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stress limit is reached. Such unstable void expansion, driven by the elastic energy
stored in the surrounding material, has been studied for the relatively simple case
of spherically symmetric conditions and also for a spherical void in an axisymmetric

remote stress field. The analyses are here extended to consider the effect of a void
with an initially prolate or oblate spheroidal shape. Numerical unit cell analyses are
carried out for a power-hardening elastic-plastic material subject to various axisym-
metric remote stress states. For the range of void shapes analyzed it is found that
the critical cavitation stress state shows very little influence of the initial void shape.

1 Introduction

Cavitation instabilities in metals occur under rather rare
conditions in which plastic flow is highly constrained leading
to mean tensile stress levels which are more than four or five
times the tensile flow stress of the solid. Although mean stress
levels of that magnitude are seldom achieved, there are some
important applications where such levels can occur and for
which spontaneous cavitation is a potential failure mechanism.
Situations where thin layers of a ductile metal are bonded to
phases which are capable of only elastic deformation are likely
candidates, as in ceramic particle reinforced metal matrix com-
posites and in layered structures with ceramic layers alternating
with metal layers. A striking example of cavitation instabilities
was observed by Ashby, Blunt, and Bannister (1989) in tensile
experiments on highly constrained ductile wires. In each spec-
imen, a single void ballooned open in the region of highest
triaxiality, most likely nucleated at some kind of second phase
particle whose size would be measured in microns. These voids
increased their volume by more than six orders of magnitude
essentially spontaneously when critical conditions were reached.
It is in this sense that a cavitation instability should be regarded
as a material instability, quite distinct from conventional void
growth which takes place incrementally and stably in propor-
tion to imposed overall straining.
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Early work on cavitation instabilities is summarized in Hill
(1950). The earliest work was confined to either axisymmetric
or spherical symmetric voids subject to stress loadings with
the same symmetry. Recently these studies have been extended
to the case of initially spherical voids under nonspherically
symmetric stressing (Huang et al., 1991; Tvergaard et al., 1992;
Hou and Abeyaratne, 1992). The critical remote stress states
associated with the cavitation instability have been determined
for an isolated initially spherical void in an infinite elastic-
plastic medium. A somewhat different way of interpreting
cavitation instabilities has been promulgated in studies of the
phenomenon within the context of nonlinearly elastic solids.
Ball (1982) views cavitation as a bifurcation from a homo-
geneously stressed state by allowing for bifurcation fields which
are singular at the point of origin of the void (see Horgan
(1992) for further discussion of the two interpretations and
for further references to the elasticity literature). This alter-
native viewpoint lends itself paturally to the labelling of the
phenomena as an inherent material instability.

With the exception of the three aforementioned papers, all
the studies, whether for elastic or elastic-plastic solids, have
been carried out under restrictions of either axial or spherical
symmetry. The term material instability suggests that the crit-
ical cavitation stress states should not be a function of, for
example, the initial shape of the void or, equivalently, of the
details of any initial imperfection when viewed within the bi-
furcation context. This seems to be implicit in much of the
literature, but it has not been established. The objective of this
paper is to address this issue by determining to what extent,
if any, the cavitation stress states are a function of the initial
shape of the voids. Specifically, we will present results for an
isolated void with an initially prolate or oblate spheroidal shape
in an infinite elastic-plastic solid. The solid is subject to general
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Fig. 1 Cavitation limits for a spherical void in an elastic-plastic power-
hardening solid, with ¢,/JE = 0.003 and » = 0.3; (a) axial tensile stress,
(b) mean stress (from Tvergaard et al., 1992)

combinations of remote stress states sharing a common axis
of symmetry with the void.

2 Cavitation in Axisymmetric Stress Field

For anisolated spherical void in an infinite, remotely stressed
elastic-perfectly plastic solid the occurrence of cavitation in-
stabilities has been analyzed by Huang et al. (1991), and the
analysis was extended to power-hardening elastic-plastic solids
by Tvergaard et al. (1992). The remote principal true stresses,
leading to an axisymmetric stress state, were taken to be

or=S, oy=o03=T 1)

and the analyses focussed on stress states where S = T. For
the special case of a single spherical void in an elastic-plastic
material subject to remote pure hydrostatic tension (S = 7T),
where spherical symmetries apply, the analysis is relatively
simple (Hill, 1950; Huang et al., 1991).

The dependence of the cavitation instability limit on the
remote stress ratio 7/S is shown in Fig. 1 (Tvergaard et al.,
1992) for an elastic-plastic power-hardening material with ini-
tial yield stress 0,/E = 0.003 and Poisson’s ratio » = 0.3,
including the result for an elastic-perfectly plastic solid (VN =
0). These resuits for a spherical void include also the special
case of spherical symmetry (S = 7T), and it is seen that the
critical tensile stress S or mean stress o,, for cavitation insta-
bility is strongly increased by strain hardening.

The solution procedure used by Huang et al. (1991) for
general axisymmetric states of deformation is based on cou-
pling an outer solution to a finite element representation of
the solution in an inner region. The outer solution is either a
purely elastic solution or a purely plastic solution, which con-
sists of a uniform field corresponding to a uniform stress state
equal to the remote stresses, with the lowest order perturbation
superposed. The inner solution is a full finite strain solution,
and the two solutions are coupled by requiring continuity of
displacement increments and nominal traction increments
across a spherical surface with radius R = R”.

In the present analyses for voids with initial ellipsoidal shapes,
it has been preferred to use a finite element approximation in
the whole region analyzed. Thus a cylindrical cell model (Fig.
2) with a central void is analyzed. This type of cell model has
been used previously (Tvergaard, 1982; Hutchinson and Tver-
gaard, 1989) to represent a periodic distribution of voids; but
in the present computations, very low void volume fractions
of about 2.5¢107 ! are considered so that the studies give a
good approximation of the behavior of a single void in an
infinite solid. The cell model analysis gives an accurate rep-
resentation of the stress history in the material near the void,
since the void surface is load free throughout the deformations.
By contrast, in the analyses based on coupling an inner solution
to an outer solution (Huang et al., 1991; Tvergaard et al.,
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Fig. 2 (a) Cylindrical cell model used to analyze cavitation; (b) initial
void shape

1992), an initial uniform stress state is enforced by applying
void surface loads, which are subsequently stepped down; but
this gives a somewhat inaccurate stress history in the material
near the void, which may result in an inaccuracy of the path-
dependent elastic-plastic solution.

The cylindrical unit cell has the initial radius R, and height
2H, (Fig. 2). Due to symmetry about the middle plane, only
half of the cell needs to be analyzed. The void at the center
of the cell is taken to be ellipsoidal, with initial half-axes a,
and b, in the radial and axial directions, respectively. A cy-
lindrical reference coordinate system is used, in which x' is the
axial coordinate, x* is the radial coordinate, and x* is the
circumferential angle. In terms of the displacement compo-
nents u' on the reference base vectors and the nominal surface
tractions 7", the boundary conditions for the unit cell are, on
incremental form,

u'=0, T’=T"=0, atx'=0 P))
il1=U,, T2=T3=0, atxl=H0 (3)
W=U, T'=T'=0, atx’=R, @)
n 2 2N\ 2
.. x x
T'=0, at|—]) +|—] =1.
IO RCEI

The two constants U; and Uj; are displacement increments and
the ratio U,;/ Uy is calculated in each increment such that there
is a fixed prescribed ratio, p = T/S, between the macroscopic
true stresses (see Tvergaard, 1982).

Constitutive relations and equilibrium equations are given
here in the context of a convected coordinate formulation of
the field equations. The Lagrangian strain tensor is expressed
in terms of the displacement components as

1
=5 (i) + Ui+ iy ) (6)

where ( ), ; denotes covariant differentiation in the reference
frame, indices range from one to three, and the summation
convention is adopted for repeated indices. The contravariant
components of the Kirchhoff stress tensor 7"/ and the Cauchy
stress tensor ¢ are related by

=G/g o U
where g and G are the determinants for the metric tensors g;;
and G;; in the reference configuration and the current config-
uration, respectively.

The elastic-plastic material behavior is represented by a fin-
ite strain generalization of J; flow theory (Hutchinson, 1973).
The incremental stress-strain relationship is of the form 77 =
LY¥ 5 4, with the tensor of instantaneous moduli given by
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Here g, = (3s;5/2)" is the effective Mises stress, s” = 7"

— G“7%/3 is the stress deviator tensor, E is Young’s modulus,

and v is Poisson’s ratio. The tangent modulus E, is the slope

of the uniaxial true stress versus natural strain curve, which
is here represented by a piecewise power law

%_ , fore=o,
E=N A (10)
Ey<o_y> , foro>a,.

The finite strain generalization of J, flow theory employed
here is formulated directly in terms of Kirchhoff stresses rather
than Cauchy stresses (see Hutchinson, 1973), and thus the value
of the effective Mises stress ¢, used in (8) and (9) is vG/g
times the corresponding effective stress value I, defined in
terms of Cauchy stresses. This difference is small, since G/g
differs from unity only due to elastic compressibility.

3 Numerical Method

The equations of equilibrium are expressed in terms of the
principle of virtual work, and a numerical solution is obtained
by a linear incremental solution procedure. The equations gov-
erning the stress increments Ar”, the strain increments Ay,
etc., are obtained by expanding the principle of virtual work
about the current state, using (6). To lowest order the incre-
mental equation is

S farY8n;+ 770uou, ; YdV
Vv

=S AT'su;dA - U 7/8n,dV — S T’éuidA] (11)
A Vv A

where V and A are the volume and surface, respectively, of
the body in the reference configuration, and T' are contra-
variant components of the nominal surface tractions. The
bracketed terms are included to prevent drifting of the solution
away from the true equilibrium path.

The meshes used in the incremental finite element solutions
consists of quadrilaterals, each built up of four triangular,
linear displacement elements. The integrals in (11) are evalu-
ated at one central point within each element. An example of
a mesh used for the analyses is shown in Fig. 3, illustrating
both the outer mesh in the half unit cell analyzed and the
central part of the mesh near a void with ay/b, = 4.

A special Rayleigh-Ritz finite elemnent method (Tvergaard,
1976) is used to be able to prescribe a node displacement at
the void surface rather than the end displacement U, without
applying a load on the void surface. This improves the nu-
merical stability near the occurrence of a cavitation instability
where U; — 0.

The average straining of the void is determined from the
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(b)

Fig. 3 Mesh used for numerical analyses; (3) outer mesh in haif-unit
cell, (b) inner mesh near a void with a,/b, = 4

average displacement gradients F;;, referring to a Cartesian
frame, which are calculated as

F,‘j=6,'j+l S uinjdA. (]2)

V- A
Here §;; is the Kronecker delta, V and A4 are the volume and
surface, respectively, in the reference frame, and ; and #; are
the Cartesian components of the displacements and the out-
ward unit normal. The axial and transverse components of the
gradient, F;; and F,; = Fj3, respectively, are then used to
define average half-axes @ and b of the deformed void, such
that

a=Fnay, b=Fb,. (13)

Based on these average half-axes, the development of the ratio
a/b will be used to illustrate the void shape changes during
growth.

4 Results

The analyses to be presented here are carried out for a power-
hardening material with N = 0.1 and o,/E = 0.003, and the
value of Poisson’s ratio is taken to be » = 0.3. Furthermore,
the ratio of the average true stresses, p = 7/5S, is kept constant
in each case studied, and thus the results to be presented are
directly comparable with the curve for N = 0.1 shown in Fig.
1, obtained by Tvergaard et al. (1992) for initially spherical
voids.

Figure 4 shows results obtained for remote hydrostatic ten-
sion, 7/S = 1. Thus here the stress and strain fields far from
the void satisfy conditions of spherical symmetry, as is directly
shown by the numerical solutions, but near the voids spherical
symmetry breaks down, and general axisymmetric fields de-
velop due to the ellipsoidal initial void shapes.

. As a measure of the void dilatation rate the development of
V/(&,V) is shown in Fig. 4(a), normalized by its value at V/
V, = 2. Here, Vyand Vare theinitial and current void volumes,
respectively, and ¢; = In (1 + U,;/H,) denotes the average
logarithmic strain in the x -direction. For § = T, where ¢,
> 0if S > 0, the occurrence of a cavitation state is determined
by the condition that V/(& V) is unbounded as the stress state
is approached from below. This is clearly illustrated by the
plot of the normalized dilatation rate versus V/V, in Fig. 4(a),
which shows that V/(&,V) grows rapidly as the void volume
increases. The occurrence of cavitation instabilities in this case
of remote hydrostatic tension is also illustrated by the fact that
the slope becomes zero for the curves of §/g, versus V/V; in
Fig. 4(¢). It is noted that the numerical stability of the com-
putations decays as the void volume grows very large, leading
to a strongly distorted mesh. Therefore, the predicted dila-
tation rates V/(&,V) start to oscillate at the end of the com-
putations shown in Fig. 4 after the stage illustrated by the
curves in Fig. 4(a).
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Fig. 4 Cavitation behavior versus void volume, for 7/S = 1; (a) nor-
malized dilatation rate, (b) void shape, (¢) remote axial stress

The development of the void shape for increasing volume
is illustrated by the curves of a/b versus V/V, in Fig. 4(b).
Computations have been carried out for three different ellip-
soidal shapes, ap/by = 4, ap/by = 2, and ay/by = 0.5, and it
is seen that in all three cases the ratio a/b grows very close to
unity, indicating that the growing voids become nearly spher-
ical. Also, more extreme void shapes, a,/bg = 0.25 and a¢/by
= 6, have been analyzed; but these computations break down
numerically at an earlier stage than those shown in Fig. 4, due
to strongly distorted meshes. Although these additional com-
putations are not included in Fig. 4, it is noted that the trends
are the same as those shown in the figure.

Both a circular cylindrical void and a spherical void were
analyzed by Tvergaard et al. (1992), and it was found that the
critical stress for cavitation instability is significantly lower in
the case of a cylindrical void. Thus for the material considered
here, with N = 0.1, ¢,/E = 0.003 and » = 0.3, the critical
cavitation instability stress is 15 percent lower for a cylindrical
void than that corresponding to a spherical void. In the case
of ellipsoidal voids the behavior should approach that of cy-
lindrical voids for very small values of ay/by, but this tendency
is not visible in Fig. 4(c). In fact, the cavitation instability
stress found for ay/by = 0.5 is slightly smaller than that found
for ay/by = 4, as expected, but the difference is only 0.4
percent. To obtain a cavitation instability stress closer to that
for cylindrical voids, it is expected that the ratio ay/b, would
have to be so small that the void is still cylinder like when it
has grown so large that the cavitation instability stress is ap-
proached.

Examples of mesh deformations near the void are shown in
Fig. 5 for the case ay/by = 4, with T/S = 1, also illustrated
in Fig. 4. These four deformed meshes correspond to rather
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(d)

Fig. 5 Deformed inner meshes for a,/b, = 4 and T/S = 1;(a) V/V, =
1.70, (b) V/V, = 2.98, (¢) V/V, = 4.67, (d) V/V, = 6.81
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Fig. 6 Cavitation behavior versus void volume, for 7/5 = 0.9; (a) nor-
malized dilatation rate, (b) void shape, (c) remote axial stress

early stages, at the values 1.70, 2.98, 4.67, and 6.81 of V/V;
but it is seen from the corresponding curve in Fig. 4(b) that
most of the void shape change takes place at this early stage.
The elements around the void circumference are already
strongly deformed in Fig. 5(d), since large strains develop in
this region where the void surface was initially most strongly
curved, and this is also the region where the most pronounced
mesh distortions develop later on.

As the stress level approaches the cavitation instability limit,
the strains grow very large at the void surface, and there is the
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Fig. 7 Cavitation behavior versus void volume, for T/S = 0.82; (a) nor-
malized dilatation rate, (b) void shape, (c) remote axial stress

possibility that bifurcation into a short wave surface instability
takes place (see Hutchinson and Tvergaard, 1980). In the pres-
ent computations the solid is characterized by the .J, flow theory
for which the surface wave bifurcation strain is essentially
unattainable (apart from the special case of a very low-hard-
ening material under plane-strain conditions). Thus in the pres-
ent analyses, as well as the J, flow theory analyses of Huang
et al. (1991) and Tvergaard et al. (1992), the occurrence of a
surface instability prior to the cavitation instability is not likely.
However, in analyses based on deformation theory (Hou and
Abeyaratne, 1992; Tvergaard et al., 1992) the critical strains
for surface instabilities and shear bands are not so large, and
here the interaction with such modes of instability in the ma-
terial near the void surface may have to be accounted in an
accurate analysis of cavitation instabilities.

Computations have also been carried out for a remote ax-
isymmetric stress state, 7/S = 0.9, as illustrated in Fig. 6. As
in Fig. 4, the normalized dilatation rate V/(e,V) grows large
at a rather early stage, indicating that a cavitation state will
be reached, and this is also seen by the vanishing shape at the
ends of the curves for §/a, versus V/V, in Fig. 6(c). Fur-
thermore, it is noted from Fig. 6(c¢) that the limiting value of
S/a, is larger for 7/S = 0.9 than found in Fig. 4(c) for 7/S
= 1, in agreement with the results of Tvergaard et al. (1992)
for initially spherical voids (see Fig. 1). Also the 7/S = 0.9
the voids grow into a nearly spherical shape, as is seen from
Fig. 6(5).

A common feature of the two cases 7/S = 1 and 7/S =
0.9 considered in Figs. 4 to 6 is that the fields far from the
voids remain elastic (see also Fig. 1). For all cases in which
the remote fields remain elastic Tvergaard et al. (1992) found
that a cavitation state is reached, but in cases where remote
plastic vielding occurs the conclusions were less clear. For an
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Fig. 8 Cavitation behavior versus void volume, for T/S = 0.78; (a) nor-
malized dilatation rate, (b) void shape, (c) remote axial stress

initially spherical void in a strain-hardening elastic-plastic solid,
the results did indicate the occurrence of a cavitation instability
under remote plastic yielding. However, for a circular cylin-
drical void the occurrence of an instability seemed more un-
certain, even though a cavitation state was clearly predicted
for the corresponding deformation theory solid, i.e., a non-
linear elastic solid (Tvergaard et al., 1992).

Figure 7 shows results for 7/ = 0.82, which is just beyond
the limit where remote yielding occurs for the material analyzed
here. In this case the development of the normalized dilatation
rate (Fig. 7(@)) differs significantly from that found in the
previous two cases. Initially, the growth of V/(&,V) is very
similar to the results shown in Fig. 4(a) and 6(a); but then
at V/Vy = 7, where plastic yielding initiates in regions far
from the void, the normalized dilatation rates decay sharply.
Subsequently, as plastic yielding continues in the outer regions
of the circular cylindrical cell analyzed, V/(&,V) starts to grow
strongly again, and Fig. 7(a) as well as the vanishing slope at
the ends of the curves in Fig. 7(¢) indicate that a cavitation
state will be reached for 7/S = 0.82 during remote plastic
yielding. Figure 7(®) shows that also in this stress state the
initially ellipsoidal voids develop into near spherical shapes as
they grow large.

For 7/S = 0.78, plastic yielding in the remote fields occurs
even earlier (Fig. 8). Thus remote yielding sets in at V/V,
< 2 prior to the start of the curves in Fig. 8(a) so that these
curves do not show a local maximum as that found in Fig.
7(a). Furthermore, the growth of the normalized dilatation
rate V/(e,V) as a function of V/Vj is slow in Fig. 8(@), and
the curves in Fig. 8(c) have clearly not yet reached a horizontal
asymptote at the points where the computations are stopped
due to numerical instabilities induced by a strongly distorted
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mesh. Thus based on the computations illustrated in Fig. 8 it
is not possible to conclude that a cavitation state will be reached
in the J, flow theory solid for 7/S = 0.78. A cavitation state
may very well be reached at a later stage, but the curves in
Fig. 8 indicate that the computations would have to be con-
tinued to values of ¥/¥, much larger than 200 in order to
approach a possible cavitation state.

5 Conclusions

The numerical results reported above demonstrate quite con-
vincingly that, within the range of stress states for which cav-
itation occurs, the critical stresses themselves are virtually
independent of the shape of the initial void. We suspect that
the very small differences which have been computed (typically
less than half a percent) are partly a consequence of numerical
discretization. It has also been demonstrated that the cavitation
stress states for infinitely long cylindrical voids, which are
attained prior to those for finite aspect ratio voids, are not
approaches for voids starting as prolate spheroids with aspect
ratio less than about four (ap/b, > 0.25). It remains an open
question as to how large an aspect ratio would be required to
reach a transition to the cylindrical cavitation states.
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