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Abstract 

In motor tasks, errors between planned and actual movements generally result in adaptive changes which reduce 

the occurrence of similar errors in the future. It has commonly been assumed that the motor adaptation arising 

from an error occurring on a particular movement is specifically associated with the motion that was planned. 

Here we show that this is not the case.  Instead, we demonstrate the binding of the adaptation arising from an error 

on a particular trial to the motion experienced on that same trial. The formation of this association means that 

future movements planned to resemble the motion experienced on a given trial benefit maximally from the 

adaptation arising from it. This reflects the idea that actual rather than planned motions are assigned ‘credit’ for 

motor errors because, in a computational sense, the maximal adaptive response would be associated with the 

condition credited with the error. We studied this process by examining the patterns of generalization associated 

with motor adaptation to novel dynamic environments during reaching arm movements in humans. We found that 

these patterns consistently matched those predicted by adaptation associated with the actual rather than the 

planned motion, with maximal generalization observed where actual motions were clustered.  We followed up 

these findings by showing that a novel training procedure designed to leverage this newfound understanding of 

the binding of learning to action, can improve adaptation rates by greater than 50%. Our results provide a 

mechanistic framework for understanding the effects of partial assistance and error augmentation during 

neurologic rehabilitation, and they suggest ways to optimize their use. 

 

Author Summary 

When learning new motor skills, information about the errors that we observe in our actions can be used to 

improve future performance. However, a clear understanding of how the nervous system adapts its motor output 

based on error signals has not yet been achieved. It has been widely assumed that information about the error we 

experience on a given trial will specifically help us learn to improve the movement we intended to make, although 

direct evidence supporting this idea does not exist. In contrast, machine learning algorithms used in robotics rely 

on learning rules that instead improve movements resembling the one that was actually made. We studied how the 

human brain uses error signals to adapt to new movement conditions and found that, like in machine learning 

algorithms,  human motor adaptation relies on a mechanism that improves movements resembling the one that 

was actually made. This finding not only advances our fundamental understanding of motor learning but could 

also help develop more efficient motor training procedures for both healthy individuals and neurologic patients 
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undergoing rehabilitation. As a proof of principle, we show how a training procedure informed by this 

understanding improves the learning rate for a simple motor task. 

 

Introduction 

When learning to swim, the proper stroke motion is usually taught on the pool deck. Although a student might 

seem to have mastered this motion on dry land, upon entering the water she will have difficulty in accurately 

reproducing it underwater. However, after many laps, the student eventually learns to produce the pattern of 

motor output that leads to the proper stroke motion while swimming. This learning occurs via the formation of 

internal models of the physical dynamics experienced which allow the programming of movement to contend 

with the dynamics of the environment [1-4]. These internal models have been shown to predict the dynamics of 

the environment as a function of motion rather than as a function of time [5-8] – a strategy that makes sense in 

light of the viscoelastic and inertial physics of our own limbs and the objects we interact with. Consequently, the 

neural plasticity which underlies this learning must establish associations between motion state (i.e., position and 

velocity vectors) and motor output which can counteract environmental forces. Although the existence of these 

associations has been well established, the mechanism by which they form is not yet understood. 

How does this state-dependent learning arise during the course of motor adaptation? One possibility is that on 

individual trials, an internal model of the environment is updated based on a combination of the errors 

experienced and the motion plans that led to those errors. Another possibility is that internal models are updated 

based on errors experienced in combination with the actual motion states associated with those errors. It is 

remarkable that previous work on motor learning in neural systems has widely assumed the former [4,9-16], 

despite the fact that direct evidence for this hypothesis is scant. The idea that learning is associated with the 

motion that was planned (plan-referenced learning) is especially pervasive in the learning rules of the algorithms 

that have been proposed to model the process of adaptation in the neuromotor learning literature [4,9,11-12,15], 

however it is difficult to find work that addresses the validity of this assumption, explores its implications or 

provides a clear rationale for its use. 

The machine learning community has developed, in parallel, a series of algorithms for updating internal models in 

robotic systems.  Interestingly, these algorithms almost uniformly involve learning rules in which internal models 

are updated based on a combination of the errors experienced and the actual motion associated with those errors 

(motion-referenced learning) rather than the motions that were planned [17-21]. The choice of these learning rules 

is grounded in the idea that adaptive changes should be provably stable in the sense that, under a set of reasonable 

assumptions, updated internal models should never result in worse performance [17-21]. Here we ask the 

question: Do the associations between motor output and motion state formed during human motor learning arise 

from adaptation based on planned or actual motions?  The answer to this question is important not only for 

theories of motor control, and issues of stability during learning, but also because knowledge of how associations 
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are formed during motor learning can be leveraged to improve the efficiency of training procedures.   

Motor adaptation can be described as the process of tuning motor output to reduce the errors between plan and 

action. Thus the associations between motion state and motor output formed during this process result from the 

way that responsibility for these errors is assigned. This is known as a credit assignment problem. This problem 

can be posited as the task of assigning blame after an error is experienced to the set of actions that would be most 

likely to give rise to similar errors in the future. This set of actions could then be modified in order to improve 

performance in subsequent trials. Viewed in this way, the distinction between plan-referenced learning (PRL) and 

motion-referenced learning (MRL) corresponds to whether the blame for motor errors should be assigned to the 

planned versus actual motion. Consequently, the amount of adaptation on a given trial will be determined by the 

magnitude of the error, however the location of the adaptation (which future motions will benefit from the 

adaptation) will be determined by the credit assignment mechanism. Here we studied the generalization of motor 

adaptation to untrained conditions in order to elucidate the credit assignment mechanism used by the CNS, and 

then used our understanding of this mechanism to design a training paradigm that takes advantage of it to improve 

the efficiency of motor adaptation. 

 

Results 

What are the implications of different credit assignment mechanisms in the CNS? 

The adaptations that would occur at different stages of training for reaching arm movements in a velocity-

dependent force-field (FF) for the PRL and MRL credit assignment hypotheses are shown in Figure 1. The green 

shaded region around the planned motion – which is essentially straight toward the target for 10cm movements 

[22] – represents the space of future motions which would benefit from the adaptation to the greatest degree under 

PRL (Figure 1A). Alternatively, each red shaded region represents the space of future motions which would 

benefit maximally under MRL. A more direct visualization of the adaptive changes predicted by each credit 

assignment hypothesis can be made by representing motion and the resulting adaptation in velocity-space rather 

than position-space, since the adaptation to the velocity-dependent dynamics studied in the current series of 

experiments is believed to be mediated by an internal model largely composed of velocity-dependent motor 

primitives [8,10,12-13,23]. These primitives are the learning elements which contribute to the compensatory 

motor output (i.e., compensatory force) in a velocity-dependent manner. Figure 1B shows how individual motor 

primitives would adapt based on PRL versus MRL credit assignment early on in training. Here each circle 

represents a single motor primitive (centered at its preferred velocity) with a color intensity denoting the amount 

of adaptation that would arise from the illustrated trial. The left and right panels of Figure 1B show the 

adaptations predicted by PRL (green) and MRL (red), respectively. As in Figure 1A, adaptation is centered on the 

planned motion for PRL and centered on the actual motion for MRL. 

As training proceeds over the course of several trials, the activation levels of the adapted primitives would 
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continue to increase. This continued increase in activation (not illustrated) leads to increased compensatory force, 

resulting in greater compensation of the external dynamics and thus straighter trajectories. Note that the adapted 

primitives would be noticeably different for the two credit assignment hypotheses early in training, but would 

overlap late in training as force compensation increases and the planned and actual motions converge as illustrated 

in Figure 1A. 

 

Generalization after exposure to interfering force-fields reveals motion-referenced learning 

Given the different implications that the PRL and MRL credit assignment mechanisms have for motor adaptation, 

we can assess which one is favored by the CNS by asking a simple question: After training, which motions gain 

the most benefit from the induced adaptation? The motions that were planned or the motions that were 

experienced? Since the mechanism for credit assignment determines which motions will benefit from adaptation 

on a particular trial, we studied how motor adaptation to a single target direction generalizes to neighboring 

motion directions. If a particular motion is trained, the pattern of generalization can be viewed as a record of the 

history of credit-assignment for the errors experienced during a training period. Specifically, the amount of 

generalization in the directions neighboring the trained movement constitutes the set of actions that the motor 

system believes should be adapted based on the history of errors experienced. Therefore, PRL and MRL should 

give rise to different patterns of generalization. 

In order to cleanly distinguish between these hypotheses, we designed an experiment in which the planned motion 

and the actual motion were maintained to be distinct from one another during the entire dataset so that the patterns 

of generalization predicted by PRL vs. MRL would be very different from one another. This is a challenge 

because, training a motor adaptation generally results in improved performance such that the actual motion 

converges onto the planned motion, and such a scenario could hamper the ability to clearly distinguish between 

the PRL and MRL hypotheses. Thus, we designed an experiment in which actual motion would not converge onto 

planned motion during the course of training, resulting in enduring differences between the predictions of these 

two hypotheses. To accomplish this, subjects were exposed to a training period consisting of short, successive 

blocks of movements towards a single target location with a FF that alternated between clockwise (CW) and 

counterclockwise (CCW) directions from block to block (see Figure 2A). The magnitudes of the CW and CCW 

FFs were, respectively, 9 and -9N/(m/s). In these FFs, the peak force perturbations were 2.7 and -2.7N, 

respectively, for an average movement with a peak speed of 0.3m/s. The FF blocks were short enough (7±2 trials) 

that neither the CW nor the CCW FF could be learned very well before unlearning with the opposite FF occurred. 

After subjects were exposed to a number of these interfering FF cycles, we measured the generalization of 

adaptation to untrained movement directions with error-clamp (EC) trials (see Materials and Methods for 

details). 

The predictions of PRL and MRL are strikingly different for this experiment. For the PRL hypothesis, since the 
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adaptation is associated with motor primitives centered at the same target direction for both FFs (Figure 2B top 

panel, blue and orange traces), the balanced exposure to these opposite FFs would lead to cancellation of the CW 

and CCW FF learning resulting in near zero adaptation at the trained target direction and the adjacent directions 

(Figure 2B, dashed green trace). Note that although target locations are identical between CW and CCW FF trials, 

the actual movement directions differ. The CW FF perturbs motion towards smaller movement angles whereas the 

CCW FF does the opposite. Therefore, MRL predicts that smaller movement angles would be preferentially 

associated with adaptation appropriate for the CW FF (blue trace in the bottom panel of Figure 2B), whereas 

higher movement angles would be preferentially associated with adaptation appropriate for the CCW FF (orange 

trace in the bottom panel of Figure 2B). This would lead to the bimodal pattern of generalization illustrated in 

Figure 2B (red dashed trace). 

We trained one group of subjects in this FF interference paradigm at a target location of 270°. We found that 

target directions smaller than the training direction consistently display generalization appropriate for the CW FF 

(negative) whereas target directions greater than the training direction display generalization appropriate for the 

CCW FF (positive). This is consistent with the bimodal generalization pattern predicted by MRL (compare the 

blue and red traces in Figure 2C:  r = 0.92, F(1,7) = 36.87, p < 0.001) and quite different from the flat pattern 

predicted by PRL (green trace). Correspondingly, we found the adaptation levels at the target directions 

corresponding to the peaks of the predicted generalization pattern (-30° and +30°, see Figure 2C) to be 

significantly different from one another (t11 = 7.26, p < 9 x 10-6) and from zero (t11 = 5.95, p < 5 x 10-5 for -30°, 

and t11 = 3.89, p < 0.002 for +30°). These results provide direct evidence for MRL by matching the complex 

pattern of generalization predicted by it.   

In our experiment we balanced the direction of the FF that was presented before testing generalization, 

nevertheless, we noticed a small bias in the generalization function at the training direction consistent with a bias 

in adaptation level that we observed during the training period (see Figure 1 in Text S1).  This bias is compatible 

with other results showing somewhat faster learning for a CW FF [8]. In order to eliminate the possibility that this 

bias or the target location we chose for training (270°) might have somehow contributed to the generalization 

pattern we observed in the data, we trained a second group of subjects in a version of this experiment that was 

designed to eliminate the bias and provide training at another target location (60°).  We eliminated the bias by 

unbalancing the number of CW versus CCW FF trials in each cycle in this second group of subjects (see Text 

S1). We found that the close match between the pattern of generalization that these subjects displayed (Figure 2C, 

grey trace) and the pattern predicted by MRL persisted under these conditions (r = 0.93, F(1,7) = 42.61, p < 

0.001). Correspondingly, the adaptation levels at -30° and +30° were significantly different from each other (t9 = 

5.37, p < 3 x 10-4), and significantly different from zero (t9 = 3.72, p < 0.003 for -30°, and t9 = 4.38, p < 9 x 10-4 

for +30°). Together, these results provide compelling evidence for MRL as the mechanism for credit assignment 

in motor adaptation. 

We note that Equations 3 and 4 used for our simulations incorporate local motor primitives that are functions of 
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the initial movement direction (θ) rather than of the full time series of the velocity vectors encountered during 

each trial. This might seem an inappropriate choice since, as we discussed above, velocity-dependent motor 

primitives are thought to underlie the learning of velocity-dependent dynamics [8,10,12-13,23]. However this 

approximation is a good one when movements are approximately straight, which is essentially the case for the 

first 400ms of the movements considered in our study. This approximation, of course, breaks down at the end of 

the movement when the initial movement direction no longer describes the velocities experienced. However, the 

amplitudes of the velocity vectors during the end-movement correction are quite low and so the unmodeled spread 

of learning to the actual motion experienced in this correction phase should have relatively little effect since at 

low velocities, viscous dynamics have small consequences. This effect can be visualized in the left panel of 

Figure 1B which shows that the end-movement correction which has a velocity vector that points to the second 

quadrant would only excite velocity-dependent primitives near the origin under MRL. 

Note that the separation of the peaks in the bimodal generalization pattern predicted by MRL (red dashed line in 

Figure 2C) results from the size of the errors experienced during training. Consequently, larger force-field 

perturbations which induce larger errors would result in greater separation between the peaks.  However, the 

separation between the peaks (about 60°) is predicted to be greater than the separation between the average errors 

experienced in the two force-fields (about 25°). There are two reasons for this. The first is that more adaptation 

occurs on trials with larger errors than those with smaller errors, skewing the center of adaptation for each force-

field outwardly from the mean experienced error. The second reason is illustrated in the lower panel of Figure 2B: 

When the patterns of generalization for the positive and negative force-fields are summed, resulting in a bimodal 

generalization pattern for MRL, the peaks of this bimodal generalization pattern (red) are separated by an even 

greater distance than the peaks of the positive (orange) and negative (blue) components because the amount of 

cancellation between these components is greater at movement directions corresponding to smaller rather than 

larger errors resulting in further outward skew. 

Previous work has attempted to measure the generalization functions (GFs) associated with learning a single FF. 

MRL predicts that these GFs will be shifted toward the motion directions experienced during training. Many of 

these studies have estimated GFs from complex datasets using a system identification framework [10,12-13]. 

However the implementation of this framework assumed PRL in these studies, thus preventing a straightforward 

interpretation of their results. In one study [24] a simpler generalization experiment was conducted, in which 

subjects were trained with a single FF to a single target location, after which the resulting GF was measured. 

Because the actual motions approached the planned motions late in training, the shifts predicted by MRL would 

be subtle. Furthermore, the ability to detect shifts in the generalization function was hampered by a coarse 

sampling of the generalization function (45°). Nevertheless, careful inspection of these GFs consistently reveals 

subtle shifts towards the motions experienced during training as predicted by MRL. However, it is difficult to be 

certain whether if the shifts observed in this study result from MRL rather than innate biases in generalization 

functions because only a single FF direction was studied. Innate biases might stem from biomechanical 
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asymmetries or direction-related biases in adaptation. We therefore performed a pair of single-target, single-FF 

experiments in order to compare the shifts in generalization associated with opposite FFs. The results of these 

experiments confirm the existence of subtle but significant shifts in generalization [25]. The magnitudes and the 

directions of these shifts are consistent with the MRL hypothesis [25].  

 

Design of training paradigms inspired by the mechanism for credit assignment 

Insights into the mechanisms for learning in the CNS can provide a platform for creating training procedures that 

leverage these insights to improve the rate of learning – an important goal for both motor skill training and 

neurologic rehabilitation. With our new understanding of how the CNS solves the credit assignment problem, we 

looked into the possibility of designing a novel training paradigm to take advantage of this knowledge. A key 

consequence of plan-referenced learning is that this mechanism for credit assignment would result in a match 

between what is learned and what is commanded on the next trial if the same motion plan is repeated from one 

trial to the next during training – like when aiming a dart at the bull’s eye repeatedly. In contrast, motion-

referenced learning would result in a mismatch.  Motion-referenced learning, therefore, predicts that the process 

of training an accurate movement to a given target location in a novel dynamic environment would be inefficient 

if that target were repeatedly presented at the same location during training (single-target training, STT) as 

illustrated in Figure 3. This inefficiency arises because the motion experienced during training does not coincide 

with the motion that is to be learned, resulting in limited overlap between the motion-referenced learning that 

occurs and the learning that is desired.   

The aforementioned inefficiency can be ameliorated by a paradigm which continually changes the locations of the 

targets presented during the training period as shown in Figure 3, second column. In this training paradigm, target 

directions would be shifted from one trial to the next so that the actual motion experienced repeatedly lines up 

with the motion to be learned. For the CW FF depicted in Figure 3, this corresponds to left-shifted training (LST). 

Initial target locations are placed with large leftward shifts with respect to the desired learning direction – in 

anticipation of the large rightward initial errors with respect to the target location. These leftward target shifts are 

then gradually reduced as learning proceeds and errors become smaller, in order to maintain alignment between 

the actual motion experienced and the movement to be learned.  

The MRL hypothesis predicts that the LST training paradigm should produce faster learning than the standard 

STT paradigm used in previous motor adaptation studies in which a single target direction was trained [24,26]. 

We tested this idea by comparing the learning curves associated with these training paradigms for adaptation to a 

clockwise viscous curl force-field. A different group of subjects was studied on each paradigm to avoid the effects 

of savings [27-29]. As a control for a possible increase in attention associated with changing target locations in 

the LST paradigm, we tested a third group of subjects with a right-shifted training (RST) paradigm. Here targets 

were shifted to the right, mirroring the target positions in the LST paradigm. The MRL hypothesis would predict 
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slower learning for RST than STT or LST because right-shifted targets in a rightward pushing force-field would 

result in reaching movements even farther away from the desired learning direction than those expected in STT 

(see Figure 3, third column). In contrast the PRL hypothesis would predict fastest learning for the STT paradigm 

and identical learning rates for the LST and RST paradigms because the STT paradigm creates perfect alignment 

between the desired learning and the planned motion whereas the LST and RST paradigms create misalignments 

between the desired learning direction and planned motion that are opposite in direction but equal in magnitude. 

We used a FF magnitude of 22.5 N/(m/s) for these experiments – 2.5 times the magnitude used in Experiment 1 – 

in order to magnify the various misalignments discussed above. In all three paradigms, we measured learning at 

the desired learning direction (90º) by pseudo-randomly interspersing 90º error-clamp trials among the training 

trials with an average frequency of 20%. 

We first collected data from a subset of subjects in the STT paradigm in order to estimate the evolution of 

directional errors across trials. We used this pattern of directional errors to determine the target shifts that would 

produce good alignment between experienced motion and desired learning direction for the LST paradigm (see 

Materials and Methods). As shown in Figure 4A, we obtained a good match between motion direction and the 

desired learning direction (90º) throughout the training period for the LST paradigm, so that misalignment 

between these directions was dramatically reduced compared to the STT paradigm. Correspondingly, the 

misalignment between motion direction and the desired learning direction was about twice as great for RST than 

for STT.  

The plots shown in Figure 4B illustrate how the adaptation patterns predicted by MRL and PRL would evolve as 

training proceeds for the training paradigms discussed above. Note that adaptation spreads across a limited range 

of movement directions consistent with local generalization [24-26], but the alignment between adaptation and the 

desired learning direction (90º) varies from one paradigm to another (STT vs. LST vs. RST), and from one credit 

assignment hypothesis to another (MRL vs. PRL). The darkened dots which highlight a slice through these plots 

at 90º illustrate the amount of adaptation associated with the desired learning direction.  

These simulations show that the PRL hypothesis predicts that in the STT paradigm, credit assignment will be 

perfectly aligned with the desired learning direction (90º) throughout training. PRL also predicts an equal but 

opposite pattern of misalignments between credit assignment and desired learning for the LST and RST 

paradigms (Figure 4B). These misalignments are initially large but become attenuated during the course of the 

training because planned and actual motions converge. This results in simulated learning rates that are highest for 

the STT paradigm and lower, but identical, for the LST and RST paradigms under PRL (Figure 4B-C). In 

contrast, the simulations for the MRL hypothesis show perfect alignment between the credit assignment and the 

desired learning direction for the LST paradigm. For STT, the MRL-based simulations show a gross misalignment 

between the credit assignment and the training direction.  For RST, the misalignment is even greater (Figure 4B).  

This results in learning rates that are predicted to be greatest for the LST paradigm, followed by the STT and RST 

paradigms, respectively (Figure 4B, D). As with the PRL simulations, the misalignments become attenuated as 
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training proceeds. 

 

Left-shifted training improves learning rates 

Our experimental data show a clear difference between the learning curves obtained for the three training 

paradigms in the early stages of training (first three EC trials; one-way ANOVA, F(2,87) = 14.57 , p < 4 x 10-6). 

The LST group displays the highest adaptation levels and the RST group displays the lowest adaptation levels as 

shown in Figure 4E. In particular, the LST group displayed an 86% increase in adaptation levels on the first EC 

trial and a 52% increase over the first three EC trials, whereas the RST group displayed a 59% decrease in 

adaptation levels compared to STT over the first three EC trials in the training period. Post-hoc comparisons 

between groups over the first three EC trials indicate that the LST group showed significantly greater learning 

than the RST group (t58 = -5.05, p < 3 x 10-6). This result is in keeping with the MRL prediction, but defies the 

PRL prediction of equal learning rates for these groups. Our data also shows that the LST group displays 

significantly greater learning than the STT group (t58 = -2.17, p < 0.02), in keeping with the MRL prediction, but 

opposing the PRL prediction of a greater learning rate for STT.  We also find that the STT group displays 

significantly greater learning than the RST group (t58 = -3.90, p < 2 x 10-4), corroborating the group order 

predicted by the MRL hypothesis. These findings provide additional support for motion-referenced learning and 

demonstrate that a training paradigm that is designed to leverage knowledge about the mechanism for credit 

assignment can improve learning rates compared to standard training procedures.  

Inspection of the learning curve for the RST group reveals that the adaptation for the first EC trial after exposure 

to the FF actually dips a bit below zero. MRL predicts reduced learning for this group but would not predict 

opposite learning, consistent with the finding that the adaption level at this point, although nominally less than 

zero, is not significantly so (t27 = -2.01, p > 0.05). Additionally, we note that the third-to-last error-clamp trial in 

the baseline (which is illustrated along with the full learning curve in Figure S4B) displays an adaptation 

coefficient which dips below the average baseline and falls within the error bars of the first point in the RST 

learning curve, suggesting that the latter is not entirely outside the range of the data. Despite the differences in 

learning rate predicted by MRL-based credit assignment, angular errors should decrease as the training period 

proceeds. This results in reduced misalignment between prescribed and actual motion directions for the STT and 

RST groups, leading to a predicted convergence of the adaptation levels for all three groups, as shown in Figure 

2A in Text S1. Panel B in the same figure shows that our data bears out this prediction. Despite significant 

differences between groups early in the training period, we find no significant difference between groups late in 

the training period (last three EC trials; one-way ANOVA, F(2,87) = 0.23, p > 0.05). In addition, although we 

have shown that the MRL-based training paradigm (LST) increases the rate of adaptation, our results do not 

provide any information on the long-term retention for this adaptation. Further studies would be required to assess 

if the retention of the motor memories acquired using an MRL-based training paradigm is greater than that of 
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memories acquired using single-target training paradigms. 

 

Discussion 

Elucidating how associations are modified during the process of learning is a key step towards understanding the 

mechanisms underlying behavioral plasticity. Our findings demonstrate that the effect of the adaptation arising 

from an error sensed on a previous movement is greatest when the plan for the current motion matches the motion 

experienced on the previous trial. This indicates that, in the motor adaptation task we studied, the learned 

association binds the adaptive change in motor output to the actual motion experienced. We first showed that this 

motion-referenced learning hypothesis is able to explain the complex pattern of generalization that emerges when 

subjects are exposed to multiple blocks of interfering force-fields. We then followed up this result by showing 

that a manipulation of the pattern of target locations that aligned the actual motion experienced during training 

resulted in significantly improved learning rates, whereas a manipulation which increased misalignment resulted 

in significantly reduced learning rates. Together, these findings provide compelling evidence that credit 

assignment during motor adaptation is referenced to actual motions experienced rather than planned motions, and 

that this knowledge can be leveraged to improve the efficiency of motor skill training. The most general view of 

credit assignment would be that error-dependent motor adaptation might be composed of both motion-referenced 

and plan-referenced components. Although previous work overwhelmingly assumed pure plan-referenced 

learning [4,9-16], our results indicate that motor adaptation is primarily composed of motion-referenced learning - 

in fact, our results are consistent with motor adaptation being fully motion-referenced. However, we cannot rule 

out a small contribution from plan-referenced learning.  Consequently, further work will be needed to more 

precisely determine the relative contributions of each mechanism and to determine whether situations exist in 

which the levels of plan-referenced learning are substantial.  

 

Previous assumptions about credit assignment: plan-referenced learning 

Despite the lack of direct evidence in support of it, plan-referenced learning has been widely assumed in the 

motor adaptation literature, particularly in modeling work in which a credit assignment scheme must be chosen, 

even if implicitly so, in order for a learning rule to be defined [4,9-16]. Interestingly, Wolpert and Kawato (1998) 

assumed a hybrid credit assignment scheme: PRL for inverse-model learning and MRL for forward-model 

learning [4]. In principle, PRL is attractive because adaptation referenced to the previously planned motion would 

have the greatest effect on the same movement if it were repeated. In fact, Donchin et al (2003) contains what the 

authors maintain is a mathematical derivation that during adaptation motor primitives are updated according to 

plan-referenced learning.  However inspection reveals that this derivation is based on the assumption that motor 

adaptation acts to maximize the benefit that would be accrued if the same movement were repeated. However, 

here we showed that in motor adaptation, the error-dependent learning that occurs on a particular trial is 



 - 12 -  

referenced to the actual motion experienced on that trial rather than the planned motion, indicating that the human 

motor system does not adapt with the mechanism that would have the greatest effect on the same movement if it 

were repeated. Why would this be? 

 

Plan-referenced learning can lead to instability 

The problem with PRL is that the dynamics experienced are generally functions of actual rather than desired 

motion. For example, the dynamics experienced from moving a small dense mass would be proportional to the 

actual rather than the desired acceleration of that mass. Note that the dynamics that we artificially delivered in our 

experiments followed this general principle, i.e., the force was based on the velocity of the actual rather than the 

planned motion. The key consequence of this state dependence is that since the force pattern experienced during a 

particular motion does not reflect the planned motion (because it reflects the actual motion), the force pattern that 

would have been experienced if the planned motion were achieved is unknown. This means that, in principle, the 

error between the current motor output and the environmental dynamics acting on the planned motion adaptation 

is also unknown. Because this error is unknown, no learning rule for adaptation referenced to the planned motion 

can be guaranteed to reduce it. If, however, errors are small enough so that the dynamics experienced in actual 

and desired trajectories would be very similar to each other, plan-referenced learning schemes could converge 

because these schemes essentially assume equality between these dynamics. On the other hand, if errors are 

sufficiently large, using such a credit assignment scheme might result in unstable learning which does not 

converge on the desired motor output. A credit assignment scheme that could lead to instability would be a 

liability for the CNS. 

 

The consequences of motion-referenced learning 

The state dependence of physical dynamics insures that the force pattern experienced corresponds to the actual 

motion. Thus the error between the motor system’s current estimate of the dynamics associated with the actual 

motion and the environmental dynamics associated with this motion can be determined. Because the motor output 

error corresponding to the actual motion can be determined, the motor output associated with it can be modified to 

reduce this error reliably, allowing for stable convergence of the motor output on the true environmental 

dynamics. This corresponds to motion-referenced learning. Interestingly, this reasoning is reflected in learning 

rules with mathematically provable stability that are widely used for the estimation of environmental dynamics in 

robotics and machine learning [17-21,30]. These learning rules must be motion-referenced in order for stability to 

be assured.   

One unfortunate consequence of motion-referenced learning is the suboptimal rate of motor adaptation observed if 

an individual were to repeatedly invoke the same motor plan when attempting to learn a novel task [30]. We 
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demonstrate this suboptimality in the single-target training (STT) paradigm in Experiment 2 (Figure 4). Since 

adaptation proceeds according to the actual motion (rather than the planned motion), the STT paradigm leads to 

adaptation that is not aligned with the desired learning direction so that adaptation proceeds at a slower rate than if 

the actual motion is aligned across trials as in the LST paradigm. Our finding of motion-referenced credit 

assignment during motor adaptation is, therefore, compatible with the idea that the CNS favors a stable learning 

algorithm (MRL) over one that maximizes the effect of learning if the same motion plan is repeated (PRL).  

 

The relationship between the magnitude of error and the amount of adaptation 

Recent studies have provided evidence for reduced learning rates for large errors [31-33]. One of these studies 

proposed the rationale that this occurs because the motor system sees large errors as less relevant than small errors 

[31]. However, note that in these studies the adaptation was measured not along the motion direction experienced 

during the training trials, but along the direction of the previously planned movement – equivalent to STT. 

Therefore the decreased learning rates associated with large errors observed in these studies may be, at least in 

part, due to misalignment in motion-referenced credit assignment, because larger errors lead to increased 

misalignment between desired and actual motion during adaptation. This results in a corresponding misalignment 

between credit assignment and the desired learning, as illustrated in Figures 3 and 4. Further work will be 

required to determine the extent to which the apparent reduction in learning rates that has been observed with 

large errors reflects this misalignment versus a true reduction in the ratio between the amount of adaptation and 

the size of the error. 

 

The relationship between use-dependent learning and motion-referenced learning 

A recent study by Diedrichsen et al. [34], provides evidence for the occurrence of use-dependent learning 

alongside error-based learning in reaching arm movements. This use-dependent learning describes a mechanism 

by which the trajectory of motion in task-irrelevant dimensions is gradually adapted to resemble the motion 

experienced on preceding trials. Therefore, use-dependent learning resembles motion-referenced learning in the 

respect that they both depend on the actual motion experienced. However, as noted by Diedrichsen et al. [34], use-

dependent learning is oppositely directed from motion-referenced error-dependent learning when a perturbing 

force is experienced.  This is because use-dependent learning would act to increase the extent to which future 

motions resemble the perturbed movement whereas (motion-referenced) error-dependent learning acts to oppose 

the effect of this force in order to reduce the extent to which future motions resemble the perturbed movement. A 

second key difference is that use-dependent learning is readily observed along task-irrelevant dimensions, but is 

either greatly reduced or entirely absent along task-relevant dimensions [34], whereas the motion-referenced 

learning that we demonstrate in the current study acts primarily along task-relevant dimensions in which error can 

be readily defined. 

Taken together, the identification of motion-referenced learning and use-dependent learning expand what we 
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know about the role of sensory information in motor adaptation, in particular sensory information about motion. 

In addition to the role that this sensory input plays in computing motor errors, the motion-referenced learning and 

use-dependent learning mechanisms respectively explain how sensed motion is specifically associated with error-

dependent changes in motor output to reduce the difference between plan and action, and how sensed motion can 

be used to adapt which motions are planned to begin with. 

 

Sensed versus predicted motion and Bayesian estimation 

Information about actual motion states is required for motion-referenced learning.  This information can be 

acquired from delayed sensory feedback or estimated in real time through the use of a forward model, relying on 

an efference copy of the motor command and past sensory information [4,35-39]. However, since sensory 

feedback signals and efference copy are noisy, actual motion must be estimated from imperfect information.  

Several studies have shown that the motor system integrates prior expectations about motion with noisy sensory 

feedback in order to estimate actual motion in accordance with Bayes Law [40-42]. The influence of prior 

expectations should increase with the level of sensory feedback noise, and so Bayesian estimation should have 

greater effects on motion estimation and thus on motion-referenced adaptation when noise levels are high. 

 

Motion-referenced learning in the adaptation to visuomotor transformations 

What is the role of motion-referenced learning in the adaptation to a visuomotor transformation, where there is a 

dissociation between the actual motion of the hand and the actual motion of the cursor? Although, a definitive 

answer to this question will require further experimental work since the present study looks at the adaptation to 

new physical dynamics rather than visuomotor transformations, there are several reasons to believe that for 

visuomotor transformations, learning would be associated with the actual motion of the controlled object (cursor) 

rather than with the actual motion of the body part that is exerting this control. If motor learning were associated 

with the actual body motion, then it would be difficult to see how large visuomotor rotations could be learned at 

all, because even late in adaptation, an arbitrarily large mismatch would exist between the planned motion (e.g., 

the motion of the cursor to its target position) and the actual hand motion. However, extensive data suggests that 

visuomotor rotations that are wider than the half-width of the generalization function for visuomotor rotation 

learning (about 30°) are readily learned [43-44]. A second point is that since (a) the motor planning during 

visuomotor transformation learning corresponds to the planned motion of the cursor (rather than the hand), and 

(b) the relevant motor errors involve the relationship between actual and planned cursor (rather than hand) 

movements, it would seem logical that the learning resulting from errors in this task would be associated with the 

cursor as well. A third point is that, if learning were only associated with body motion, then isometric force 

control could not be learned in a motion-dependent fashion because, by definition, there would be no body motion 

in such a task. 
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Implications of motion-referenced learning for savings 

Linear state-space models with multiple time courses of adaptation [28,45] have been invoked as an explanation 

of savings – the phenomenon that describes the increase in learning rate when an adaption is relearned compared 

to the initial learning. However, even when complete behavioral washout of the learning is achieved, there 

appears to be some capacity for savings [29]. This effect cannot be captured by the aforementioned linear models, 

leading to the suggestion that significant nonlinearities arise even in simple motor adaptation experiments [29]. 

However, motion-referenced learning provides another possible explanation: Savings after washout may be due to 

a mismatch between the actual movement directions experienced in the initial learning and the washout trials 

rather than nonlinearities in the learning process. Such a mismatch would result in incomplete washout in the 

actual movement directions experienced during initial learning – similar to the residual direction-dependent 

adaptation that we demonstrate in Experiment 1.  Further work will be necessary to determine the extent to which 

this is the case, but if savings after washout resulted in part from a directional mismatch during washout, then the 

prediction would be that the amount of savings would be reduced if the washout trials spanned the movement 

directions experienced early in training, rather than being confined to a single target direction as in [29]. 

 

The relationship between cerebellar physiology and motion-referenced learning 

Studies with healthy subjects [46-47] and subjects with congenital and acquired cerebellar deficits [48-50] have 

provided evidence that the cerebellum participates in motor adaptation. It has been proposed that the simple spike 

firing of Purkinje cells in cerebellar cortex contributes to motor output and that error signals carried by climbing 

fibers modify the strength of the parallel fiber synapses onto Purkinje cells [11,47,51-52]. This plasticity alters the 

effect that the information carried in parallel fibers has on the output of Purkinje cells, and thus on motor output 

[51-52]. Since parallel fibers carry sensory feedback (amongst other) signals [38,53-54], this plasticity alters the 

association between sensory feedback about the actual motion and future motor output and may represent a neural 

mechanism for motion-referenced learning. 

 

Using knowledge of credit assignment during motor adaptation to improve neurologic rehabilitation 

A common technique in neurorehabilitation is the use of partial assistance, where a therapist or device 

supplements movement in order to allow patients to better approximate a desired motion [55-57]. Since partial 

assistance reduces the difference between the actual and desired motions, our findings would suggest that it 

improves the alignment between the adaptation that is learned and the desired motion that is being trained.  This 

would improve the efficiency of the training procedure.  However, partial assistance would also reduce the 

magnitude of the motor errors that drive learning. These opposing effects may decrease the overall benefit of this 
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procedure. 

Interestingly, a method known as error augmentation that can be thought of as essentially the opposite of partial 

assistance has recently been proposed as a means to improve the rate of motor learning during rehabilitation.  In 

error augmentation, motor errors are increased beyond normal levels by transiently exposing patients to 

perturbations that are stronger than those that are to be learned [58-60]. The rationale behind this technique is that 

since error signals drive motor learning, increasing the size of this signal may improve the rate of learning. Our 

results indicate that, like partial assistance, error augmentation will result in two opposing effects.  Whereas, 

partial assistance increases the alignment between the motion-referenced learning which will occur and the 

desired learning but reduces the magnitude of the error signal driving adaptation, error augmentation decreases the 

alignment between the motion-referenced learning which will occur and the desired learning but increases the 

magnitude of the error signal driving adaptation.  Thus, unlike partial assistance, error augmentation may provide 

a robust error signal for learning, but could in fact lead to decreased learning rates by magnifying the 

misalignment between the desired motion to be learned and the learned motion in the experienced trials.  

The problem of opposing effects resulting from both of these training procedures could potentially be solved by 

the implementation of a training procedure analogous to the LST training we studied, but with stronger-than-

normal perturbations.  Although the implementation of such a procedure might be somewhat challenging (note 

that we first ran another group of subjects to determine the magnitude of the target shifts employed in each trial of 

our LST paradigm), such a procedure may be capable of simultaneously increasing magnitude of the error signal 

and improving the alignment between actual and desired learning. The improvement afforded by the LST 

paradigm or derivatives of it might even be more substantial if used in patients undergoing neurorehabilitation. 

For example, chronic stroke patients are able to adapt to dynamic environments, but display slower learning rates 

and higher residual errors than healthy controls [61-62]. Interestingly, our modeling efforts suggest that MRL-

based training would have an even greater effect on subjects with these types of impairments, with the advantage 

of LST over STT predicted to be greater in magnitude and longer lasting as shown in Figure 2C in Text S1. 

Further studies would be required to determine whether this training paradigm could lead to clinically significant 

improvements in neurologically impaired subjects.   

 

Materials and Methods 

Ethics statement 

All experimental participants were naïve to the experimental purpose, provided informed consent and were 

compensated for their participation. All the experimental protocols were reviewed and approved by the Harvard 

University Committee on the Use of Human Subjects in Research (CUHS). 
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General task description 

Subjects performed 10cm reaching movements in the horizontal plane with their dominant hands while grasping 

the handle of a 2-link robotic manipulandum. Subjects were seated with their forearm leveled with the robotic 

manipulandum and supported by a sling. The subjects were presented with 1cm-diameter circular targets 

displayed on a vertically oriented LCD monitor. The position of the subject’s hand was represented on the LCD 

monitor by a 3mm cursor. Position, velocity and force at the handle were measured with sensors installed in the 

manipulandum at a sampling rate of 200Hz. The subjects were instructed to produce fast, continuous movements, 

and were provided visual feedback throughout the movement.  Feedback about the movement time achieved was 

presented at the end of each movement.  Ideal completion times (500±50ms) were signaled by an animation of the 

target while a chirp sound was played. For movement completion times that were below or above the ideal range 

the targets were colored blue and red, respectively. The mean peak speed for the movements in all experiments 

was 0.302±0.017m/s. In certain movements, the subjects’ trajectories were perturbed by velocity-dependent 

dynamics.  This was implemented by a viscous curl force-field at the handle produced by the motors of the 

manipulandum, Equation 1. 

(1)     �⃗�(�⃗�) = � 0 𝐵
−𝐵 0� �

𝑣𝑥
𝑣𝑦�  

In this equation the constant B represents the viscosity associated with this force-field and has units of N/(m/s). 

Note that the direction of the force is always orthogonal to the direction of the velocity vector. We assessed the 

level of adaptation using methods described elsewhere [28]. Briefly, we measured the force pattern that subjects 

produced when their lateral errors were held to near zero values in an error-clamp [28,63-64]. We then regressed 

the measured force pattern onto the ideal force required to fully compensate for the force-field. The slope of this 

regression was used as the adaptation coefficient that characterized the level of learning. For a force profile that is 

driven by adaptation to a velocity-dependent force-field, our adaptation coefficient represents the size of the bell-

shaped velocity-dependent component of the measured force profile. This velocity-dependent component of the 

measured force profile specifically corresponds to the force component targeted to counteract the velocity-

dependent force-field perturbation. 

 

Experiment 1: Generalization after force-field interference training 

Twenty-eight individuals with no known neurologic impairment (mean age = 19.9 ± 1.8 years; 15 male) were 

recruited for this experiment. The first twelve subjects practiced the reaching task in 9 different directions (θ = 

180˚, 210˚, 240˚, 245˚, 270˚, 285˚, 300˚, 330˚, 360˚) for 254 movements (baseline), and were then trained to 

compensate velocity-dependent force-fields in a particular movement direction (270˚) for 672 movements 

(training) with the direction of the FFs alternating every 7±2 movements between CW (B = 9 N/(m/s)) and CCW 

(B = -9 N/(m/s)). Thus the ratio of CW to CCW FF trials was 7:7. After blocks of 168 training (FF) trials, the 
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pattern of generalization was measured in each direction during a testing block of 40 consecutive EC trials spread 

across these directions. The direction (CW or CCW) of the last FF presented before generalization testing was 

balanced across the four training blocks. A second group of subjects performed the same experiment but with 

different baseline/testing directions (θ = -30˚, 0˚, 30˚, 45˚, 60˚, 75˚, 90˚, 120˚, 150˚) and training direction (60˚). 

In this experiment the ratio of CW to CCW FF trials was 6:8 for the first six subjects and 5:9 for the subsequent 

ten subjects. The data from the subjects trained at 270̊ and that from the last ten subjects trained at 60̊ (CW to 

CCW FF trial ratio of 5:9) are shown in Figure 2C. The CW to CCW FF ratio was adjusted to eliminate the bias 

towards learning the CW FF we observed in the first 12 subjects – details are provided in Text S1.  The data for 

the subjects with the 6:8 CW to CCW FF trial ratio are compared to the other datasets in Figure 1D in Text S1. 

 

Experiment 2: Comparison of training paradigms 

Ninety individuals with no known neurologic impairment (mean age = 22.0 ± 5.9 years; 44 male) were recruited 

for this experiment. One group of subjects (N = 30) were assigned to the single-target training (STT) paradigm. 

Here the subjects performed 75 movements in a single direction (90̊) to practice the reaching task (baseline) an d 

then were exposed to a CW velocity-dependent force-field (CW; B = 22.5 N/(m/s)) for 125 reaching movements 

to the same direction (training). The learning level during baseline and training was assessed with randomly 

interspersed EC movements (p(EC) = 0.2). The mean trial history of angular errors 300ms into the movement 

during force-field trials was obtained for this group of subjects and used to design the left-shifted (LST) and right-

shifted (RST) training paradigms. 

In the LST paradigm, the directions of the reaching targets were adjusted by adding a smoothed fit of the mean 

trial history of angular errors from the first seventeen subjects of the STT experiment to the desired learning 

direction on the corresponding trial (90˚). We did this so that when subjects reached to these shifted targets their 

actual motion would be expected to line up with the desired learning direction if the directional error on that trial 

was similar to that observed in the STT group as illustrated in Figure 3. On the other hand, in the RST training 

paradigm we subtracted this trial history of angular errors from the STT experiment to the desired learning 

direction (90˚). Therefore these target locations mirrored the LST target locations across 90˚. We did this so that 

when subjects reached to these shifted targets their actual direction of motion would be deviated twice as much 

from the desired learning direction (90̊) as in the STT experiment. In the LST and RST paradigms subjects (30 

on each group) also performed 75 baseline movements and then performed 125 training movements using the 

same CW velocity-dependent FF that was learned by the STT paradigm group. The learning level during baseline 

and training was assessed by measuring the lateral force profiles produced during randomly interspersed EC trials 

(p(EC) = 0.2) directed toward the desired learning direction (90 ˚). 

We simulated the adaptation process for the STT, LST, and RST training paradigms for the PRL and MRL credit 

assignment schemes using the model equations and parameters described below and in the Modeling and 
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Simulation of Credit Assignment for Force-Field Interference Experiments section in Text S1. However, in this 

case, since the experiments and simulations were not aimed at assessing generalization, error in the simulations 

was defined as the difference between the desired adaptation in the target direction and the actual adaptation in 

that direction. 

 

Modeling and simulation of credit assignment mechanisms 

We simulated the adaptation process predicted by PRL and MRL for both experiments. We used linear state-space 

models [28] with local motor primitives to model the adaptation and its generalization (see Text S1 for details). 

These are discrete (trial-dependent) error driven models, where the error is calculated as the angular difference 

between the desired movement direction and the actual movement direction, Equation 2. 

 

(2)      𝑒(𝑛) = 𝜃𝑑𝑒𝑠𝑖𝑟𝑒𝑑 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙(𝑛) 

 

In the learning rules presented in Equations 3 and 4, the adaptation, x, for given movement direction, θ (θ can take 

on values encompassing the entire movement space), in a given trial, n + 1, is the sum of the previous adaptation 

level for the same movement direction weighted by a retention coefficient, A, and the learning occurring in the 

current trial which is given by the product of the error in the current trial and a local motor primitive, B. For the 

PRL model (Equation 3), this local motor primitive, B, is centered at the planned movement direction, θplanned, 

implying that after a given trial, the maximum adaptation in the entire movement space occurs at the planned 

movement direction. 

(3)    𝑥(𝑛 + 1,𝜃) = 𝐴𝑥(𝑛,𝜃) + 𝐵�𝜃 − 𝜃𝑝𝑙𝑎𝑛𝑛𝑒𝑑(𝑛)�𝑒(𝑛) 

 

Alternatively for the MRL model (Equation 4), the local motor primitive is centered at the actual movement 

direction, θactual, which implies that after a given trial, the maximum adaptation occurs along the actual movement 

direction. 

(4)        𝑥(𝑛 + 1,𝜃) = 𝐴𝑥(𝑛,𝜃) + 𝐵(𝜃 − 𝜃𝑎𝑐𝑡𝑢𝑎𝑙(𝑛))𝑒(𝑛) 

  

Data inclusion criteria 

In our data analysis a few grossly irregular trials were excluded.  This included movements that were extremely 

fast (peak velocity > 0.55 m/s) or extremely slow (peak velocity < 0.2 m/s), as well as trials with extremely fast (< 

75 ms) or extremely slow (> 2.5 sec) reaction times. This insured that subjects did not initiate movements too 

quickly, without correctly identifying the location of the target, or too late, indicating that they might have not 
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been attending to the task. For Experiment 1, application of these two criteria resulted in the inclusion of 98.2% of 

the trials in the 270˚ group, 96.8% of the trials in the first 60˚ group (6:8 CW to CCW FF trial ratio), and 94.9% 

of the trials in the second 60˚ group (5:9 CW to CCW FF trial ratio). For Experiment 2, 94.7% of the trials in the 

STT group, 95.2% of the trials in the STT group, and 93.4% of the trials in the RST group were included. 

 

Statistical analyses 

In order to compare the predicted and experimentally observed generalization patterns in Experiment 1, we 

computed the correlation coefficient between them as well as the p value and F-statistic associated with the slope 

of the corresponding linear regression. We assessed the significance of the difference in the adaptation between 

the peaks of the generalization patterns using one-sided paired t-tests. In Experiment 2, differences between 

learning rates for the three training paradigms (STT, LST, and RST) were assessed with one-way ANOVAs both 

early (first 3 EC trials) and late (last 3 EC trials) in training. When significant differences arose, post-hoc 

comparisons were performed using one-sided t-tests. 
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Figure 1. Two hypotheses for credit assignment during motor adaptation.  

(a) Illustration of planned (green dashed line) and actual (solid red line) trajectories for early (left) and late (right) movements 

during adaptation to a velocity-dependent curl FF (grey arrows). Plan-referenced learning (PRL) would lead to adaptation 

associated with the planned motion (green dashed line). In contrast, motion-referenced learning (MRL) would lead to 

adaptation associated with the actual motion (solid red line). The green- and red-shaded regions represent the space of 

motions that would experience the greatest amount of adaptation under PRL and MRL, respectively.  (b) Illustration of the 

adaptation of velocity-dependent motor primitives under PRL and MRL for early training. Here each 2-dimensional, 

Gaussian-shaped motor primitive is represented by a gray circular contour at its half-σ point  (σ = 0.12 m/s from 

Thoroughman and Shadmehr, 2000). The preferred velocities (centers) of these motor primitives are tiled across velocity 

space as shown. Note that the planned and actual arm motions (green dashed line and red solid line) are replotted in velocity 

space here.  The interior of the circle representing each motor primitive is colored with an intensity proportional to the 

activation induced by the adaptation resulting from the illustrated trial. Under PRL (left panel) this activation is greatest for 

motor primitives which neighbor the motion plan in velocity space (green shading), whereas under MRL this activation is 

greatest for motor primitives that neighbor the actual motion (red shading).  
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Figure 2. Generalization after exposure to interfering force-fields reveals motion-referenced adaptation.  

(a) Experiment schematic. After a baseline period where subjects performed movements in nine different directions, subjects 

received training for a single target location (the central one) with alternating blocks of 7 ± 2 force-field trials in CW (blue) 

and CCW (orange) FFs as illustrated. After training, generalization of the force-field compensation was tested along the nine 

original directions practiced during the baseline period (see Materials and Methods for details). (b) Model predictions. If 

the motor primitives that are adapted during training are centered at the desired movement direction – as specified by PRL – 

the opposite activations of aligned motor primitives created by the exposure to opposite force-fields (orange vs. blue in the 

top panel) would cancel one another leading to near-zero net adaptation (green dashed line). On the other hand, if the motor 

primitives that are adapted during training are centered at the actual movement directions – as specified by MRL – the 

opposite activations created by the exposure to opposite force-fields would no longer be aligned (orange vs. blue in the 

bottom panel). The sum of these misaligned activations (red dashed line) would result in a bimodal generalization pattern.  

(c) Experimental results. In two different experiments (one where subjects were trained at 270° – blue line – and another 

where subjects where trained at 60° – grey line) the patterns of generalization obtained appear consistent with motion-

referenced learning (red dashed line, r = 0.92 (270° data) and r = 0.93 (60° data)) but inconsistent with plan-referenced 

learning (green dashed line). The error bars represent standard errors. 
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Figure 3. Illustration of different training paradigms under the two credit assignment hypotheses.  

Single-target training (STT): a single target location is presented during the training period. The PRL hypothesis predicts 

alignment of credit assignment across trials for STT, whereas MRL predicts misalignment. Left-shifted training (LST): 

targets are initially presented leftward of the desired learning direction and are brought closer to it as training progresses so 

that the actual motion matches the desired learning direction throughout the training period. The MRL hypothesis predicts 

alignment of credit assignment across trials for LST, whereas PRL predicts misalignment. Correspondingly, PRL predicts 

that STT will yield the greatest learning whereas MRL predicts that LST will yield the greatest learning.  Right-shifted 

training (RST): the training targets are presented in a sequence that mirrors LST. Both the PRL and MRL hypotheses predict 

misalignment for RST. However, PRL predicts an identical amount of misalignment for LST and RST, whereas MRL 

predicts much greater misalignment for RST than LST. Note that CW FF training is illustrated in all panels. 
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Figure 4. A novel training paradigm improves learning rates.  

(a) Characterization of the STT, LST and RST training paradigms. Target directions (dashed) and actual movement 

directions (solid) during the training period are plotted against trial number. Note that the LST paradigm achieves actual 

movement directions that are much more closely aligned with 90º than the other two paradigms. (b) Simulations of motor 

adaptation based on the PRL and MRL hypotheses for the three training paradigms. The darkened dots at 90º indicate the 

desired learning direction and the coloring indicates the amount of adaptation predicted. Note that PRL predicts optimal 

alignment with STT while MRL predicts optimal alignment with LST. (c) and (d) Predicted learning at 90º for the PRL and 

MRL hypotheses. Note that these traces represent slices at 90º through the 3-D plots in panel B, corresponding to the 

darkened dots. (e) Experimental results for all three training paradigms. Note that over the first 10 trials, the LST paradigm 

produces the highest adaptation levels, and RST the lowest, as predicted by MRL. The error bars represent standard errors. 


