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Abstract—This paper concerns the analytical estimation of the macroscopic mode |1 fracture
toughness of a brittle adhesive layer sandwiched between and bonding together stiff substrates. The
process of failure involves the propagation and coalescence of microscopic tensile cracks ahead of
the macroscropic mode II crack tip. The basic problem at the heart of the analysis is the plane strain
problem for a layer subject to shear and containing a periodic array of micro-cracks which grow
and coalesce under the condition that their tips advance under pure mode I conditions. A numerical
solution to this basic problem is obtained and is then used to make detailed predictions for conditions
for tunneling of the micro-cracks and for the evolution of their shape and spacing. These predictions
are used in turn to develop the shearing traction -displacement relation for the brittle adhesive layer.
The work per unit length of layer needed to drive the microcracks to coalescence can be identified
with the macroscopic work of fracture in mode II, I'y,, as is discussed via a cohesive zone model.
The macroscopic model II toughness is predicted to be between three and four times the mode I
fracture toughness, 'y, depending on constraints provided by substrates and very slightly on
Poisson’s ratio, v. The theoretical predictions are compared with experimental data reported in the
literature, Also discussed are the consequences of the assumption undcrlying the analysis that there
exists an ample population of initial flaws whose largest dimension is roughly comparable to the
thickness of the layer.

I. INTRODUCTION

Once initiated, cracks in homogeneous, isotropic brittle materials tend to advance under
mode I conditions, assuming continuously applied loads. Thus, for example, when a crack
propagates under plane strain conditions it selects a trajectory such that its mode II stress
intensity factor, K, vanishes. This so-called “local symmetry” condition dictates many
crack patterns found in brittle thin films or substrates where cracking occurs. Recent studies
have detailed a number of interesting crack paths governed by this condition. Examples
include studies of the development of wing cracks under compressive loading by Ashby and
Hallam (1986) and by Horii and Nemat-Nasser (1986), of spiral cracking around a strained
cylindrical inclusion by Freund and Kim (1991), and of cracking behavior due to localized
hot shock of a brittle substrate by Tvergaard ez al. (1993). The theoretical study most
closely related to the present work is that of Fleck (1991) on the growth of periodic echelon
cracks in an infinite substrate under combined shear and tensile loadings.

Macroscopic mode 11 crack growth is frequently observed in a very thin brittle adhesive
layer which bonds together two substrates which confine the cracking process to the layer.
If the crack does not follow one of the interfaces, one often observes scalloped fracture
areas on the crack surface and many sigmoidal microcracks ahead of the main crack tip
(see, for example, Hibbs and Bradley, 1987 ; Smith and Grove, 1987 ; Chai, 1988, and Fleck,
1992). Similar behavior takes in the matrix material between closely spaced parallel fibers
in a composite. The fracture process seems to start with the initiation of sigmoidal tensile
microcracks ahead of the crack tip and continue with the spreading of this damage leading
to a distribution of microcracks such as that shown in Fig. 1(a). Macroscopic shear crack
growth is initiated by coalescence of the main tip with the tensile microcracks just ahead
of it. The experimentally measured work of fracture needed to advance such a mode II
crack is found to be greater than the mode I werk of fracture, with I'},./I';. ranging from 3
to 10 for brittle or moderately brittle materials (Hibbs and Bradley, 1987; Bradley, 1989,
Fleck, 1992).

The aim of this study is the analytical estimation of macroscopic mode II fracture
toughness of a brittle adhesive layer, I',, in terms of the mode I toughness of the adhesive,
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Fig. 1. (a) A schematic of the fracture process. (b) An array of curved tensile microcracks in the
adhesive layer.

I[\.. In mode 1, the work of fracture of the sandwiched brittle layer is the mode I toughness
of the adhesive, I',, if the crack propagates in the interior of the layer and not along one
of the interfaces between the adhesive and substrates (Fleck er al., 1991). In developing the
theoretical estimate of [}, it will be assumed that the spacing of the microcracks is small
compared to the length of the zone of microcracking ahead of the macroscopic mode 11
crack. In effect, we work at two scales : the micro- and macroscales. On the microscale, we
analyse the development of a periodic array of identical tensile microcracks, as shown in
Fig. 1(b), and use these results to obtain a traction- displacement relation in shear, 7(u),
governing the macroscale behavior of the layer. A cohesive zone model of the mode 11
macrocrack is stipulated with T(x) as the shearing traction law in the cohesive zone ahead
of the macrocrack. Well-known arguments employing the J-integral give the desired con-
nection

U,

I, = J CF(u) du, (1)

0

where u, is the shearing displacement at which the periodic microcracks coalesce and T
drops to zero. The present study is the mode I counterpart to the modeling conducted by
Ortiz (1988) of the effect of microcracks ahead of a mode I macrocrack.

The sections of the paper leading to explicit results from eqn (1) are organized as
follows. Section 2 provides the solution to the basic plane strain problem shown in Fig.
1(b) for a periodic array of curved cracks, in a layer subject to remote shear loading,
growing and coalescing under the condition that the mode II stress intensity factors at each
crack tip vanish. Three quantities from this solution are needed to carry out the computation
of 7(1) and the prediction of I'y;.: the energy release rate for the in-plane growth of the
plane strain cracks, G,,; the effective in-plane shear modulus i of the cracked layer; and
the energy release rate, G,,, for each of the cracks when they tunnel in a direction per-
pendicular to the trace plane shown in Fig. 1(b). Complete results for these quantities are
given in Section 2. The shearing traction—displacement relation, 7(u), is derived in Section
3. This derivation has two steps. First, the evolution of the cracks’ length and density as a
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function of u is obtained using the basic results of Section 2. This step involves arguments
as to when the microcracks will advance in their plane and when they will tunnel, Tt also
involves the assumption that there exists a population of relatively large initial flaws in the
adhesive from which the microcracks develop. Then, with the evolution of the length, shape
and density of the cracks in hand, the traction—displacement law can be obtained from the
results for ji. The final results for I'|,, are discussed in Section 4, along with a discussion of
the implications of the assumption concerning the initial flaw population. Experimental
observations which have been reported in the literature for mode II behavior of brittle
adhesive layers are compared with the theory in this final section.

2. A PERIODIC ARRAY OF MODE I CRACKS IN A BRITTLE ADHESIVE LAYER
SUBJECT TO SHEAR

2.1. The plane strain problem

The plane strain problem is introduced in Fig. 1(b). An adhesive layer of thickness 2H
joins two substrates, It is often the case that the substrates are much stiffer than the adhesive.
For the purpose of reducing the number of parameters in the problem and to simplify the
analysis somewhat, we shall regard the substrates as two rigid grips perfectly bonded at
each interface to the adhesive. The adhesive is taken to be isotropic, homogeneous and
linearly elastic, with shear modulus, g, and Poisson’s ratio, v. The external loading is applied
through prescribed relative translations, u and v, of the two rigid grips. Two limiting shear
loading cases are analysed corresponding to different constraints in the vertical direction.
For a given prescribed tangential displacement u, either: (1) the grips are allowed to move
freely in the vertical direction (i.e., the average normal traction exerted on the grips is zero),
or (2) the grips are totally clamped in the vertical direction (i.e., v = 0).

The spacing separating the periodically distributed cracks in Fig. 1(b) is taken as 24,
and the curvilinear length of each crack in the current state is denoted by 2a. The solution
procedure adopted in this study is that of representing the cracks as superposition of
continuously distributed dislocations chosen to cancel the tractions on the crack surfaces
via solution of coupled integral equations. The solution of a period array of dislocations in
an elastic layer between rigid substrates is given in the Appendix. The outline of the setup
of the integral equations and the numerical procedure for solving them can be found in
Tvergaard et al. (1993). The procedure for advancing the crack tips such that pure mode [
conditions always prevail at the tips is the same as that employed by Fleck (1991). It is this
part of the solution method which determines the shape of the evolving cracks, as is now
further described.

The process is started with an array of very short straight cracks with spacing 26 and
inclined at 45° to the x-axis such that they are normal to the maximum principal stress of
the uncracked layer. Since the cracks are very small initially, they behave almost like isolated
cracks subject to tension perpendicular to their plane, and thus can be regarded as pure
mode I cracks. The method for generating the subsequent crack trajectories is as follows.
With the crack at its current length having K;; = 0, then the crack length is increased with
the curvature of the next increment chosen such that the advanced tip is also in a state of
pure mode [. More details of calculation procedure can be found in Fleck (1991). The plane
strain energy release rate at the crack tips, G, is related to the mode I stress intensity factor
by the standard relation; the stress intensity factor is computed directly as the amplitude
of the inverse square root singularity of the dislocation distribution at the ends of the crack.

When there are no cracks presented in the adhesive layer, the stress field is simply

u
T= 'uifl @3]

and all other components are zero. After introduction of the periodic array of cracks, the
average shear traction exerted at grips for a prescribed u is reduced below the value given
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by eqn (2) and is denoted by 7. The effective shear modulus of the adhesive is denoted by
i and is defined as

Pl 3)

u

The effective shear modulus is an important property which indicates the damage to the
shear strength of the adhesive layer when cracks are present. Its primary purpose in the
present paper will be to generate the traction—displacement relation T(u).

For a given crack shape, fi is a function of the crack length/spacing ratio, a/b, the crack
density ratio, H/b, and which of the two normal constraint conditions is imposed. This
functional dependence can be determined from a direct computation of the average shear
traction 7 when a value of u is prescribed, or it can be computed using a basic connection
between compliance change and energy release rate derived as follows. Let s be the length
of the evolving curved crack which started with length 0 and has grown to its current length
2a. The elastic strain energy U stored in the layer per crack (with spacing 2b) is

u*b
U=-:1T = —1. 4
Tu2b > i 4)

N —

The plane strain energy release rate G, at each tip at the current crack length 2a is given
by

1 8U(a)

Cps(@) = — 2 Oa

)

The combination of eqns (4) and (5) gives, together with the initial condition i = u when
s=0

4H |“
i@ =u— j Gpu(s) di. (6)

As the crack length 2a approaches the critical length 2a, where the cracks coalesce, the
effective modulus it must approach zero. This fact provides an additional consistency check
on the accuracy of the numerical calculations.

The numerical results for G, it and for the shapes of the crack trajectories are shown
in Figs 2—4 and will be explained in detail. The boundary-value problems have displacement-
type conditions along the grip interfaces, and therefore the solutions do depend on Poisson’s
ratio. The results shown in these figures were computed with v = 1/3, but selected numerical
checks indicated there is little dependence on v for the normalized quantities employed.
Recall that the solution process starts with a prescribed value of crack density H/b and
with very short straight cracks oriented at 45° to the centerline of the layer. The cracks are
then advanced under pure mode I conditions. Two distinct behaviors are found, unlike the
shapes discovered by Fleck (1991), who considered an infinitely thick layer subject to
combinations of shear and normal loading. In the case ¢f the layer which has zero average
normal traction, it is found that the cracks grow toward the interfaces of the adhesive and
the rigid grips when the crack density, H/b, is less than about 0.81 with final shapes typical
of those shown in the insert of Fig. 2(a). For crack densities, H/b, greater than (.81 the
cracks do not impinge upon the rigid grips but instead turn toward their neighbors and
coalesce, as shown in the inserts in Figs 2(b) and (c), (here, again, the complete crack
trajectories are shown). In the regime where the cracks coalesce, the shapes are relatively
independent of H/b and the pattern scales with the spacing b. This limiting behavior would
have been more evident had G, been normalized by b rather than H in the ordinate of Figs
2(b) and (c). (The choice of H rather than b for the normalization facilitates application
of the results discussed later.) When H/b is large, the present results agree with those of
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Fig. 2. Normalized G,, and G,, for three typical crack density parameter H/b and corresponding
crack trajectories. (a) H/b = 0.80, (b) H/b = 3.0, (c) H/b = 13.0.
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Fig. 3. Normalized G,, for various crack density parametcr f/b. (a) For zero average normal
traction constraint. (b) For zero normal displacement constraint.

Fleck (1991) for echelon crack arrays in an infinitely thick slab. The transition in shapes in
the second case, where the normal separation of the rigid grips is constrained to be zero,
occurs at about H/b = 2.6. The three parts of Fig. 2 display the dependence of the nor-
malized G, on the crack length/spacing ratio, a/b, for the three values of the crack density
parameter H/b, all for the case of no average normal traction. An important feature of this
dependence is the existence of a local maximum in the normalized energy release rate which
is attained when the cracks are still well away from coalescence. In the regime where the
cracks coalesce, the normalized G,, becomes unbounded as the tips approach the crack
surface of their neighbor. It is again worth emphasizing, the trajectories shown are pure
mode I trajectories, and at no point as the cracks are advanced do opposite points on the
crack faces come into contact (i.e., the cracks are fully open). Figure 2 also contains results
for the tunneling energy release rate, G,,, which will be introduced in the next subsection.

The complete results for the normalized plane strain energy release rate are piotted in
Fig. 3 for the entire range of H/b needed in the present study for each of the two limiting
normal constraint cases. The companion curves for the normalized effective shear modulus
of the layer, fi/u, are shown in Fig. 4.
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For zero normal displacement constraint.

2.2. Steady-state tunneling cracks and evaluation of Gy

Crack nucleation and growth in an adhesive layer is a very complicated process. It is
a full three-dimensional (3D) problem in the sense that cracks will initiate from an existing
population of flaws and propagate both in the plane [i.e., in the (x, y) plane of Fig. 1] and
out of the plane (i.e., the z-direction in Fig. 1). Extensive propagation out of the plane is
referred to as tunnel cracking. This is a form of cracking which is very common in thin
brittle films and layers (Hutchinson and Suo, 1991 ; Beuth, 1992; Ye ef al., 1992 ; Ho and
Suo, 1993). It is the primary mechanism by which roughly equiaxed initial flaws become
greatly extended cracks in the tunneling direction. This mechanism is clearly expected to
play a dominant role in establishing cracks in the brittle shear layer which are very long in
the out-of-plane direction compared to their in-plane length, i.e., essentially plane strain
cracks. In steady-state, the crack propagates in the out-of-plane direction at constant
applied load with the tunnel front maintaining its shape as it advances. The steady-state
energy release rate, G, no longer depends on the tunneling length, nor on the initial flaw
geometry.

The steady-state energy release rate (5, along the tunneling front can be computed
using quantities from the 2D plane strain crack solution without resorting to a 3D analysis.
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Since the energy released per unit length of tunneling in the z-direction equals the energy
released to form the plane strain crack traversing the layer (on a per crack basis), it readily
follows that (e.g., Hutchinson and Suo, 1991)

Gola) = | f G () ds. ™

This is the relation which is used here to compute G,,. An additional interesting relation
between G, and G,, noted by Beuth (1992), which will be of use later, is obtained by taking
the derivative of eqn (7) with respect to a

s ]
se——— = a (Gp.\' - G\x) (8)

Thus G,, = G,, defines a condition at which G,, achieves a local maximum with respect to
in-plane crack length.

Numerical results for G, can be generated using eqn (7) and the results of Figs 2 and
3. The three plots of Fig. 2 include curves of normalized G,, illustrating the trends and the
fact expressed by eqn (8) that the maximum of G, at a prescribed « occurs where the two
energy release rates are equal. Note that G,, exceeds G, at crack lengths larger than those
at the crossover point so that the crack driving force for tunneling will exceed that for in-
plane extension in that regime. The results shown apply to a family of identical cracks
spaced a distance 2b apart, all tunneling together as illustrated in Fig. 5(a). We now take

)
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Fig. 5. (a) A set of tunneling cracks with spacing 26 in the adhesive layer. (b) A new set of tunneling
cracks bisecting a pre-existing set of fully tunneled cracks.
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one further step and derive the steady-state energy release rate for a new set of tunnel cracks
of identical cross-sectional shape which precisely bisect a pre-existing set of fully tunneled
cracks, as depicted in Fig. 5(b). The steady-state energy release rate for this new set of
cracks is denoted by G,,.

2.3. G, for sequential tunnel cracking

Consider now the derivation of the steady-state energy release rate for the sequential
cracking process shown in Fig. 5(b), where a set of new cracks of spacing 2b tunnels,
precisely bisects a pre-existing set of spacing 2b. Let G(b) denote the result of Section 2.2
for tunnel cracks of spacing b and let G;(2b) be the result for spacing 25, both for the same
prescribed value of u. Let G, be the energy release rate for the new set of tunneling cracks.
Following the argument given by Hutchinson and Suo (1991), one has precisely

G, (b) = 2G..(b) — G, (2b) (9)

stating that the energy released by each new crack is the difference between the down-
stream rate (for two cracks per new crack) and the up-stream rate. Thus, the steady-state
energy release rate for the sequential process can also be obtained from the results for G,
using egns (7) and (9). Curves of normalized G, as a function of a/b are plotted in Fig. 6
for various H/b for the two constraint cases. Note that these results apply to a new set with
spacing 2b tunneling between an existing set of spacing 2b, i.e. the situation depicted in Fig.
5(b). In Section 3, results for G, and G,, will be used in an approximate way to predict the
evolution of both the spacing and lengths of the cracks in the layer as a function of w.

3. CRACK SPACING AND t(u)

As a crack grows from an initial flaw in a brittle isotropic material comprising the
layer, its crack front adjusts to a curved shape such that at every point it is in mode I with
its energy release rate equal to the mode I toughness of the material, I'),. Once it has
tunneled a distance of about two times its in-plane length the crack rapidly approaches the
asymptotic steady-state condition analysed for periodically spaced cracks in the previous
section. Crack propagation is entirely in the out-of-plane direction, advancing under con-
stant applied shear displacement « and leaving behind an in-plane crack of fixed shape and
length. A rigorous analysis of this three dimensional process is extremely difficult and is
not attempted for the present shear layer problem. [A 3D analysis has been carried out for
a thin film cracking problem by Nakamura and Kamath (1992) demonstrating for that
problem that steady-state conditions are essentially attained once the crack has grown to
a length of about twice the film thickness.] As noted in the discussion of Fig. 2, except for
very high crack densities, there is a range of a/b in which G, exceeds G,,. This implies that
the 3D process of growth from a roughly equiaxed initial crack-like flaw will involve both
in-plane and out-of-plane growth until the crack reaches the point where out-of-plane
tunneling is favoured. Once steady-state is achieved, tunneling will be completed in the out-
of-plane direction resulting in a set of plane strain cracks. Then, as « is further increased,
these cracks will undergo further in-plane extension until conditions are met for a new set
of cracks to begin tunneling between the present set. An approximate analysis of this
sequential process is now given.

3.1. Evolution of crack density as a function of u

Suppose a periodic array of fully tunneled plane strain cracks exists with spacing 2b.
The condition for a new set to tunnel between the existing set as depicted in Fig. 5(b) is
obtained as follows. When u reaches the level corresponding to G..(b) = I',., steady-state
tunneling of the new set can occur with the outcome being a set of fully tunneled plane
strain cracks of spacing b. Setting G, (b) = I, and plotting the result in the form of
u\/ﬁ/(l",(,H) as a function of a/b for fixed values of H/b leads to curves such as those in
Fig. 7. Note that for a given value of spacing 24 (i.e. a given value of H/b), there is a
minimum value of u below which a set of new cracks cannot tunnel. If it is assumed that
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Fig. 6. Normalized G, as a function of a/b for various H/b (cf. Fig. 5b). (a) For zero average normal
traction constraint. (b) For zero normal displacement constraint.

the initial flaw population is sufficiently large and plentiful such that the new set will initiate
and tunnel when u reaches the minimum in Fig. 7 for the given H/b, then the crack spacing
history lies along the trajectory of minima in Fig. 7. Given some initial spacing 2b,, say, then
the subsequent spacings must be by, b,/2, by/4, etc., for the sequential process envisioned, but
a strict adherence to this sequence can be relaxed as described later. Figure 8 displays the
crack density parameter H/b determined as just outlined as a function of the normalized u
for each of the two constraint cases. The threshold values correspond to the minimum
values of normalized u where tunneling of isolated cracks can first occur. The crack density
increases from zero to a very high density (e.g., H/b = 5-10) over a relatively small range
of u, corresponding to roughly only a 75% increase above threshold. Each curve in Fig, 8
is terminated with a horizontal dashed line at the crack density where the tunneling energy
release rate no longer exceeds the plane strain release rate at any crack length a (cf. of Fig.
2¢). Exactly how new cracks develop in this regime is not clear, but tunneling is not expected.
In any case, by the point where the crack density reaches these levels, all the important
contributions to the macroscopic toughness have been made.
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traction constraint. (b) For zero normal displacement constraint.

3.2. Traction—displacement relation in shear, T(u)

With the relation between H/b and u in hand, it is possible to generate the desired
relation 7(u) in the following straightforward manner. For a prescribed value of u, obtain
H/b from Fig, 8. This value characterizes the current spacing of the plane strain cracks.
The in-plane length a of these cracks is then obtained from the ratio a/b using the results
in Fig. 7. Once a/b is known, use the curves of Fig. 4 to obtain ii/u. Then, by eqn (3)

_ | H g [ pu
f r[(‘u B 5 ;‘u l—‘I(‘H (]0)

and it is this relation which is plotted for each of the constraint cases in Fig. 9. The peak
values in Fig. 9 are associated with the onset of tunneling of widely spaced microcracks.
The steep segments of the curves dropping from the peaks correspond to the range in which
relatively widely spaced cracks tunnel with the sequential process of new sets tunneling and
bisection existing sets. The steep portions end when the crack density reaches about H/b = 2
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for the case of zero average normal traction and at about H/b = 3 for the case of zero normal
displacement. At higher densities the interaction between the cracks becomes dominant and
7 falls gradually with increasing u. The curves are terminated at the points labeled by
(u., 7.) beyond which higher densities of tunneling cracks will not occur, i.e., at the density
cutoffs indicated in Fig. 8.

Strictly speaking, the construction of the relation between T and u described above
should start with some initial wide spacing 2b, and then faithfully bisect the spacing
according to the discrete values by, b,/2, etc., leading to curves in Fig. 9 which would be
segmented. The curves in Fig. 9 are generated by applying the calculation described above
continuously as a function of u, ignoring the discrete nature of the sequential bisection
process. The difference between the curves thus obtained and any segmented curve generated
using some initial wide spacing 2b, is not appreciable. The procedure described above
approximates the actual cracking process in another sense. The shape of the cracks in the
(x, y) plane depends on the crack density H/b. Thus, in any actual process the shapes of
cracks which tunnel at one value of u will differ from those tunneling at another value of
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Fig. 9. The shearing traction—displacement relation £(u).
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u. The procedure used here takes the shapes of all the cracks to be the same and to be that
shape associated with the current value of u.

4. MACROSCOPIC MODE II TOUGHNESS, I'y,

The results in Fig. 9 for T(x) enable one to calculate I';;, using eqn (1). The final tail
of 7(u) has not been determined, and we neglect a small contribution to the integral in eqn
(1) by terminating the integration at u, as taken in Fig. 9. The results of the integration are

I'y, = 3.1I°.  for zero average normal traction

I'y, = 4.2 for zero normal displacement.

The numerical results in this paper have all been calculated with a Poisson’s ratio of 1/3,
but, as mentioned earlier, the results are only weakly dependent on v.

The present results are corroborated by Fleck’s (1991) result, I'j,. = 2.7T",, obtained
for a single array of periodically spaced, tensile plane strain microcracks in an infinite solid
subject to pure shear at infinity. This result represents the work of fracture per unit area
needed to drive the sigmoidal echelon cracks to coalescence. More work is absorbed in the
process envisioned in the present paper because of the influence of the constraint of the
substrates and the fact that new cracks initiate and tunnel between existing cracks as u is
increased. Nevertheless, the fact that the two analyses give results which are not significantly
different suggests that the sequential details of the microcracking process may play a
secondary role.

The cohesive zone model on which the above results are based can also be used to
calculate the length of the cohesive zone L (see Fig. 1a) in which the “microscopic” traction—
displacement relation 7(u) holds. We have not computed L for the precise relation 7(u) of
Fig. 9, but a rough estimate indicates that it is on the order of H. Thus, the extent of the
microcracking zone ahead of the macroscopic crack tip is only on the order of the most
widely spaced cracks which make a significant contribution in the analysis leading to 7(x),
i.e., b = H. This suggests that an analysis which accounts for the interaction between the
macrocrack and the individual microcracks in a discrete manner may give somewhat
different predictions. Further work along these lines may be needed, especially if initiation
from smaller flaws is considered important, as will be discussed below.

5. DISCUSSION

The results of present analysis are in general agreement with some experimental data
reported in the literature, but at odds with other published data. In particular, Bradley
(1989) presented his experimental results for the ratio of mode II delamination toughness
to mode T delamination toughness for a variety of resin adhesives. The ratio I';,/T",, for the
brittle resins varies from 3 to 11, with most data in the range from 3 to 6. It should be
expected that the present theoretical results should tend to bound the experimental data
from below for two reasons. Firstly, the response of the adhesive has been assumed to be
purely elastic with no accounting for plasticity, and plasticity is expected to have more
effect on the mode II toughness than the mode I toughness. Secondly, it has been assumed
that there exists an ample population of initial flaws whose size is comparable to the
thickness of the brittle adhesive layer. It is from these flaws that the tunnel cracks spread.
If the population of initial flaws was of a size significantly smaller than the layer thickness
(e.g., on the order of H/5), then larger applied stresses would be necessary to initiate the
tunnel cracks than is predicted by the steady-state tunneling analysis. The tunneling process
would then involve the dynamic propagation of the microcracks and the dissipation of
more energy than is predicted by the present quasi-static analysis. Assuming the micro-
cracking process is brittle, we interpret the existence of experimentally measured ratios
of I'y, /T well in excess of three to be indirect evidence of the fact that those adhesives have
initial flaws which are small compared to the layer thickness.
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The present results for the mode II toughness are independent of the layer thickness
2H and do not depend explicitly on any details of the initial flaw population. In this sense
the present results are similar to Fleck’s result which is independent of the spacing of the
periodically distributed echelon cracks. In the present modeling, this independence 1s a
consequence of the assumption of an ample population of relatively large flaws. If, instead,
there existed an ample population of small flaws, then one would expect the size of the
flaws to enter into the dependence of I'y;., primarily because an over-stress will be needed
to initiate the tunnel cracking process. On the other hand, if the flaw population were sparse
and widely spaced compared to the layer thickness, then one would expect the layer thickness
as well as the spacing and, possibly, the size of the flaws to influence I'y,. In either case,
[y is expected to exceed the three or four times I'), predicted by the present analysis.

Qualitative features of the macroscopic mode II fracture behavior are also seen in the
experimental results on a brittle adhesive (H3502) reported by Chai (1988), especially the
mode I character of the microscopic cracking within the layer. However, Chai’s observations
differ from the theoretical predictions in several significant respects. He observes a strong
dependence of the macroscopic mode 1T toughness on the adhesive layer thickness with
I',./T1. about three for small thicknesses increasing to more than 20 at larger thicknesses
between 10 and 50 um. Moreover, the experimentally observed microcrack density in the
failed layer was typically an order of magnitude lower than the theory would suggest.
Whether these discrepancies are due to plasticity, interface failure due to low interface
toughness, or the small initial flaw population just discussed is not known. Tt is evident
from Chai’s (1988) paper that the relationship between macroscopic mode IT toughness of
a joint and the thickness of the adhesive layer is not nearly as simple as the present model
predicts. Further work will be required before a complete theory is in hand.

Two constraint limiting constraint conditions have been considered leading to the two
scts of predictions presented above. In addition, to simplify the analysis and to reduce the
number of parameters in the problem, the compliance of the adjoining solids has been
neglected compared to that of the adhesive. This is probably a reasonable approximation
for many systems based on polymeric adhesives. For such systems, it would also seem that
the second constraint assumption of zero normal displacement to the layer would be the
more reasonable one, but that may depend on the details of the test specimen geometry.,
The main conclusion to be drawn from the results for the two limiting constraints is that
there is not an unduly large difference in the resulting predictions.
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APPENDIX. AN ARRAY OF DISLOCATIONS IN A BRITTLE ADHESIVE LAYER

The dislocation solution used to solve the plane strain problem is outlined here.

The plane strain elasticity problem is specified in Fig. Al(a). An array of edge dislocations with Burger’s
veclor b = (b,, b,) lies along the x-axis with uniform spacing n. The upper boundary lies along y = d and the
lower boundary along y = —¢. The elastic material has shear modulus, u, and Poisson’s ratio v. The thickness of
the layer is c+d = 2H. The boundaries are considered to be rigid. The elastic solution to this problem is obtained
by superimposing the solutions to the following two problems: (a) an array of same dislocations lies in an infinite
elastic body; and (b) a dislocation-free strip of thickness 2H, with prescribed displacements along both upper
and lower boundaries. The displacements are chosen to cancel that calculated from problem (a).

Problem (a)
The solulion to this problem is given by the Muskhelishvili potentials

¢(z) = A ln (sinz), Q(z) = Aln (sinz) (AD)
where
o _ ulh,—ib))
zZ=Xx+1y, A= m
The stresses and displacements are given by
o t0, = 2¢' (@) +¢' ()] (A2)
o,—0,+2io,, =2[(Z—2)¢"(2) + ¥ (z) —¢'(2)] (A3)
and
LLLLL L L
< y x3=(b>:?by) d
v Y
@ Von —x O n 21 . [2H
SIS S

y _ b=(bxby)
¥ ¥ ¢ «
-2 -n O T 2n

(b)
+
Prescribed displacements along y=d
d
(©) 4~ 12H
c

Prescribed displacements along y=-c

FFig. Al. Stress distribution solution by a superposition scheme. (a) An array of dislocations in an

elastic strip. (b) An array of dislocations in an infinite elastic body. (c) A dislocation-free strip with
prescribed displacements along edges.




1148 Z. C. Xia and J. W. HUTCHINSON
2, 1) = 3—W)d() +(Z—2)¢'(2) - Q(z). (Ad)

The displacement along y = d and y = —¢ are periodic functions and thus can be expressed in terms of Fourier
sine and cosine series.

Problem (b)
Consider a dislocation-free strip with prescribed displacements along boundaries as shown in Fig. Al(c).
Following Fleck (1991), we introduce two rcal potentials U(x, y) and X(x, ) satisfying

X (x,y
VUG =0, VNG =0, gy, (A3)
oxay
The stresses and displacements can be derived from

& U v ' Al
BTt T T Ty (A8)

oU 0X U ox

2uu, = — 41—, 2uu, = - (1=
e, ox +4(l—v) o’ 7 iy +4(1—v) ax (A7)

The general procedure is 1o represent U(x, y), X(x, y) as Fourier series in x. Solutions of these two potentials
can be derived by canceling the displacements «, and u, along boundaries y = a and y = —¢ obtained from (A4).
The details of solution procedure are omitied here. Helpful hints can be found in Fleck (1991).




