CS 125 Explaining the Master Theorem 09/08/2014

1 Example

Exercise. Suppose T(1) = 3 and T(n) = 3T (n/2) + n. How would you find T(8)? The point of this
exercise is the process.

This is the same approach that’s used to prove the Master Theorem.

2 Master Theorem

Start with a recurrence T'(n) = aT'(n/b) + en® (supposing that T'(pg) = qo for constants py and qo) and
expand:

T(n) = aT(n/b) + cn*
—a [aT(n/b2) +e(%

b

)k] + en® = a®T(n/b?) + en® (1 + bi)

= a*T(n/b%) + cn* [(bi)s + (%)S_l TR ;ik + 1]

We stop expanding when we reach the base case, when 7z = pg. This occurs after s ~ log, p% = log, n+

constant iterations. Notice that the expression is split into two terms. The asymptotic form of T'(n) is just
a competition between these two terms to see which one dominates.

The second term has a geometric sum: using the formula for a geometric sum gives:

1- (;zf“]

T(n) = a®qo + cn® T @
bk

Exercise. Use the above expansion to derive the case of the Master Theorem for a < bF.



Exercise. Now derive the Master Theorem for a > b¥.

Exercise. Derive the Master Theorem for a = b*.

Qualitatively, if a > b*, the bottleneck of the recurrence is the number of recursive calls we have to make.
Otherwise, it’s the extra work done during each call (i.e. the en® term) that dominates the runtime.



	Example
	Master Theorem

