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Cracking and stress redistribution in ceramic layered composites
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Abstract

Problems are analyzed that have bearing on cracking and survivability in the presence of cracking of layered composite
materials composed of brittle layers joined by either a weak interface or a thin layer of a well-bonded ductile metal. The
problems concern a crack in one brittle layer impinging on the interface with the neighbouring brittle layer and either
branching, if the interface is weak, or inducing plastic yielding, if a ductile bonding agent is present. For the case of a weak
interface, the effect of debonding along the interface is analyzed and results for the stress redistribution in the uncracked
layer directly ahead of the crack tip are presented. Debonding lowers the high stress concentration just across the inter-
face, but causes a small increase in the tensile stresses further ahead of the tip in the uncracked layer. A similar stress
redistribution occurs when the layers are joined by a very thin ductile layer that undergoes yielding above and below the
crack tip, allowing the cracked layer to redistribute its load to the neighbouring uncracked layer. The role of debonding
and yielding of the interface in three-dimensional tunnel cracking through an individual layer is also discussed and
analyzed. Residual stress in the layers is included in the analysis.

1. Introduction

When layered, thin sheets of a brittle material may
have toughness and strength properties far superior to
those of the material in bulk form [1-6]. To enable
good strength and toughness, the interface between
adjoining layers must counteract the stress concentra-
tion effect of any crack that occurs in an individual
layer, reducing the likelihood that it will propagate into
the next layer. Depending on the nature of the inter-
face, this may occur by debonding, when the interface
is brittle and relatively weak, or by yielding and sliding
for systems composed of brittle layers alternating with
thin ductile adhesive layers. The latter category is
represented by sheets of Al,O; joined by thin layers of
aluminum [2] and by the model system with sheets of
AL, bonded by epoxy [3]. Some of the issues related
to the design of layered brittle materials are similar to
those encountered in the design of fiber-reinforced
brittle matrix composites, such as the selection of inter-
face toughness to prevent matrix cracks from pene-
trating the fibers. Other issues are unique to the layered
geometry, and this paper addresses a few of them. In
particular, the role of yielding or debonding of the
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interface in defeating cracks in individual layers is
analyzed by consideration of the stress redistribution in
the adjoining uncracked layer that accompanies these
processes. Results are given for the energy release rate
of three-dimensional cracks tunneling through an
individual layer. This release rate, which is influenced
by interface yielding or debonding, provides the essen-
tial information needed to predict the onset of wide-
spread layer cracking in terms of the thickness of the
brittle layer material and its toughness.

The geometries of the problems to be studied are
shown in Fig. 1. Figure 1({a) shows a cracked layer of
width 2w with zones of either yielding or debonding in
the interface extending a distance d above and below
the crack tips. The interface is taken to be either a very
thin ductile layer of an elastic—perfectly plastic material
with shear flow stress 7 or a weak plane that debonds
and slips under conditions such that the layers remain
in contact and exert a friction stress 7 on each other.
The ductile adhesive layer allows relative slipping of
the layers it joins by plastic yielding, but it is assumed
that debonding does not occur. In this case, the condi-
tion K, =0 must be enforced, leading to well-behaved
shear stresses at the end of the yielding zone and estab-
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Fig. 1. Specification of the plane strain problems: (a) finite layer
crack; {b) asymptotic problem.

lishing the zone length 4. In the case where the inter-
face debonds, the interface crack is fully closed for
dfw>0.71[7]. The mode 2 stress intensity factor K, at
the end of the slipped zone will be nonzero, and must
attain the mode 2 toughness of the interface for the
debond to spread. Results for K, are given below.

Cracks in individual layers spread as three-dimen-
sional tunnel cracks propagating through the layer (Fig.
2). Once the crack has spread a distance of at least
several layer thicknesses in the z direction it ap-
proaches a steady state wherein the behavior at the
propagating crack front becomes independent of the
length of the crack in the z direction. Under these
steady-state conditions, the energy release rate of the
propagating front can be computed by use of the plane
strain solution associated with the geometry of Fig. 1(a)
(other examples of tunnel cracks are givenin ref. 8). The
steady-state energy release rate can be computed in
terms of the average of the opening &(x) of the plane
strain crack. The zone of yielding or debonding
increases the tunneling energy release rate, thereby
lowering the overall stress at which widespread layer
cracking can occur. Results for the tunneling energy
release rate are given below. The role of residual
stresses in the layers are readily accounted for: this is
discussed in the final section.

When the interface is weak and debonding occurs,
the interface crack is fully open with mixed mode
intensity factors when d/w <0.24 [7]. This case can be
approximated well by the asymptotic problem for a
semi-infinite crack impinging the interface where the
remote field is the K-field associated with the problem
in Fig. 1(a), with d=0. The stress redistribution in the
next layer ahead of the impinging crack tip is given,
with a correction of previous energy release rate results
for the doubly-deflected interface crack [9]. When
plastic yielding of a ductile adhesive layer occurs,
another asymptotic problem applies when o is suffi-
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Fig. 2. Specification of the three-dimensional tunneling crack
problem.

ciently small compared with 7. Then, the asymptotic
problem is that shown in Fig. 1(b) for a semi-infinite
crack loaded remotely by the same K-field. In this case
also, the effect of yielding in the thin adhesive layer on
the stress distribution ahead of the crack tip in the
uncracked layer is emphasized.

2. Effect of plastic yielding on stress redistribution

As discussed above, the thin ductile adhesive layers
in Fig. 1(a) are assumed to be elastic—perfectly plastic
with a yield stress in shear of 7, and are modeled as
having zero thickness. The plane strain problem is
considered where the central cracked layer has the
same elastic properties (E, v) as the semi-infinite
blocks adjoining across the interfaces. Under mono-
tonic increase of the applied remote stress o, the zones
of yielding of half-height & spread allowing slip in the
form of a tangential displacement discontinuity across
the interface in the yielded region. The condition
o,,= T is enforced within the yielded zones of the
interface. The Dugdale-like condition K,=0 at the
ends of the yielded zones ensures that the shear stress
on the interface falls off continuously just outside the
yielded zone, and it determines the relation of d/w to
o/t under the monotonic loading considered. Integral
equation methods are employed to solve this problem
as well as the others posed below; the methods used are
outlined briefly in Appendix A.

The two most important functional relations needed
to solve the three-dimensional tunneling crack problem
discussed below are shown in Figs. 3 and 4. In Fig. 4, 6
1s the average crack opening displacement defined by

< |1

o=— | 6(&)o 1
. f )0t (1)

The elastic value of d, valid when there is no yielding

(1= ), is 6,= (1 —v*)ow/E. Yielding of the adhesive

layers begins to make a significant contribution to the
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Fig. 3. Relation between applied stress and height of the yielding
zone in a thin ductile adhesive layer.
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Fig. 4. Average crack opening displacement as a function of the
ratio of applied stress to shear yield stress of the thin ductile
adhesive layer.

average crack opening displacement when g/ 7 exceeds
unity. The redistribution of normal stress o,(x, 0) in
the block of material across the interface is shown in
Fig. 5 for three levels of g/7. The curve shown for
a/t=1.5 is only very slightly below the elastic distri-
bution

(0,(x, 0)=(X+1)/(x> +28)!2

for x=x/w >0.05. Reduction of stress ahead of the crack
tip begins to be appreciable when o/7=2.7, and is
quite significant when /7= 6.4. The drop in stress just
across the interface is offset by a slight increase in
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Fig. 5. Stress distribution ahead of the crack tip in the uncracked
layer at several levels of applied stress to shear yield stress of the
thin adhesive layer.

stress relative to the elastic distribution further from
the interface. This feature is seen in all the stress re-
distribution results.

Stress redistribution can be presented in another
way when d/w is sufficiently small, by use of the asymp-
totic problem shown in Fig. 1(b). Provided d/w is suffi-
ciently small, the vyielding behavior is small-scale
yielding with the elastic stress intensity factor K as the
controlling load parameter. The remote field imposed
on the semi-infinite crack is the elastic K-field. This
asymptotic problem has also been solved with integral
equation techniques. The extent of the yield zone in the
asymptotic problem is

d=0.052 (5)2 (2)

T

Figure 6 displays the normal stress directly ahead of
the crack tip in the adjoining block normalized by the
elastic stress field for the limit z= . The stress ratio in
Fig. 6 depends on x/d but is otherwise independent of
K in the asymptotic problem. Yielding reduces the
stress below the elastic level over a region ahead of the
crack tip which is slightly larger than d/10. Beyond that
region the stresses are slightly elevated above the
elastic levels and approach the elastic distribution as
x/d becomes large. The stress redistribution due to
debonding (Fig. 6) is more dramatic: this is discussed
below.



60 K. S Chanetal

o, (x,0)

Ko

1L K,-0

-

[a= o.osz[%ﬂ

-—, = -

Xy
—_———
X

0.8

08

p

04— —_————

Plastic

02 Debonding Yielding

|-

x/d

Fig. 6. Stress redistribution ahead of the crack tip in the layer
across the interface for the two asymptotic problems (d'< w).

3. Effect of plastic yielding on tunnel cracking

As stated above, the steady-state energy release rate
for a three-dimensional tunneling crack can be com-
puted by use of the plane strain solution. For the
geometry and loading shown in Figs. 1(a) and 2, the
leading edge of the tunneling crack propagating in the z
direction experiences mode 1 conditions. Let G,
denote the energy release rate averaged over the prop-
agating crack front. An energy balance accounting for
the release of energy per unit advance of the tunnel
crack under steady-state conditions gives 2wG as the
work done by the tractions acting across the plane of
the layer crack in the plane strain problem as those
tractions are reduced to zero from ¢. For the present
problems, this is the same as

Gss=f é(a')do’ (3)

where § is the average crack opening displacement for
the traction-free plane strain crack under monotoni-
cally increased remote ¢. The elastic result for d=0
(ie. T=o0)is
Gss‘,zn(l—vz)ozw (4)
2FE
The ratio of G, to G’ can be computed from the data
in Fig. 4 by use of simple numerical integration. The
result is plotted in Fig. 7. Increases of the steady-state
release rate above the elastic value become important
when of T exceeds unity.
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Fig. 7. Normalized steady-state energy release rate for the
tunneling crack in the case of thin ductile adhesive layers with
shear yield stress 7.

4. Effect of debonding and frictionless slipping on
stress redistribution

The plane strain interface debonding problem for
the geometry of Fig. 1(a) is as follows for the case
where no frictional resistance is exerted across the
debonded interfaces {i.e. 7=0). According to ref. 7, the
debonded interface will be fully open when d/w < 0.24,
and the interface crack tip at the end of the debond is
subject to mixed mode conditions, as discussed for the
asymptotic problem below. For 0.24 < d/w<0.71, the
debond crack tip is closed and therefore in a state of
pure mode 2, but a portion of the interface near the
main layer crack is still open. For d/w>0.71, the inter-
face is fully closed and the interface crack tip is in
mode 2. The top curve for the normalized mode 2
stress intensity factor in Fig. 8 applies to the frictionless
case. It was computed using the integral equation
methods outlined in Appendix A under the constraint
that the interface remains closed. The results are
strictly correct only for d/w>0.71 (and agree with the
results of ref. 7), but are only slightly in error for
smaller d/w. The average crack opening displacement
6 needed for the tunnel crack calculations is shown in
Fig. 9, where the top curve again applies to the friction-
less case.

The role of debonding on stress redistribution is
seen in Fig. 10, where curves of the stress ahead of the
right-hand layer crack tip (normalized by the remote
applied stress o) are plotted for various levels of
debonding, all for the closed interface with r=0.
Debonding clearly has a significant effect on lowering
of the stress on the adjoining material just across the
interface; more so than for plastic yielding of a thin
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Fig. 8. Normalized mode 2 stress intensity factor for the debond-
ing interface crack at several levels of interface friction stress to
applied stress.

diw

Fig. 9. Average crack opening displacement as a function of
debond length at several levels of interface friction stress to
applied stress.

ductile layer discussed in connection with Fig. 5. For
sufficiently small d/w, the debonded interface is fully
open and the asymptotic problem for a semi-infinite
crack impinging on the interface applies, as shown in
the insert in Fig. 6. The stress redistribution is plotted
in Fig. 6, which shows that the stress ahead of the layer
crack tip is reduced below the level in the absence of
debonding over a distance from the interface equal to
half the debond length 4. Figure 6 also shows that
debonding appears to be more effective in protecting
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Fig. 10. Stress distribution ahead of the crack tip in the
uncracked layer across the interface for the case of no interface
friction.

the uncracked layer across the interface than plastic
yielding of a thin ductile adhesive layer.

As a digression, the mode 1 and 2 stress intensity
factors are recorded for the open interface crack tip for
the asymptotic problem of Fig. 6

K, _
X =(0.399
and (5)
K,
=322
X 3

The associated ratio of the energy release rate of the
interface crack tip to that of a mode 1 crack pene-
trating straight through the interface without debond-
ing is 0.263 when both the deflected tips and the
penetrating tip emerge from the main crack tip at the
same applied K. These results correct results given in
ref. 9 that were in error for the case of the doubly-
deflected interface crack. A complete set of corrections
of this energy release rate ratio for this case over the
full range of elastic mismatch across the interface is
given inref. 10.

5. The effect of frictional slipping on debonding and
tunnel cracking

Figures 8 and 9 show curves for the normalized
mode 2 stress intensity factor and the average crack
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opening displacement respectively in the plane strain
problem for several levels of a constant friction stress ©
relative to o acting over the bonded interface. A con-
stant friction stress, as opposed for example to a
Coulomb friction stress, has been used by some work-
ers to represent the frictional forces exerted across
slipping interfaces in composites. The purpose of the
present limited study is to illustrate the effect of friction
in establishing the extent of debonding and its asso-
ciated influence on the three-dimensional tunneling
energy release rate. Almost certainly, additional studies
will be required before understanding is good, includ-
ing studies with other friction laws. Some results for the
effect of Coulomb friction on the mode 2 interface
stress intensity factor are giveninref. 11,

Let K, denote the mode 2 toughness of the interface.
Attention will be concentrated on the behavior
following initiation of interface debonding when the
debond length d is sufficiently large (i.e. greater than
~w/4) such that the debond interface crack tip is in
mode 2. Impose the debonding condition K, =K_ on
the solution presented in Figs. 8 and 9. The relation-
ships of the applied stress with the debonding length
and the average crack opening displacement that result
are plotted in Figs. 11 and 12. The two nondimen-
sional stress parameters in these figures are the applied
stress parameter o(w)!/?/K_ and the constant friction
stress parameter 7(w)!/2/K_. (It is necessary to inter-
polate values between the curves of Figs. 8§ and 9 to
arrive at the plots in Figs. 11 and 12, since a constant
value of 7(w)'?/K_ does not correspond to a constant

Fig. 11. Relation of normalized applied stress and debond height
at several levels of the non-dimensional interface friction stress:
the condition K, =K_ is imposed, where K is the mode 2 inter-
face toughness.
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value of 7/0.) In the range of d less than ~w/4, the
predictions are not expected to be correct since the
interface undergoes mixed mode debonding and not
mode 2 debonding. Thus, the details in the vicinity of
the initiation of debonding are not correct. In par-
ticular, the value of o(w)'/?/K_ at which & begins to
depart from &, (see¢ Fig. 12) would depend on the
mixed mode condition for debond initiation. But once
debonding has progressed to the point that the inter-
face crack tip is closed, the mode 2 criterion is appro-
priate and the curves are accurate.

In the absence of friction the debonding process is
unstable, since for a fixed o, K, has a maximum when
d=w and then drops slightly to an asymptote as d
increases further. Under a prescribed o, the mode 2
debond would advance dynamically after it was
initiated. In this sense, the curves shown in Figs. 11 and
12 for =0 represent unstable debonding behavior.
Friction stabilizes the debonding process, giving rise to
a monotonically increasing debond length and average
crack opening displacement as the applied stress
increases A nondimensional friction stress of the order
of T(w)Y2/K.=1/8 or more is required if friction is to
be important.

The steady-state energy release rate for tunnel
cracking can be computed from the curves in Fig. 12
using eqn. (3). The results of this calculation are plotted
in Fig. 13. As before, G, is normalized by the value for
a layer crack with no debonding given in eqn. (4). The
above remarks on accuracy in the vicinity of debond
initiation also apply to these curves, It can be seen from
Fig. 13 that debonding can significantly promote tun-

(1=} ow
5, = Lo
0
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_____________1__
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Fig. 12. Relation of the average crack opening displacement and
normalized applied stress at several levels of the nondimensional
interface friction stress: the condition K, =K, is imposed, where
K. is the mode 2 interface toughness.
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Fig. 13. Steady-state energy release rate for the tunneling crack:
the condition K, =K, is imposed, where K is the mode 2 inter-
face toughness.

neling cracking when the nondimensional friction
stress is less than about 7(w)!/2 /K, = 1/2.

6. Accounting for residual stress in the cracked layer

The role of a uniform residual tension o, = oy pre-
existing in the layer that undergoes tunnel cracking can
readily be taken into account in the various results
presented above. For the purpose of discussion, let
o,.= 0, be the applied stress, replacing the notation for
o given above. The results in Figs. 3,4, 7-9 and 11-13
apply as they stand if o is identified with o, +0y. The
results for stress redistribution shown in Figs. 5 and 10
can also be used, with the following modifications.
With ¢ identified with o, + oy, the results in Figs. 5 and
10 are correct for the change in o, in the layer ahead
of the tip due to cracking if the numerical value of the
ordinate 1s reduced by 1. To obtain the total stress o,,
in the layer in question, one must then add the change
and the stress o, existing in the layer prior to the
cracking event.
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Appendix A: Numerical approaches

‘Two integral equation formulations were used in the
solution of the problems discussed. As these have been
used by various authors to solve related plane strain
problems, details of the methods are not given here. In
some cases, results were generated by use of both
schemes as a check. The methods used for the prob-
lems for the closed interface cracks at the ends of the
finite length layer crack (see Fig. 1(a)) are discussed
first.

The integral equations in method 1 are formed by
representation of both the layer crack and the mode 2
interface cracks in terms of distributions of disloca-
tions. With reference to Fig. 1(a), let b,(x)= —dd,/dx
denote the amplitude of the dislocation opening dis-
tribution extending from 0 to w along y=0, and let
b{y)= —dd,/dy denote the amplitude of the disloca-
tion shearing distribution along x = w extending from 0
to d. The condition that ¢,=0 along y=0 for
—w<x<w can be written as

J i pyx)ax + [ e by dy=—a  (6)

0 0

where H(x, x') denotes the stress o,(x) along y=0
due to by(x'), with due regard for the symmetry of this
distribution with respect to x=0, and H,(x, y) denotes
o,(x) due to b(y), with the appropriate four-fold
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symmetry on this distribution imposed. Similarly, the
condition that ¢,,= —7 along x =w between 0 and d
(with the corresponding shear conditions met along the
other three legs of the H-crack)is

w

d
| iy s ax + [ Hyyw(yydy'= -7 (7)

0 0

where Hy(y, x') is o, (y) along x =w due to b,(x') and
Hy(y, y')is o,(y)dueto byy').

Method 2 uses the solution for the problem of four
symmetrically placed dislocations interacting with a
traction-free crack extending along the x-axis from —w
to w. With H(y, y') denoting the shear stress o,(y)
along x =w between 0 and d due to b(y'), with due
regard for the other three symmetrically placed dis-
locations, the single integral equation for b, is

| Hiyy )by dy = =0, (y) -7 (8)

where 0, y) is the shear stress along x =w due to the
remote stress acting on the layer crack in the absence
of the interface cracks.

The kernels of the above integrals have Cauchy
singularitiecs. The dislocation distributions can be
techniques. Once the distributions are known in either
obtained by use of several well known numerical
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method, they can be used with other integral expres-
sions to compute the stress components at any point in
the plane and the mode 2 stress intensity factor at the
end of the interface crack. For the cases in which K is
nonzero, the distribution b (y) has an inverse square
root singularity at y=d, while it diminishes with the
square root of the distance from y=d for the plastic
yielding problems with K,=0. The solutions do not
rely on a precise incorporation of the correct behavior
of the dislocation distributions at the corner point at
x=w on y=0. A number of choices were made,
including representations that built in the correct
lowest order functional behavior near this point.

The asymptotic problem for the semi-infinite layer
crack and the mode 2 interface cracks (see Fig. 1(b))
was solved using method 2. Now, H(y, y') is the shear
stress along x =0 between 0 and d due to just two sym-
metrically placed dislocations on x=0 at ' interact-
ing with a traction-free semi-infinite crack, and g,,%( y)
is the shear stress on x=0 due to the K-field in the
absence of the interface cracks. The second asymptotic
problem discussed in connection with Fig. 6, in which
the interface crack opens, is also solved using method
2, but here both shear dislocations and opening dis-
locations must be used and the problem becomes a set
of dual integral equations. In all the cases involving
method 2, the kernel functions H can be obtained in
closed form by use of complex variable methods of
elasticity.



