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Accurate results for the stress intensity factors for the asymmetric
Jour-point bend specimen with an edge crack are presented. A
basic solution for an infinitely long specimen loaded by a constant
shear force and a linear moment distribution provides the refer-
ence on which the finite geometry solution is based.
[S0021-8936(00)03601-1]

This note was prompted by a comparison ([1]) of existing nu-
merical solutions ([2-4]) for the crack specimen known as the
asymmetric four-point specimen shown in Fig. 1. Discrepancies
among the solutions are as large as 25 percent within the param-
eter range of interest. Moreover, in some instances the full set of
nondimensional parameters specifying the geometry (there are
four) have not been reported. The specimen has distinct advan-
tages for mixed mode testing, including the determination of
mixed mode fatigue crack thresholds. Here a new fundamental
reference solution is given for a infinitely long cracked specimen
subject to a constant shear force and associated bending moment
distribution. The small corrections needed to apply this solution to
the finite four-point loading geometry are included.

By static equilibrium (the configuration in Fig. | is statically
determinant), the shear force, 0, between the inner loading points
and the bending moment, M, at the crack are related to the force,
P, by (all three quantities are defined per unit thickness):

Q=P(by—b)(b,+b,) and M=cQ. ()

Consider first the reference problem of an infinite specimen
with crack of length @ subject to a constant shear force  and
associated linearly varying bending moment M. In the absence of
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the crack, the exact solution for the cross section has a parabolic
distribution of shear stress proportional to Q and a linear variation
of normal stress proportional to M ([5]). By superposition of these
two contributions, the solution for the intensity factors in the pres-
ence of the crack can be written exactly in the form

6
Kf=—;,? JmaFalW) (2a)
R Q (alw)3/2
Kﬁw WF“(“/W) (2b)

where, anticipating the application, we have taken M =c(Q at the
crack. The solution (2a) is the same as that for a pure moment. It
has been obtained numerically to considerable accuracy. Tada
et al. [6] give
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The second solution (2b) is not in the literature.

Finite element analyses of the reference problem have been
carried out to obtain both Fy (as a check) and £y, . Our results for
F agree with (3b) to four significant figures over the entire range

-
[ —ic— AN\ *— Specimen
s o
Fig. 1 Geometry of the asymmetric bending and shear
specimen
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Fig. 2 Location of the crack for pure mode |} at its tip (a=1)

of a/W indicated. Equation (3a) appears to be less accurate over
this same range {with error less than two percent), but it can be
used for a/ W>0.7. The same finite element meshes were used to
compute Fy;. The following polynomial representation was ob-
tained by fitting the numerical results:

F ¢ 7.264—9.37 ° 2.74 ¢ 2+187 a)’
ul ) =7 . —W_ +2. W . W
al\* a
—].M(W) for OSWSI. “4)

This result is believed to be accurate to within one percent over
the entire range of a/W. The results of Suresh et al. [4] deter-
mined for a specific choice of the other dimensional parameters of
the finite geometry are in good agreement with (4).

Without loss of generality, the solution for the asymmetrically
loaded specimen in Fig. 1 can be written as

6(c—c
K1=—(C—w§°)—Q JmaF(alW) (5a)
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where, in general, ¢, /W and 7 are functions of a/W, ¢/W, b, /W,
and b, /W. The mode I stress intensity factor is not precisely zero
where M =0, motivating the introduction of ¢4. The representa-
tion (5) is chosen because it reduces to the reference solution
(co/W=0,7=1) when the loading points are sufficiently far from
the crack. The finite element results presented below indicate the
reference solution is accurate to within about two percent as long
as the distance of nearest loading point to the crack is greater than
1.4w.
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Fig. 3 Correction factor for mode Il intensity factor (a=1)
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Fig. 4 Error boundaries for mode Il stress intensity factor of
two percent and four percent for (a=1) for the reference solu-
tion (2). Combinations (a/W,b,/W) lying above a boundary
have smaller error.

Figure 2 displays the dependence of ¢, /W on a/W for three
values of b /W. and a=(b,—b,)/W=1. This was computed as
the ¢/W at which K;=0. If the moment at the crack vanishes (i.e.,
¢=0), the mode 1 factor can be significant when the loading
points are near the crack. For example, for the extreme, but not
entirely unrealistic case, where b /W=0.6, a=1, a/ W=0.2, and
¢=0, the mode mixity, :ﬁ:tan‘l(Ku/Kl), is 65 deg instead of 90
deg.

Variations of the mode Il correction factor 7 with a/W for
several ¢/W are shown in Fig. 3 for »,/W=1.0 and a=1. The
error is largest for short cracks and for cracks on the order of a
distance W from the closest loading point. Curves corresponding
to constant values of the correction factor are plotted in Fig. 4,
with ¢/W=0.2 and a=1. If the combination (b, /W,a/W) lies
above the curve, the correction factor will be smaller than the
corresponding 7.

Finally, the effect of the parameter a=(b,—b;)/W is dis-
played in Fig. 5 by normalizing each of the respective stress in-
tensity factors by the reference value from (2). These results have
been computed with b /W=1.4 and ¢/W=0.2. The error in the
reference values is less than roughly 2 percent when a>0.5.

The plots in Figs. 2—35 provide guidance for either: (i) ensuring
the test parameters are such that the reference solution (2) can be
used with confidence, or (ii) estimating the corrections to the ref-
erence solution using (5). As long as the distance between the
crack and the nearest loading point is greater than about 1.4W
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Fig. 5 Role of a=(b,— b,)/ W in error of the reference solution
(2) for by/W=1.4 and ¢/ W=0.2
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(i.e, (b, —c)/W>1.4 with b,>b,) the reference solution is accu-
rate to within a few percent. The errors in the reference solution
are the smallest for deep cracks, i.e., a/ W=0.5.
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This study is devoted to a prestressed and hyperelastic tube rep-
resenting a vascular graft subjected to combined deformations.
The analysis is carried out for a neo-Hookean response aug-
mented with unidirectional reinforcing that is characterized by a
single additional constitutive paramelter for strength of reinforce-
ment. It is shown that the stress gradients can be reduced in
presence of prestress. [S0021-8936(00)00101-X]

1 Introduction

Mechanical properties are of major importance when selecting
a material for the fabrication of small vascular prostheses. The
operation and the handing of prostheses vessel by surgeons, on the
one part, the design of such grafts, on the other, induce specific
loading and particularly boundary or initial conditions. Conse-
quently, the interest in developing a theoretical model to describe
the behavior of the prostheses vessel is proved ([1]). In this paper,
we consider a thick-walled prestressed tube, hyperelastic, trans-
versely isotropic, and incompressible assimilated to a vessel graft.
We give an exact solution of the stress distributions when the tube
is subjected to the simultaneous extension, inflation, torsion, azi-
muthal, and telescopic shears ([2—10]). The first theoretical re-
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sults, in the case of a silicone tube, indicate that the increase of
prestress minimizes the stress gradients due to the effects of the
shear,

2 Model Formulation

Consider a nonlinearly elastic opened tube defined by the angle
wq (Fig. 1). Let us suppose that the tube undergoes two successive
deformations; first, including the closure of the tube which in-
duced residual strains ([11]) and second, including inflation, ex-
tension, torsion, azimuthal and telescopic shears. The mapping is
described by

w+tdaZ+O(ry z=NaZ+A(r) (1)

T
r:r(R) 0:(;0'

where (R,w,Z) and (r,8,z) are, respectively, the reference and
the deformed positions of a material particle in a cylindrical sys-
tem. ¢ is a twist angle per unloaded length, @ and A\ are stretch
ratios (respectively, for the first and the second deformation), ® is
an angle which defined the azimuthal shear, and A is an axial
displacement which defined the telescopic shear.

It follows from (1) that the physical components of the defor-
mation gradient F has the following representation in a cylindrical
system:

F(R) 0 0
R
F=| r(R)O(r)HR) % g{; réa )
A(r)#(R) 0 al\

where the dot denotes the differentiation with respect to the argu-
ment.

Incompressibility then requires that J=det F=1, which upon
integration yields '

-2, 90 oy oo
re=ri+ ey (R°—R?) 3)
where R; and r; are, respectively, the inner surfaces of the tube in
the free and in the loaded configurations (R, and r, are the outer
surfaces).

The strain energy density per unit undeformed volume for an
elastic material, which is locally and transversely isotropic about
the t(R) direction, is given by

W=W{\,I,,Iy,14,15) “)
whcre

L=TrC, L=3(TrC)*~TrC?], I;=1,

I,=tCt, Is=tCxt &)

are the principal invariants of C=FF which is the right Cauchy-
Green deformation tensor (F is the transpose of F).

The corresponding response equation for the Cauchy stress o
for transversely isotropic incompressible is (see [12])

g=—pl+2[W,B-W,B '+, W,T®T
+LW(T®B-T+T-B®T)] (6)

where B=FF is the left Cauchy-Green tensor, 1 the unit tensor,
and p the unknown hydrostatic pressure associated with the
incompressibility constraint, W,=(dW/sl,) (i=1,245) and
T=(1/yI,)Ft.

From (6), the equilibrium equations in the absence of body
forces are reduced to

do,, 0,— 0y
r + rr

ar ; =0 (Ta)
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