
CS 125 Algorithms & Complexity — Fall 2016

Problem Set 9
Due: 11:59pm, Friday, November 11th

See homework submission instructions at http://seas.harvard.edu/~cs125/fall16/schedule.htm

Problem 1

Consider the Tiling from class, in which the input is a finite collection of distinct tile types
whose edges are colored, and the question is whether we can tile the entire plane using those
squares (such that squares sharing an edge in the tiling must have the same color on that
edge). In class we showed that TilingFirstQuadrant is undecidable, which was a variant
of the problem in which we only had to tile the upper right quadrant, and we are also told
which square should be placed in the bottom left corner. (See Lecture 17, Section 17.4)

(a) (3 points) Consider the problem Tilingk, which is exactly like Tiling except that
the square types in the input can only have edge colors in the set {1, . . . , k}. Prove or
disprove: there exists a fixed k such that Tilingk is undecidable.
If it is decidable, what is the best running time you can achieve by an algorithm to
decide it, say in the word RAM model?

(b) (7 points) Consider now the problem TilingkCompletion, where a finite partial
tiling of the plane is given as input together with a finite set of tile types that may
be used, and the problem is to decide whether the partial tiling can be completed to
a full tiling of the plane. Again, all tile types have edge colors in {1, . . . , k}. Prove
that there is a fixed constant k such that TilingkCompletion is undecidable. Hint:
reduce from a suitable variant of the Halting Problem.

Problem 2

In class we analyzed QuickSelect using the notion of “good” recursive calls: a recursive call
was good if it reduced the number of working elements by a factor of at least 3/4. Instead,
we could adopt an analysis for QuickSelect similar to that for QuickSort. Suppose we call
QuickSelect(A, k), to find the kth smallest element in an array A of size n. Assume the
elements of A are distinct. Note the running time of QuickSelect is proportional to the
number of comparisons. Thus if we let Xi,j be a random variable which is 1 if ith smallest
item and jth smallest item are ever compared throughout the execution of QuickSelect(A, k),
then the running time is proportional to

∑
i<j Xi,j.

(a) (4 points) For i < j, give an exact expression for EXi,j in terms of i, j, k, n. You may
need to employ case analysis.

(b) (6 points) Using (a), show that E
∑

i<j Xi,j = O(n).



Problem 3

a

b

D

C

E

b

aD

E C

a

b

D E

C

b

Ea

C D

(i)

(ii)

Figure 1: BST rotation: in (i), b is rotated upward as a left child. In (ii), b is rotated upward
as a right child. A circle denotes a single vertex, and a triangle denotes a subtree.

Consider the following implementation of a binary search tree (BST). When searching,
we search based on key as in a normal BST. When inserting an element with key k, we assign
the element a uniformly random ID in [0, 1]. We first insert the element into the BST based
on its key as normal. We then rotate the node it lands in upward to preserve the invariant
that, when looking at node IDs instead of node keys, the tree should be a min heap (see
Figure 1 for a depiction of rotation).

Suppose the keys in the BST at some point are k1 < k2 < . . . < kn. When searching
for key kr, note that we touch the node with key ki if and only if it is an ancestor of the
node with kr in the BST. Using this fact, show that the expected time to perform a query
is O(log n). Also show that the expected time to insert a new key into the data structure is
also O(log n).

Problem 4

We have n wooden blocks and n baskets. For each block, we throw it into a uniformly
random basket, and we do this independently for each block. Show that with probability at
least 99%, no basket receives more than O(log n/ log log n) blocks. You can use the following
two facts without proof:

(1) for all 1 ≤ k ≤ n, (n/k)k ≤
(
n
k

)
≤ (en/k)k, and

(2) the “union bound”: for any set of probabilistic events {Ei}ti=1,

P(E1 or E2 or . . . or Et) ≤
t∑

i=1

P(Ei).

2


