## 1 Example

Exercise. Suppose $T(1)=3$ and $T(n)=3 T(n / 2)+n$. How would you find $T(8)$ ? The point of this exercise is the process.

## Solution.

Expand and substitute using the formula for the recurrence:

$$
\begin{aligned}
T(8) & =3 T(4)+8 \\
& =3[3 T(2)+4]+8=9 T(2)+20 \\
& =9[3 T(1)+2]+20=27 T(1)+38=119
\end{aligned}
$$

This is the same approach that's used to prove the Master Theorem.

## 2 Master Theorem

Start with a recurrence $T(n)=a T(n / b)+c n^{k}$ (supposing that $T\left(p_{0}\right)=q_{0}$ for constants $p_{0}$ and $q_{0}$ ) and expand:

$$
\begin{aligned}
T(n)= & a T(n / b)+c n^{k} \\
= & a\left[a T\left(n / b^{2}\right)+c\left(\frac{n}{b}\right)^{k}\right]+c n^{k}=a^{2} T\left(n / b^{2}\right)+c n^{k}\left(1+\frac{a}{b^{k}}\right) \\
& \vdots \\
= & a^{s} T\left(n / b^{s}\right)+c n^{k}\left[\left(\frac{a}{b^{k}}\right)^{s}+\left(\frac{a}{b^{k}}\right)^{s-1}+\ldots+\frac{a}{b^{k}}+1\right]
\end{aligned}
$$

We stop expanding when we reach the base case, when $\frac{n}{b^{s}}=p_{0}$. This occurs after $s \approx \log _{b}\left(\frac{n}{p_{0}}\right)=\log _{b} n+$ constant iterations. Notice that the expression is split into two terms. The asymptotic form of $T(n)$ is just a competition between these two terms to see which one dominates.
The second term has a geometric sum: using the formula for a geometric sum gives:

$$
T(n)=a^{s} q_{0}+c n^{k}\left[\frac{1-\left(\frac{a}{b^{k}}\right)^{s+1}}{1-\frac{a}{b^{k}}}\right]
$$

Exercise. Use the above expansion to derive the case of the Master Theorem for $a<b^{k}$.

## Solution.

Here, $\frac{a}{b^{k}}<1$, and as $n$ (and therefore $s$ ) grows large the sum of the above geometric series is dominated by the constant term $\frac{1}{1-\frac{a}{b^{k}}}=\Theta(1)$. So $T(n)=\Theta\left(a^{s}\right)+\Theta\left(n^{k}\right)$. Using our expression for $s$ :

$$
a^{s}=\Theta\left(a^{\log _{b} n}\right)=\Theta\left(n^{\log _{b} a}\right)=o\left(n^{k}\right)
$$

since $a<b^{k}$ means that $\log _{b} a<k$. We therefore get that $T(n)=o\left(n^{k}\right)+\Theta\left(n^{k}\right)=\Theta\left(n^{k}\right)$.

Exercise. Now derive the Master Theorem for $a>b^{k}$.

## Solution.

Proceeding like the previous case, the geometric sum is now dominated by the:

$$
\frac{\left(\frac{a}{b^{k}}\right)^{s+1}}{\frac{a}{b^{k}}-1}=\Theta\left(\left(\frac{a}{b^{k}}\right)^{s}\right)
$$

term. Then the second term of $T(n)$ is:

$$
c n^{k} \cdot \Theta\left(\left(\frac{a}{b^{k}}\right)^{\log _{b} n}\right)=c n^{k} \cdot \Theta\left(\frac{n^{\log _{b} a}}{n^{k}}\right)=\Theta\left(n^{\log _{b} a}\right)
$$

This along with the result from the previous exercise that $a^{s}=\Theta\left(n^{\log _{b} a}\right)$ gives that $T(n)=\Theta\left(n^{\log _{b} a}\right)$.

Exercise. Derive the Master Theorem for $a=b^{k}$.

## Solution.

Every term in the geometric series is now 1 . There are $s+1$ terms, so the second term of $T(n)$ becomes:

$$
c n^{k}(s+1)=\Theta\left(n^{k} \log _{b} n\right)=\Theta\left(n^{k} \log n\right)
$$

The first term of $T(n)$ is $\Theta\left(n^{\log _{b} a}\right)=\Theta\left(n^{k}\right)$ so the second term dominates and $T(n)=\Theta\left(n^{k} \log n\right)$.

Qualitatively, if $a>b^{k}$, the bottleneck of the recurrence is the number of recursive calls we have to make. Otherwise, it's the extra work done during each call (i.e. the $c n^{k}$ term) that dominates the runtime.

