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The longitudinal thermal conductivity of a unidirectional fibre-reinforced com-
posite containing an array of cqually spaced transverse matrix cracks is calcu-
lated. The cracked composite is modelled by a cylindrical cell which accounts for
altered heat transfer across the matrix cracks as well as through debonded por-
tions of the fibre—matrix interface. Heat transfer mechanisms across the cracks
aud dedonded interfaces considered are contact, gaseous conduction, and radia-
tion, and the relative importance of these mechanisms is discussed. Approximate
closed form solutions to the cell model for the overall thermal conductivity arc
obtained using an approach reminiscent of the shear lag analysis of stiffness loss
due to matrix cracking and debonding. Selected numerical results from a finite-
clement analysis of the cell model are presented to complement the analytical
solutions. Both matrix cracking and interfacial debonding have the potential for
significantly reducing the longitudinal thermal conductivity.

1. Introduction

The rule of mixtures holds rigorously for the overall longitudinal thermal conduc-
tivity k7 of a crack-free composite reinforced by continuous unidirectional fibres:
kY = pkf +(1— p)ky, where is p the fibre volume fraction, k! is the axial thermal
conductivity of the fibre and k,, is the matrix conductivity. This result continues
to apply when fibre debonding occurs (i.e. when a thermal barrier of negligible
thickness emerges at the debonded portion of the fibre-matrix interface) but fails
if the matrix develops cracks perpendicular to the fibres which impede the heat
flow. Such matrix cracking may occur in intermetallic and ceramic matrix com-
posites, arising from cxcessive stressing in the vicinity of notches or other sources
of stress concentrations. Thus, the presence of these matrix cracks will degrade
the thermal conductivity of the composite and thereby alter heat flow. In the ex-
treme, heat transfer through the matrix can be fully interrupted by a combination
of matrix cracking and interfacial debonding such that the overall longitudinal
thermal conductivity of the composite is due entirely to heat conducted by the
intact fibres. It is evident, therefore, that the longitudinal conductivity will range
from £? for the uncracked composite to as little as pk! when matrix cracking and
interface debonding reduce the effective heat flow in the matrix to zero. Matrix
cracking also strongly affects other therino-mechanical properties of the compo-

Phil. Trans. R. Soc. Lond. A (1995) 351, 595-610 (© 1995 The Royal Society
Printed in Greal Britain 595 TEX Paper




596 T. J. Luand J. W. Hutchinson

site such as stiffness, coefficients of thermal expansion (CTE), thermal diffusivity,
etc. These issues are now receiving increased attention in connection with the
application of comiposite materials to environments involving high temperatures
and temperature gradients.

Several analytical procedures have been developed for the evaluation of the
overall thermal conductivity of a homogeneous, isotropic matrix containing dis-
tributed, weakly interacting cracks or voids (e.g. Hasselman 1978; Hoenig 1983;
Tzou 1991; Tzou & Li 1993). For a unidirectional fibre-reinforced matrix com-
posite suffering no matrix cracking, the influence of fibre-matrix debonding on
the overall transverse thermal conductivity of the material has been studied by
Benveniste (1987), Hasselman & Johnson (1987), Bhatt et al. (1990) and Fadale
& Taya (1991), among others. In the case where the fibres are perfectly bonded
to the matrix with intimate thermal contact across their interface or in the case
where full debonding along the fibre-matrix interface occurs, the presence of ma-
trix cracking perpendicular to the fibres does not affect the thermal conductance
capability of the comiposite in the transverse direction. Thus in the analysis to
follow the focus is on the overall longitudinal thermal conductivity of the unidi-
rectional composite as influenced by matrix cracking and interface debonding.

The key element in building up a solution to the titled problem is the deter-
mination of the disturbance to the temperature distribution in each composite
constituent due to the matrix cracks and the debonded interfaces. The thermal
conductance mechanisms that are in play across the cracks and the debonded in-
terfaces will be discussed. The same cylindrical cell is used to model the conduc-
tivity of the cracked composite as was used by He et al. (1994) to predict tensile
stress—strain behaviour and by Lu & Hutchinson (1995) to study CTE changes.
The present study will focus on a composite comprised of transversely isotropic
fibres in an isotropic matrix such that the effective properties of the composite are
transversely isotropic relative to the fibre direction. Attention is mainly directed
to systems where the matrix has a larger thermal expansion coefficient than those
of the fibres, such that upon cooling from the processing temperature, residual
tension builds up in the matrix parallel to the fibres while compression develops
across the fibre—matrix interfaces. As a consequence, once formed, the matrix
cracks remain open, and debonded portions of the fibre-matrix interfaces remain
nominally closed but with reduced thermal contact. The thermal barrier at the
debonded interfaces is modelled by an equivalent interfacial heat transfer coef-
ficient comprised of the sum of three conductances: fibre-matrix contact across
the interface, gaseous conduction and radiation heat exchange. Only the latter
two mechanisms operate to transfer heat across the matrix cracks. Based on the
analogy between the variables describing elasticity and those for steady-state heat
conduction, an approximate analytical solution for the effective thermal conduc-
tivity as a function of crack density is obtained by an approach analogous to the
well-known shear lag analysis of stiffness loss due to matrix cracking and interface
debonding. The accuracy of the approximations introduced in the analysis of the
cell model will be assessed with the aid of selected finite-element calculations.

The organization of the paper is as follows. In § 2, the problems are formulated
with discussion of the heat transfer boundary conditions. Solutions for the overall
thermal conductivity of the cracked composite with perfect fibre-matrix bonding
are derived in §3. These results are extended in §4 to account for the combined
effects of matrix cracking and interface debonding.
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Figure 1. (a) A unidirectionally reinforced fibre-matrix composite with an array of uniformly
spaced matrix cracks; and (b) a single unit cell of tlie periodically cracked composite.

2. Formulation of the problems

A unidirectional, continuous fibre-reinforced composite has through-the-thick-
ness, periodically distributed matrix cracks with spacing d, as depicted in figurce
la. For cases in which fibre-matrix debonding has occurred, the debonds extend-
ing from the matrix crack surfaces will be assumed to have a common length [
such that the periodicity is preserved. The average heat flux in the composite
parallel to the fibres is denoted by ¢°. The cylindrical cell shown in figure 1b is
introduced to model one of the periodic cells of the cracked composite. Boundary
conditions appropriate to the cylindrical cell will be discussed below. A set of
cylindrical polar coordinates (r, 8, z) is chosen such that the z-axis coincides with
the axis of the fibre and increases in the direction of the heat flow, with 2 = 0 at
the cell centre. The radius R of the cylindrical cell is related to the fibre radius
R¢ via R = R¢/+/p. Debonding over a cylindrical portion of the fibre-matrix in-
terface, if present, is modelled by an interfacial crack extending a distance ! on
either side of each matrix crack surface. It follows that | = 3d represents complete
debonding, whereas [ = 0 corresponds to no debonding.

(a) Basic heat conduction equations

By cylindrical symmetry, the temperature and temperature gradient fields in
the cell depend only on r and z. For fibres with transversely isotropic properties,
Fourier’s law reads ‘ .

q, | _ vk, O 1%,

(2.1)

A R A Vo
where ¢i(r, 2) and ¢’ (r, z) are lux components in the radial and axial directions,
kP (= ~k"), k! are transverse and longitudinal thermal conductivities of the fibre,
Ti(r, z) is the current temperature in the fibre, Ty, = 87T;/0r, etc. The corre-
sponding relation for the isotropic matrix is

I.n kl’n O j—lll r

G ’ (2.2)

q;n 0 km CFm,z
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with k., designating the thermal conductivity of the matrix. In the analysis,
(kuw, k', k!) are taken to be temperature-independent constants.

In the absence of internal heat sources, conservation of heat in association with
Fourier’s law (2.1) leads to the following stcady-state equation of heat conduction
in the fibre:

. 2.
12( Han%an_O. (2.3)

ror \ar az?
This equation also holds for the matrix material except for the replacement of
fibre temperature T;(r, z) by matrix temperature T,,(r, 2) and v = 1. For isotropic
fibres, equation (2.3) reduces to the more familiar Laplace equation.
The perfectly bonded portion of the interface is assumed to have no thermal
resistance, requiring

Y Ty = kT on =R |z|<id—1, (2.4)
T, =T, on r=Ry, |z <3d-1, (2.5)

Symmetry with respect to the z-axis implies:
T;, =0 on r=0, |z/<3d (2.6)

The appropriate condition on the outer surface of the cell which models the
periodic structure of the solution expected for the cracked composite of figure la
is that no heat is transferred there, i.e.

Twr=0 on r=R, |z|< %d. (2.7)

Inside the cylindrical cell, on every cross-section transverse to the axis of the
fibre, the following heat balance condition is satisfied:

(1 — plkmTm. + pkiTi. = —¢° for |z| < 2d, (2.8)
where
. 2 ok . 2 gl
Crf,z = R_?A TTf.z dT7 Cljm.z - m /Rf TTm,z dr (29)

are temperature gradients averaged over the cross-sectional areas of the fibre and
matrix, respectively. Simple arguments based on the periodicity and linearity
of the temperature field of the cracked (and possibly debonded) composite cell
model disclose that the temperature distribution is independent of r on each of
the transverse planes half way between the matrix cracks such as those at 2 =0
and z = d. It is also independent of r within the fibre on all planes containing
matrix cracks such as z = 1d. Denote by AT the temperature change between
z =0 and z = d. The overall longitudinal thermal conductivity &, is defined by
¢
k, = AT/d (2.10)

Apart from the conditions on the matrix crack surfaces and on the debonded
portions of the fibre-matrix interface, which will be discussed immediately below,
these equations fully specify the problem for k.
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Figure 2. (a) Schematics of the heat conductance mechanisms across the matrix crack surfaces
and the debonded portions of the fibre matrix interface; and (b) model representation of the
radiative heat exchange between fibre and matrix over a typical gap at the interface.

(b) Boundary condition at the debonded interfaces

Heat flow will be impeded on portions of the fibre—matrix interface which
have debonded. Assume the heat flow through the interface is proportional to
the temperature jump across it. Let h; be the interfacial thermal conductance
defined such that

f\//k’inﬂ’ - kmﬂn.r‘ - hi(frmi - Tﬁ) on = Rf~, %d - l g "Z‘ g %d (211)

where Ty(z) and T,,;(z) denote respectively the temperatures of the fibre and
matrix at the interface. If the imechanisms of heat transfer through the interface
operate independently, h; can be written as (Leung & Tam 1988; Bhatt et al
1990)

hi = he + hg + h,. (2.12)

where h. is the component coutributed by heat transfer through contacting points
between the fibre and matrix, h, is due to the interfacial gaseous heat transfer,
and h, is attributable to the radiative heat transfer across the non-contacting
portions of the iuterface (figure 2a). The subject of thermal resistance is itself
a complex one, and no complete theory is available. Several theoretical modecls
as well as experimental results for solid—solid interfaces are reviewed recently by
Swartz & Pohl (1989).

Assuming the matrix has a larger thermal expansion coefficient than that of the
fibre, the fraction of interfacial conductance duc to fibre-matrix contact k. de-
pends in a courplicated manner on both on the surface roughness of the debonded
portion of the interface and on the clamping pressure o, acting over the interface.
Since the latter scales with thermal expansion mismatch between fibre and ma-
trix, it is expected that h, should increase with mismatch. Quantitative estimates
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of h, are difficult to establish theoretically, but may often be inferred from the
measurement of the total conductance h; in vacuum, as will be discussed.

The detailed mechanism underlying the transfer of heat by the gas filling the
spaces of the interface is controlled by the Knudsen number Ny, defined as the
ratio of the mean free path of the gas to the characteristic width of the interfacial
gap. When Nk <« 1, the continuum theory of heat conduction in the gas applies.
If Nx > 1 the energy exchange involves collisions of gas molecules and the
interfacial surface with relatively few intervening interatomic or intermolecular
collisions. For intermediate values of Ny, the two processes are in transition.
Since the mean free path of a gas depends on hoth temperaturc and pressure, the
mechanism controlling h, may shift as environmental conditions imposed on the
composite change.

To gain insight into the radiative heat transfer mode, counsider radiative heat
exchange between two parallel surfaces with emissivities e,, and e; and absolute
surface temperatures T,,,; and Ty, respectively, as depicted in figure 2b. The net
rate of radiative heat exchange between the two surfaces is given by

B 1-— emef(em + ef)

where ¢ = 5.67x107° W m 2 K * is the Stefan—Boltzmann constant of radiation.
The temperature jump T — T},; across the thin interfacial gap is expected to be
small compared to either of the two surface temperatures. With 7} denoting the
average of T,,; and T§, (2.13) can be approximated by

so(L)°
1 —emer(em + €¢)
which, in the light of (2.11) and (2.12), yiclds
40(T})?
1—ener(en +ep)

Qri = (Th - CZ—’mi)v (214)

he (2.15)

As an estimation of the relative significance of the radiative effect, take e,, =
er = 0.9 and T; = 1200 K in (2.15) to get h, ~ 7.1 x 10* Wm™2 K~!, This is a
very small value compared to values such as 10° W m~2 K~! or larger expected for
most ceramic and intermetallic matrix composites maintaining nominally closed
debonded interfaces or even gas-filled open interfaces. One point of calibration
is the value of h; measured experimentally by Bhatt et al. (1990) for debonded
interfaces of a composite consisting of double-coated SCS-6 SiC fibres within a
reaction-bonded silicon nitride matrix. The thermal expansion mismatch of this
composite system is such that the debonded interface is fully opened. Neverthe-
less, h; was found to be in the range 10* to 10° W m~2 K !, with h, overwhelming
h.. Thus it can be reasonably expected that the radiative component A, will gen-
erally be negligible for temperatures as large as 1200 K and probably higher, espe-
cially for composites for which the debonded interface surfaces maintain nominal
contact.

The competition between heat transfer by surface asperity contact and gaseous
conduction vanishes under vacuum conditions with the gaseous phase removed.
(Bhatt et al. (1990) used vacuum testing to elucidate the role of gaseous con-
duction in their study.) Thus, to a good approximation, the interfacial thermal
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conductance measured in vacuum represents the contact conductance h.. Then
to obtain the component h,, one may measure the total interfacial conductance
hy in the gascous phasc of interest and subtract A, from it.

(¢) Boundary condition on the crack surfaces

As has been already emphasized, attention is focused on composite systems
where the ¢TE of the matrix exceeds that of the fibre. For composites with cither
a ceramic or intermetallic matrix, the fibres are usunally bonded to the matrix
at relatively high temperatures. Under cooling from the fabricating temperature,
the matrix develops residual tension in the direction of the fibre while a clamping
pressure acts across the fibre-matrix interface. When matrix cracks form they
remain completely open even under no applied load. Residual crack openings are
generally in the range 0.01 1 pin, depending on many factors including residual
stress, extent of fibre debonding and sliding, and fibre diameter.

Assuming negligible heat loss due to flow of gas through the cracks (which
is justified for crack openings as large as 0.1 mm), it follows that heat transfer
across the crack surfaces is realized by two mechanisms: gaseous conduction and
crack surface radiation. Hence, with H. dcnoting the total conductance across
the matrix crack,

H. =H, + H,, (2.16)

where H, and H, are defined in the same way as h, and h,. The qualitative
argurnents advanced above for the relative nnportance of the two conductance
contributions apply here as well. Specifically, it can be expected that H, will often
play a minor role. In general, the boundary condition governing heat transfer
across the matrix crack surface is

kwTw.=H(T, —T,) on |z]=3d. R <r<R, (2.17)

m I

where the flow of heat is taken to be in the positive z-direction, and 7)) and
T are temperatures on the upper and lower surfaces of the crack, respectively.
Under the limiting condition in which negligible heat passes across the crack, the

boundary condition becomes

kT, =0 on |z| = %d, R:<r <R (2.18)

Under this limit when the cracks act as perfectly insulating barriers, and, for the
cell model, all the heat then passes the plane at z = 1d through the fibre, ie.

2 q°
Y : 1
E A vl dr = — on |z| = 3d. (2.19)

3. Thermal conductivity of cracked composites with perfectly bonded
interfaces

The sct of governing equations of steady-state heat conduction in a unidirec-
tional fibre-reinforced composite, (2.1) (2.3), is formally analogous to that of the
elasticity problem for the same composite, if g;, T';, k;; are respectively replaced
by €. 0,5, Sijei. The so-called shear lag approximations (Laws & Dvorak 1988;
McCartney 1990; Lu & Hutchiuson 1995), which are very effective for estimat-
ing stiffiiess loss due to matrix cracking and debonding, can be adapted to the
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thermal conductivity problem. Details of this approximate solution procedure are
elaborated in an expanded version of this paper available from the second author
as report MECH-239.

For perfectly bonded fibre—matrix interfaces, the governing differential equation
which emerges for the average fibre temperature gradient in the presence of matrix
cracking is

. 2
iiz_<é><ﬁﬂ+£) for |2| < Ld, (3.1)
where the non-dimensional coefficient is defined by
€ = {8vk2/(1 = p)ku}' 2. (3:2)
The relevant solution to (3.1) is
Tr. = —¢°/k% + Ay cosh(€2/Ry) for |2] < id, (3.3)

where A; is a constant to be determined from the boundary condition. The first
term is recognized as the uniform temperature gradient in the uncracked com-
posite. The disturbance to the uniform field by the matrix cracks is represented
by the second term. This same type of solution for this geometry carries over
to problems of elasticity, thermal expansion, electrical conduction, electrostatics,
and magnetostatics owing to the well known mathematical analogy that exists
between the subjects (Batchelor 1974).

(a) Thermally insulated crack surfaces

If the matrix crack surfaces are thermally insulated under condition (2.18)
discussed earlier, (3.3) together with (2.19) yields

Lﬁ_ A {1 1—pky cosh(éz/Ry)
dz kO p ki cosh(&d/2Ry)
The overall longitudinal thermal conductivity k, is defined by (2.10) where AT =

Tf(d) — Tf(O), since 1" is uniform with respect to 7 on z = 0 and z = d. Geometric
symimetry with respect to z = %d, then gives

} for |z < 1d. (3.4)

R . /2 4T,
AT = 2(Ty(Ld) — T1(0)) = 2/ <l (3.5)

0
(Equation (3.5) applies to the cell model for all boundary conditions considered

in this paper.) By (2.10),

1 — p ky, tanh(Ed/2Ry) }1
k, =k {1 —m : :
: kz{ R (3.6)

Figure 3 gives curves of k, /k” against normalized crack density R;/d for five values
of fibre volume fraction p: 0.1, 0.2, 0.3, 0.4 and 0.5. The constitutive parameters
used in this example are k'ﬁ/k'm =2and y= 1.

Also included in figure 3 are numerical results from a finite-element analysis
of the boundary value problem for the cell as posed above for p = 0.1, 0.3, 0.5.
The finite-element discretization is made for a quarter of the cell (the shaded
region of figure 1b) with eight-node quadratic axisymmetric elements. Quarter-
point elements are used to simulate the singular behaviour of the temperature

Phil. Trans. R. Soc. Lond. A (1995)




Matriz cracking and fibre-reinforced composites 603

k kD

x  FEM results =

Rild
Figure 3. Cell model predictions and finite-element results for normalized longitudinal conduc-
tivity k./k? as functions of normalized crack density Rp/d for five selections of fibre volume
fraction p: 0.1, 0.2, 0.3. 0.4 and 0.5. Other constitutive parameters used are ki/km =2,7=1
and B. = 0.

gradient and heat flux fields in the vicinity of the crack tip. The agreement
between the approximate solution and the finite-element results is clearly very
good. For d/R; > 3, the dependence of k, on crack density is nearly linear. This
is the density range in which interaction between neighbouring cracks is weak. At
higher crack densities, k. /k? decays rclatively slowly and gradually approaches
the asymptote pk! /K. In the limit d = 0, all the heat flows through the fibre so
that k. = pk!. The finite-element results are relatively insensitive to the details of
the mesh around the crack tip when the crack density is low. They become more
sensitive to mesh refinement at high densities, but, in any case, crack spacings
less than about 2[R are rare.

Iu passing, it is worth noting that (3.6) is similar in form to the shear lag ap-
proximation for the longitudinal elastic nodulus E, of the cracked unidirectional
composite,

0 0 Ry S d -

EZ—EZ{quDl 7 anh(D(l)Rf)} . (3.7)
where EY is the axial clastic modulus of the uncracked composite, and where
DY and S are dimensionless functions of p and moduli ratios (Lu & Hutchinson
1995). Application of the shear lag approach to the stiffness problem requires
some numerical analysis to evaluate DY. Similar numerical work is unnecessary
for the lower order heat conduction problem.

(b) The effect of gaseous heat conduction within matriz cracks

Gaseous conduction is expected to be the most important mechanism for heat
transfer across the open matrix cracks. as previously discussed. Condition (2.17)
is agsumed to hold on the cracks where H. is the heat conductance coefficient.
This coeflicient will be taken to be independent of the temperature in the analysis,
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Figure 4. The effcct of varying the Biot number for matrix cracking on the overall longitudinal
thermal conductivity for k% /ky =2, v =1and p=0.3.

but clearly its value should be assigned consistent with the ambient temperature
in the composite.

The temperature gradient averaged across the fibre is still given by (3.3). From
(2.8) and (3.3), the temperature gradient in the matrix immediately follows as

- q2 Pk£A1 <
To. = Ch mcosh <§Rf) for |z < 3d. (3.8)

Given that the temperature is uniform with respect to r at z = 0 and z = d, it
follows that the temperature drop across the crack can be expressed as

. ) d/2 T d/2 T T
T*—T*:AT—Q/ d"‘dz_Q/ d7i _ dTnm
0 z 0
24, Rik?

1 m d .
d
= m sinh (f 2Hf) . (39)

dz dz
When (2.17) is rewritten in terms of T, and (3.8) and (3.9) are substituted into
the result, one finds

dz

1

0 0 B

Finally, the overall longitudinal thermal conductivity of the composite is obtained
from relations (2.10), (3.3) and (3.10) as

(1 —p)kw  tanh(€d/2R;)/(Ed/2R;) }‘1 (3.11)
pkf 14 (2k°B./p€k,,) tanh(Ed/2Ry) ’ )

where B. = H.R¢/k! is the Biot number for matrix cracking. Relation (3.11)
reduces to (3.8) for adiabatic crack surfaces (H, = 0).
The effect of B, on the normalized overall thermal conductivity, k. /k°, is il-

kz:k{j{1+
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Table 1. The properties of dry air at atmosphere pressure

(The dimension of H, is Wm™ K™'.)

T lm A'g
(K) (107%m) (Wm K1) 6 =0.01 ym 6 —0.1 pum 6=1um
Nk = 5.60 Nk = 0.57 Nk = 0.057
300 5.69 0.032 Ko , Emeen K o
H,=32x10° H,=32x10" H, =32x 10
Nk =11.1 Nk = 1.11 Nk =0.11
1273 111 0.085 X X b

H, =85x10° H,=85x10° H, =85 x 10

lustrated in figure 4, for kL /k, = 2, v = 1 and p = 0.3. The limit for B. = 0
corresponds to perfectly insulating cracks for which results have been displaved
previously, while the limit for B, = oc leaves the overall conductivity unchanged
at kY. The valuc of B, characterizing the transition midway between these two
extremes is about 0.1, To acquire somne feel for the significance of crack thermal
conductance, consider a ceramic composite with a fibre of radius, Ry = 10 pm,
and conductivity in the range 10 10 Wm ™' K=' expected for SiC fibres. If B,
is to be greater than 0.1, the crack conductance parameter, H,., must be larger
than 10°-107 Wm 2K !. As already discussed, the contribution of H, to H. is
likely to be orders of magnitude smaller than this. To gain some insight into the
contribution from H,, consider the parameter values for dry air at a pressure of
one atmosphere given in table 1 for T'= 300 K and 7" = 1273 K, taken from Scars
(1967). The mean free path of the molecules in the gas, [, is on the order of
0.1 pm at both temperatures giving rise to the Knudsen nunber, Ny, shown for
cach of the three values of the crack opening, 6. The continuum conductance of
the gas k, is not applicable to the two smallest crack openings at 6 = 0.01 pm
and 0.1 um. Nevertheless. even for these cases, the continuum formula H, = k, /6
should give a rough estimate of the hieat conductance across the crack, an esti-
mate which is expected to be somewhat below the value appropriate in the regime
of intermediate to large Knudsen numbers. It can be seen from the values of H,
given in table 1 that . is likely to be as large as 0.1 when the crack openings
are in the range from 0.01 pm to somewhat less than 0.1 um, but B, should be
well below 0.1 for ‘large’ openings of 1 um. From this example, we conclude that
composite thermal conductivity may be sensitive to conductance by the gas in
the matrix cracks, with cracks with openings well above 0.1 pm acting as barriers
to thermal conduction and those with openings below 0.1 um having less effect
on the overall heat flow.

4. Thermal conductivity of cracked composites with partly or fully
debonded interfaces

In this section the combined effects of matrix cracking and thermal contact
resistance due to fibre-matrix debonding on the overall longitudinal thermal con-
ductivity of the composite arc considered. The thermal barrier at the debonded
interface may be modclled cither by an equivalent interfacial heat transfer coef-
ficient h; or by introducing a thin cylindrical layer of poor conductivity between
the fibre and the matrix. The concept of interfacial heat transfer in the form of
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(2.11) will be adopted below due to its simplicity. As discussed, the coefficient h;
depends on surface asperities, thermal expansion mismatch, gas in the interface,
interface temperature and possibly other factors. As in the study of the effect of
matrix crack conductance, h; will be taken to be independent of temperature in
the analysis.

For the bonded portion of the fibre, the differential equation (3.1) governing
the longitudinal temperature gradient has a solution in the form,

Tﬂz = —q"/k? + Aycosh(€z/R;) for |z] < zd—1, (4.1)

where the unknown coefficient A, will be determined from the continuity of Tf,z
at the debond tip. For the debonded portion of the fibre, the analysis gives

d*7;. (N (e & .
FE (E) (Tf,z + k_g) for %d— 1< [2] < 54, (4.2)

where the dimensionless coefficient ¢ is related to £ by

and B; = h;R;/k! is the Biot number for the debonded interface. The limiting case
of B; — 0 represents the adiabatic boundary condition in which the debonded
portion of the fibre-matrix interface is perfectly insulated. The other limit B; —
oo refers to the case where intimate thermal contact obtains between the fibre
and matrix with T = T,,; everywhere across the debonded interface; then, (4.2)
reduces to (3.1). The general solution to (4.2) for a gradient which is symmetric
with respect to z = 0 is

Ti. = —q°/k? + Az cosh(Cz/Ry) for 1d—1< 2 < 44, (4.4)

where the unknown coefficient As will be determined from the boundary condition
on the matrix crack surface.

(a) Thermally insulating matriz cracks

If debonding of length [ has occurred at the fibre-matrix interface and no heat
is being transferred across the matrix cracks, combination of relations (4.1), (4.4)
with relations (2.8), (2.11) and (2.18) gives the following distribution of average
temperature gradient within the fibre

q° {1 N l—pﬁcosh[{(%d— 1)/ R¢] cosh(€z/Ry) }

p ki coshlé(5d — 1)/Ry] cosh(Cd/2Ry)
7 for |2| < id—1
T;, = X 3 ) 4.5
Ay {14 Lophs b/ ) (45)
p ki cosh(&éd/2Ry) )’
for ld— 1< |2| < 1d.

The resulting expression for the effective overall longitudinal thermal conductivity
of the composite becomes

o ot [ (e L s

Phil. Trans. R. Soc. Lond. A {1995)




Matriz cracking and fibre-reinforced composites 607

IORT T 77 [T T T T[T T T T [T T 1T
B,=0.1 ]
0.8 —
'\-\\1/ R;=0 (perfect bonding) ]
o, — -
< 06 e —
-MN ___*‘_-_:
04 I=d/2 (full debonding) ]
00 N B AR B R A A
T T | 1T 11 | L B
B,=0.01 ]
~ : i
~._}/ Rg=0 (perfect bonding) i
(=2 \\. e
e \\\\ T
4‘.., | \\.___-_-——:
04— I=d/2 (full debonding) _
L L0y

02 I R | | Lt 1 | l I |

0 1 2
R/ d
Figure 5. Effect of fibre matrix debonding on the overall longitudinal therinal conductivity of
the cracked unidirectional composite for (@) Bi = 0.1 and (b) B; = 0.01. The constitutive

parameters used are ki/lfm =2,y=1,p=03and B, =0.

Here, F' is a dimensionless function defined by

[ d
F(ecmm)
~ cosh[¢(3d —1)/Ry| [tanh[€(5d —1)/R¢)  tanh[¢(5d —1)/Ry) (7
- cosh(Cd/2Ry) Ed/2R; a Cd/2R; - (A7)

The predicted values of &, /kY arc plotted in figure 5 against Rg/d for five choices
of normalized dchbond length: [/Ry = 0, 0.5, 1, 2, d/2R;, and two values of the
interface Biot number: B; = 0.01 and 0.1. The parameters k! /k,, = 2, p = 0.3
and v = 1 have been used in plotting these curves. Compared with the case of
matrix cracking unaccompanicd by fibre-matrix debonding where a fairly high
density of cracks is needed to cause a significant reduction in the axial thermal
conductivity k., the results in figurc 5 clearly show that debonding associated
with a low Biot muuber can reduce k. to the lowest limit, pkf, cven at relatively
low crack deunsitics.

At full debonding, when [ = Jd. F vanishes in (4.6). yiclding

1 — pk, [tanh(Cd/2Ry) ! ,
PR e 1 (45)

kzk-f:?{1+
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Figure 6. The effect of varying the interfacial Biot number B; on the overall longitudinal ther-
mal conductivity of the cracked unidirectional composite with complete debonding over the
fibre matrix interface. The constitutive parameters used are the same as those listed in figure 5.

which has the same form as that of (3.8) for the case of perfect bonding except that
the coefficient € there is now replaced by ¢. Morcover, (4.8) reduces to (3.6) when
the fibre and matrix are in intimate contact across the debonded portion of the
interface (B; = oo). If the debonded interfaces are perfectly insulating (B; = 0),
k. reduces to pk! for all crack spacing d. For intermediate values of I, the curve
of k./k" against I%;/d is plotted in figure 6, again with k! /k, = 2, p = 0.3 and
~ = 1. For composite systems having values of I3 < 0.1, the conclusion to be
drawn from figure 6 is that the debonded portion of the interface can be safely
taken to be perfectly insulating.

(b) The combined effect of B; and B.
If heat is transmitted across the matrix crack surfaces (B, > 0), the solution for
A; and Aj follows along the lines outlined in §3 and for the case just discussed.
The result is

cosh[C(5d — 1)/ R

A, = A, 4.9
* 7 Peoshlg(Ed — 1)/Ry)’ (4.9)
0 0 -1
_ /gg_ (1 7 p)km { Qk:HRf ) ( Cd )}
A= s oireosntcd2i U Cokir M 2R, ) 1 (4.10)

The corresponding solution for the overall conductivity k. is

(1 — p)km tanh(¢d/2R,) /(Cd/2Ry) + F(€,¢, 1/ Ry, d/Ry) }1
pk! 1+ (2kYB./¢pk.,) tanh(¢d/2Ry) ’

k,,,_k‘;{lju

(4.11)
where ¢ depends on B; as given by (4.3) and F' is still given by (4.7). In the case
of complete debonding along the interface (I = 2d), F = 0 and (4.11) becomes
formally identical to (3.11) except for the replacement there of £ by (.

With B; fixed at 0.1 and with kf/k, = 2, p = 0.3 and v = 1, the values of
k./k? from (4.11) are displayed in figure 7 for several choices of B,, assuming
that full debonding has taken place along the fibre-matrix interface. They are
bracketed by the two limiting cases B, = 0 and B, = oo corresponding to k, = pk!
and k., = kY, respectively. Apparently, if the magnitudes of both B; and B, arc
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Figure 7. The effect of varying the matrix cracking Biot number B. on the overall longitudinal
thermal conductivity of the cracked unidirectional composite with complete debonding over the
fibre-matrix interface. The constitutive parameters used are kf/k., = 2, v = 1, p = 0.3 and
B; = 0.1.

less than 0.1, then the approximations of adiabatic crack surfaces and adiabatic
debonded interfaces can be justified.

5. Concluding remarks

Matrix cracking in combination with interfacial debonding can reduce the over-
all longitudinal thermal conductivity of a unidirectional fibre-reinforced compos-
ite to a level where cssentially all the heat is conducted through the fibres. The
reduction can be as large as 50-70% if the fibre conductivity is comparable to
that of the matrix and the volume fraction of the fibre is in the range of 0.3--0.5.
Significantly, this can be achieved at relatively low crack densities when exten-
sive debonding occurs, if the relevant Biot numbers for the matrix cracks and
the debonded interfaces arc both less than about 0.1, In the case where matrix
cracking is not accompanied by fibre debonding, correspondingly large reductions
in the thermal conductivity of the composite are not seen until the cracks reach
a relatively high density rarely observed in practice. Matrix cracking perpendic-
ular to the fibres docs not affect the transverse heat-carrying capability of the
composite if the fibres are perfectly bonded to the matrix.

Insightful discussions by one of the us (T.J.L.) with Professor H. W. Emmons and Professor J.
L. Sanders, Jr, concerning heat transfer boundary conditions have been very helpful. Financial
support from ARPA University Research Initiative (Subagreement P.O. #KK 3007) with the
University of California, Santa Barbara, ONR Prime Contract N00014-92-J-1808, and from the

Division of Applied Sciences, Harvard University, is gratefully acknowledged. The finite-element
code, ABAQUS, was used to provide selected numerical solutions to the cell model.
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Discussion

D. J. RODEL (GDP, Darmstadt, Germany). Could Professor Hutchinson get an
insight into asperity contact and especially into the change of asperity contact
after cyclic loading from thermal conductivity measurements in transverse direc-
tions on uniaxial debonded reinforcements?

J. W. HUTCHINSON. This seems quite possible. There is only one set of data,
from Hasselman. They measured transverse conductivity in vacuum and argon
and from the data in argon one could get an insight into asperity contact. The
micromechanics would not help much—you would have to calibrate.
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