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The motor system uses error signals arising during action to adapt future actions. A key question is how are useful error 
signals constructed from sensory information about action outcomes? Previous studies have suggested two forms of error that 
affect adaptation: sensory prediction error (SPE), the difference between the actual and predicted sensory information about 
an action, and motor performance error (MPE), the difference between actual performance and the task goal. These two errors 
differ in that MPE is dependent on the task goal, but SPE is not, whereas SPE is dependent on internal prediction, but MPE 
is not. It is widely believed that SPE drives implicit adaptation. Here, we find that, in line with the idea of SPE-driven implicit 
learning, prediction plays a key role in driving this adaptation, however SPE-driven learning itself fails to explain key features 
of the implicit adaptive response.  Instead we find that motor performance prediction error (MPPE), the difference between 
predicted performance and the task goal consistently explains the implicit adaptive responses seen during a series of 
experimental manipulations that dissociate SPE, MPE, and MPPE by perturbing actions and goals both separately and in 
combination.  
In a previous study, we dissected the observed motor error into externally-generated and internally-generated error 
components (EGE vs IGE) (Fig 1a).  EGE is the component of motor error caused by external unpredictable perturbations, 
whereas IGE is the component caused by motor output noise. The findings showed that motor learning is driven specifically 
by EGE and not by IGE, indicating that the sensorimotor system is able to “clean up” the adaptive response by subtracting 
out the effects of internally-generated motor output noise from adaptive responses. In expt 1a, over the course of 1200 trials, 
we created small, randomly sequenced EGEs via visuomotor rotations (VMRs) of 0°, ±2° and ±4°. These small EGEs were 
of comparable size to the effects of motor output noise (Figure 1b), and the overall motor error on a trial was the sum of EGE 
and IGE components. We binned the population averaged data (N=20) into a 5x5 IGE/EGE grid based on the amount of IGE 
and EGE on each movement. The grid is plotted with squares colored to specify IGE (on the inside, with shades of blue) and 
EGE (on the outside, with shades of red). Remarkably, we found that single trial adaptive responses were insensitive to IGE 
(slope=0.02, r2=0.01), but highly sensitive to EGE (slope=-0.22, r2=0.92) (see Fig 1c-d). In a complementary unbinned 
analysis, we found similar results for the sensitivity of the adaptive response to EGE vs IGE (0.23 ± 0.03 vs -0.01 ± 0.01, 
t(19)=7.42, p=10-6, Fig 1e).  A second experiment (expt 1b) designed to measure strategy vs implicit adaptation while 
dissecting EGE and IGE, showed near zero strategy use (98% variance explained by implicit learning vs 2% by strategy), as 
expected since the perturbations were small, zero-mean, and random. Since EGE and IGE cannot be directly observed, the 
motor system must somehow dissect the observed error into EGE and IGE, if, as we found, the adaptive response differs 
between them. This could be accomplished by estimating IGE from motor output noise by using an efference copy of the 
motor command to predict action outcome and then subtracting that prediction from the planned motion. If these predictions 
are accurate, then EGE would be equivalent to the difference between actual performance and a prediction of the performance, 
which is the definition of MPPE. 
VMR perturbations that induce EGE or MPPE also create SPE because these perturbations generate errors by perturbing 
actions. However, online target shift (TS) perturbations that induce EGE or MPPE would not create SPE because TS 
perturbations would perturb only the goal, not the motion (Leow et al 2018 EJN, Leow et al 2020 J Neurosci). Thus MPPE-
driven (or equivalently EGE-driven) adaptation would predict that TS-perturbations would lead to implicit motor learning, 
whereas SPE-driven adaptation would not. In order to test these predictions directly, we designed an experiment where SPE-
driven and MPPE-driven adaptation could be powerfully dissociated. Over the course of 2000 trials, we interspersed three 
types of perturbations: (1) VMR-only trials, which induced a combination of MPE and SPE (Fig 2a), (2) TS-only trials which 
induced MPE but no SPE (Fig 2d), and (3) VMR-TS trials with matched VMR and TS perturbations that canceled MPPE and 
but induced SPE, because of the VMR (Fig 2g). We binned the data into a 5x5 IGE/EGE grid like in expt 1, separately for 
the VMR-only, TS-only and matched VMR-TS trials. In the VMR-only perturbation condition, MPPE explained a far greater 
fraction of variance in the IGE/EGE grid data than IGE (R2 values of 87% vs 1%, Fig 2b-c), replicating the findings of the 
previous study. Remarkably, we found that even when the perturbation was a target shift, EGE or MPPE explained a far 
higher fraction of variance in the IGE/EGE grid data than IGE (R2 values of 70% vs 2%, Fig 2e-f), with adaptive responses 
that were clearly sensitive to EGE or MPPE but not IGE (sensitivity = -0.13±0.03 vs 0.02±0.03), in line with MPPE-driven 
but not SPE-driven learning. In the third condition, coupled VMR-TS trials that cancel EGE/MPPE but create SPEs in line 
with the VMR perturbation size, we found that the adaptive response sensitivity to this SPE was not significantly different 
from zero (-0.05±0.05, p=0.08), indicating that when SPE occurs in isolation from MPPE, little to no adaptative response is 
evoked. Here we found, however, a small but significant sensitivity to IGE (0.04±0.02, p=10-4), suggesting that for this 
complex combination perturbation, motor output noise cancelation was not complete.   
These results show that motor performance prediction error (MPPE)-driven learning robustly explains the pattern of 
adaptation to both goal and action perturbations (Figure 3a-b). Moreover, individual contributions from SPE or MPE-driven 
learning hypotheses are small compared to that of MPPE-driven learning in a combined model of learning (Fig 3c). 
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FIGURE 1 (Expt 1a: N=20; Expt 1b: N=20)
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