 5 (a). The doubly periodic crack pattern analysed in
this paper. (b) A quarter of a periodic cell used for the finite
element model.
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Fig. 6. The function, g(E;/E,, c, t/L), providing the energy release rate for a doubly periodic array of
tunneling cracks in (13). (a) Bonded fiber/matrix interfaces. (b) Separated fiber/matrix interfaces.

applied stress contribution as far as tunnel cracking
is concerned.

3.2. Multiple cracking

Multiple cracking in 90° layers occurs when
the applied stress exceeds the critical level given by
(12). Results will be presented in this subsection for
the doubly periodic, plane strain crack problem
depicted in Fig. S5(a). Specifically, results will be
presented which allow one to predict: (1) the
evolution of crack density in the 90° layers, (2) the
increase in overall compliance as a function of crack
density, and (3) the extra overall strain released by
the cracks in the presence of residual stress. The
cracks are taken to be equally spaced within all 90°
layers, with spacing 2L and with the doubly periodic
pattern shown in Fig. 5(a). Plane strain conditions are

AM 41/8—H

again invoked and no traction is applied in the
x-direction. Because of symmetry, only one quarter
of a periodic cell needs to be considered in setting
up the finite element model, which is shown in Fig.
5(b). Standard symmetry boundary conditions are
applied on all edges of the quarter cell in Fig. 5(b)
except along the crack face where traction-free con-
ditions are imposed. The average traction on the
vertical faces is required to vanish, consistent with the
assumption that no stress is applied in the x-direc-
tion.

The finite element results for Ggg, expressed in
non-dimensional form as

GssEy [ E !
O'zt =g E ] ’L

m

(13
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Fig. 7. The function, h(E/E,,, c, t/L), providing the effective Young’s modulus for the cracked laminate
in (14). (a) Bonded fiber/matrix interfaces. (b) Separated fiber/matrix interfaces.

are shown in Figs 6(a,b), respectively, for bonded and
separated fiber/matrix interfaces. In Section 4, it will
be shown how to use this result for steady-state
cracking to predict crack spacing as a function of
applied stress. The corresponding results for the
effective plane strain Young's modulus for the
periodically cracked composite, defined as E, = o /e
where ¢ is the average strain in the y direction, are
shown in Figs 7(a,b) as

E_,(E !
E C\E°L)

As the crack density ¢/L becomes larger than
about 2, the results have asymptoted to the limit in

(14)

which only the 0° layers carry the load, which are
simply

E E
== L. (15)
E, E, +E;

It can be shown, by the reciprocal theorem of
elasticity, that (13) and (14) are related by

1 t E; t
1+t (E =), q
N +2Lg<EmcL> (16)
E L

Residual stresses and strains are generally intro-
duced during the process when the plies are bonded
together to form the layered composite. As discussed
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Fig. 8. A new set of tunneling cracks bisecting an existing
set of cracks in a given layer.

earlier, if an initial, uniform residual stress oy exists
in the 90° layers acting parallel to the applied stress
o, the effect on the tunneling energy release rate
is taken into account by replacing ¢ on the left
side of (13) by the sum of 6R(E, + E;)/(2E;) and
o. An additional overall strain, ¢,, occurs due to
the release of residual stress by the formation of
the cracks in the 90° layers. By a simple process
of superposition (see Appendix), one can show
that

_ 1 1\ E + Ey — (- E + Eyop
A= =—— 7JR_( —1)7-_-'
E. E, 2E; 2E; E,
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In the limit where the crack spacing becomes small
(i.e. t/L becomes larger than about 2), the stress in the
0° layers due to the residual stress is reduced to zero.
Consequently, in this limit, ¢, is just the negative of
the initial strain in the 0° layers in the uncracked
composite, i.e.

¢ =MZR_= l—ﬂvz Ir (18)
AT 2E K, E YJE

4. APPLICATION TO PREDICT CRACK SPACING
AND OVERALL STRESS-STRAIN BEHAVIOR

4.1. Prediction of crack spacing

Results obtained in the last section will be used
here to predict the tunneling crack spacing in 90°
layers as a function of applied stress. The method
employed here is identical to that of Hutchinson and
Suo [7] used to predict the crack spacing in thin films
under residual tension. It considers the effect of a
sequential cracking process where a new set of cracks
tunnels between an existing set of cracks as the stress
is increased, rather than a process where all the cracks
tunnel together.

The calculation of the energy release rate for the
cracks tunneling in the sequential process makes use
of the basic solution (13) for simultaneous steady-
state cracking. That solution is for simultancous
tunneling of all the cracks, periodically spaced a
distance 2L apart, in the 90° layers, as in Fig. 5. For
any such laminate, the steady-state tunneling energy
release rate for each crack is given by (13)

t
L
where here the dependence of g on E;/E_ and c is left
implicit. As noted before, when a residual stress og
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Fig. 9. Relationship between applied stress and crack spacing.
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exists in the 90° layers acting parallel to the overall
applied stress o, then ¢ in the above formula should
be replaced by ¢ + (E, + Ey)og [(2E7).

Now consider the sequential cracking situation
depicted in Fig. 8, where one set of cracks spaced
a distance 4L apart has already tunneled across
all 90° layers, and where a second set bisecting the
first set is in the process of tunneling across the
layers. We depicted in Fig. 8 only an isolated 90°
layer for better viewing. The steady-state energy
release rate for the cracks in the process of tunneling
can be obtained exactly from the strain energy
difference far behind and far ahead of the tunneling

Under the assumption that new cracks will always
be nucleated half-way between cracks that
have already formed and tunneled, and with Gg
identified with the mode I toughness I' along
fiber direction of 90° layers, (20) predicts the relation-
ship between ¢ and the crack spacing /L. This
relation is plotted in Fig. 9 for bonded fiber/matrix
interfaces. There are two features worth noting.
For spacing larger than L/t of about 2, there is
essentially no interaction between the cracks and the
spacing is indeterminate by the present analysis.
For smaller spacings the ratio t/L increases approxi-
mately linearly with stress o, and the dependence
on the parameters ¢ and E;/E is largely captured
in the non-dimensional stress variable o /\/ (EoT[1).
Implicit in the spacing relationship in Fig. 9 is
the assumption that initial flaws exist in the 90°
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Fig. 11. An illustration of the effect of residual stress on overall stress-strain behavior.
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layers of sufficient size and density such that the
tunnel cracks will initiate when the steady-state
condition is met. In this sense, the relation
between spacing and stress may predict somewhat
smaller spacings at a given stress than actually
occurs.

4.2. Prediction of overall stress—strain relation ac-
counting for progressive cracking

Let o be the overall stress applied to the composite
and suppose that a residual stress oy exists in the
uncracked 90° layers acting parallel to the applied
stress. With o replaced by ¢ + (E_ + E;)og /(2E;) in
the non-dimensional stress variable on the ordinate in
Fig. 9, the appropriate curve in this figure can be used
to predict ¢/L as a function of ¢. Next, combine (14)
and (17) to give the overall strain ¢ as
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Here h(E;/E_,c,t/L) can be obtained from Fig. 7
once one has obtained the relation between t/L and
o as just described.

The calculations described above are now illus-
trated. In Fig. 10 plots are displayed of the normalized
overall applied stress against the normalized overall
strain for cases in which there is no residual stress. As
noted earlier, the stress remains essentially unchanged
until the crack spacing reaches an L/t of about 2. This
corresponds to the flat portion of the stress—strain
curves in Fig. 10. As L/t diminishes to small values
(below about 1/2) the 0° layers carry most of the load,
leading to the linear response evident in the figure, with
(15) providing the asymptotic slope of these curves. A
remarkable feature of these curves is the fact that the
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Fig. 12. (a) Demonstration of the accuracy of explicit formula (39). (b) Demonstration of the accuracy
of explicit formula (41).
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non-dimensional overall stress and strain variables
used in Fig. 10 nearly collapse all the curves for a
wide range of E /E, and c.

Figure 11 shows the effect of a residual stress oy in
the 90° layers, a positive value representing a residual
tension and a negative value representing a residual
compression. The critical stress o, used to normalize
the residual stress in Fig. 11 is the stress at which
cracks begin to tunnel in all the layers in the absence
of any restdual stress. From (13), this stress is

. = E,r
“ tg(Ef/Emy ¢, 0) ’

This critical stress is between 5 and 10% higher than
the onset stress for tunneling of an isolated crack
given by (12). In Fig. 11, o is the applied stress.
Depending on its sign, the residual stress increases or
decreases the applied stress at which matrix cracking
occurs and makes a contribution to the overall strain
due to its partial release.

(22

5. AN APPROXIMATE THEORETICAL SOLUTION

5.1. The theoretical development

In this section we shall develop an approximate
analytical solution to the doubly periodic plane strain
crack problem posed in Fig. 5(b). Except for a
modification suggested at the end of this section, the
approximation follows fairly closely a similar sol-
ution in [8], where it was developed to predict the
stress transfer between 0 and 90° plies of a cracked
laminate. The solution in [8] applies to periodic
cracks in a single layer sandwiched between 0° layers
on both sides. The following equilibrium equations
must be satisfied in both 90° (denoted as material 1)
and 0° (denoted as material II) plies

Jdo, Ot
+

=0 23
dx Oy (23)
dt,, 0o,
67 + 5 =0. 24

The stress-strain relations for plane strain
conditions can be easily derived from (1). They are,
for 90° plies
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and for 0° plies
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The boundary conditions for a typical cell of the
doubly periodic problem are the standard ones
reflecting symmetry and the relations between the
overall quantities and the averages of local quantities
over the cell boundaries.

To proceed, we assume that the stress component
g, in both plies is independent of x. In other words,
we look for an approximate solution of the form

a,=—F(y)+o' (3D
o) =F(y)+a' (32

where o' and o are the stresses in the 90 and 0° plies,
respectively, that would result in a damage-free
laminate subject to average remote tensile stress g.
They are given by

2E;

1= 3
E.+E (33)
2F,
n_ L o 34
" TE+E (34)

We shall omit a detailed derivation for briefness;
most of the details are similar to those given in [8].
After satisfying equations (23-25), (27), (28), (30)
exactly, equations (26) and (29) in an average sense
with respect to the x-direction, and satisfying all
the boundary conditions except those listed below
in (36) and (37), we obtain the following linear
integral-differential equation for F(y)

F"(y) = 2a,°F"(y) + al F(y)
1 L

+a0——-[ F(y)dy =0 (35)
L J,

where
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The remaining boundary conditions to be satisfied
are given by

F(0)=0, F(L)=¢', and F(L)=0. (36)

In addition, it is required that F(y) be an even

function in y

F(y)=F(—y). 37

The solution to (35) can be used to express the
integral of F(y) as
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where

m=/(a;+a,)/2

n=/la,—a,)/2
a
h=—°2'
a, + aj

For cases where a,/a, is equal to or greater than 1,
similar solutions can be obtained. However, for most
practical fiber-reinforced composites, a,/a, is either
less than 1 or sufficiently close to 1 such that (42) is
a good approximation.

5.2. Modification using the FEM results

The analytical approximation given by equations
(39), (41) and (42) can be further enhanced by a slight
modification of @ in (42), which was suggested by the
comparison of the approximate predictions with the
more accurate FEM results obtained in Section 3. We
found that the accuracy of the above approximation
was improved when we replaced m and » is (42) by
1.1m and 1.1a, respectively, and then multiplied ¢
by the numerical factor of 0.82. Thus the modified
¢ is given by

2(1 — h)mn

0.82
m?+n?

2.2mL 2.2nL
cosh ; —cos ;

t
‘p(i): 2.2nL
1.1 .

(43)

. n .. 22mL  2hmn ¢t 2.2mL 2.2nL\’
m sin + 1.1 sinh —— — ————[ cosh——— —cos ——
t mi+n*L t t
L ty Several comparisons of the results given by FEM
0 Fy)dy =@ L g (38) analysis and the explicit formulas of equations (39)

where @ (which is also a function of ay, 4, and a,) will
be given below. The Young’s modulus of the cracked
composite, E,, is then approximately

= o E,
E =~ = 39
L)L t Er (39
l+——¢
LE;

and the tunneling energy release rate Ggg, calculated
from

Gss = a'[7"(L) — 5'(L)] (40)
is given by the approximation
E, 2F

G Ey it @41
ot E

In equations (39) and (40), terms such as #(L) stand
for the average y-displacement along y = L.
For the case a,/q, is less than 1, @ is given by

and (41) are demonstrated in Figs 12(a,b). The differ-
ences for all practical ranges of E;/E,, and ¢ are within
5%, and thus we believe the formulas given above are
well suited for practical applications.
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APPENDIX

When an initial residual stress oy exists in the 90° layers
acting parallel to the applied stress, an additional overall
strain ¢, occurs due to the release of residual stress by the
formation of the cracks in the 90° layers. This additional
strain can be calculated by applying a normal stress of
(—og) to the crack surface. Figure Al(a) depicts a quarter
of such a periodic cell, with standard symmetry boundary
conditions applied. By a linear superposition argument, one
can easily verify that the displacement and stress fields of
Fig. Al(a) can be obtained by subtracting that in Fig. Al(c)
from Fig. A1(b), where (b) has the same crack configuration
as (a), and (c) depicts the crack-free laminate. The elements
in (b) and (c) are both subject to an average stress
(E_ + E;)ow/(2E;). The overall strain ¢, associated with (b)
is given by (14)

1 B +E; \E, + Eyoy
- —h" o Al
vSE 2E * 2E, E, @b
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Fig. Al. Superposition for obtaining ¢, due to the release
of residual stress.

R

() (b)

and the overall strain ¢_ in (c) is given by a uniform plane
strain tension

1 E+E

- . A2
& Eo 2 ET gr ( )

The overall strain ¢, in (a) is then

E + E;on

A3
2E, E, A3

eaa=¢g—¢c=Mh"'=1)

which is (16) given in Section 3.




