1 Example

Exercise. Suppose $T(1)=3$ and $T(n)=3 T(n / 2)+n$. How would you find $T(8)$? The point of this exercise is the process.

This is the same approach that's used to prove the Master Theorem.

2 Master Theorem

Start with a recurrence $T(n)=a T(n / b)+c n^{k}$ (supposing that $T\left(p_{0}\right)=q_{0}$ for constants p_{0} and q_{0}) and expand:

$$
\begin{aligned}
T(n)= & a T(n / b)+c n^{k} \\
= & a\left[a T\left(n / b^{2}\right)+c\left(\frac{n}{b}\right)^{k}\right]+c n^{k}=a^{2} T\left(n / b^{2}\right)+c n^{k}\left(1+\frac{a}{b^{k}}\right) \\
& \vdots \\
= & a^{s} T\left(n / b^{s}\right)+c n^{k}\left[\left(\frac{a}{b^{k}}\right)^{s}+\left(\frac{a}{b^{k}}\right)^{s-1}+\ldots+\frac{a}{b^{k}}+1\right]
\end{aligned}
$$

We stop expanding when we reach the base case, when $\frac{n}{b^{s}}=p_{0}$. This occurs after $s \approx \log _{b}\left(\frac{n}{p_{0}}\right)=\log _{b} n+$ constant iterations. Notice that the expression is split into two terms. The asymptotic form of $T(n)$ is just a competition between these two terms to see which one dominates.
The second term has a geometric sum: using the formula for a geometric sum gives:

$$
T(n)=a^{s} q_{0}+c n^{k}\left[\frac{1-\left(\frac{a}{b^{k}}\right)^{s+1}}{1-\frac{a}{b^{k}}}\right]
$$

Exercise. Use the above expansion to derive the case of the Master Theorem for $a<b^{k}$.

Exercise. Now derive the Master Theorem for $a>b^{k}$.

Exercise. Derive the Master Theorem for $a=b^{k}$.

Qualitatively, if $a>b^{k}$, the bottleneck of the recurrence is the number of recursive calls we have to make. Otherwise, it's the extra work done during each call (i.e. the $c n^{k}$ term) that dominates the runtime.

