Annotated PDFs will now be accepted for proof return. Authors who would like to return their proofs by mail, please print all pages of the proof PDF (use “normal quality”). Note the following directions for correcting and returning your proofs. **Important:** For your convenience, this page contains a shortened version of the content in the proof notification e-mail, and some information is not repeated here. Please read the e-mail letter, which will inform you if your article exceeds our page limit.

Please note: The date a paper appears online in PNAS daily Early Edition is the publication date of record and is posted with the article text online. **All author changes must be made before the paper is published online or will be considered and processed as errata.**

Text

1) Clearly mark all of your changes and answers to author queries in the margins next to the article text in the proofs, either in the annotated PDF or on the hard copy;
2) Review and answer ALL author queries (marked in the margins of the text with AQ: A, etc.) that are listed on the query sheet(s);
3) Proofread tables and equations carefully; and
4) Make sure that any Greek/special characters appear correctly throughout the text.
5) PNAS charges for extensive author alterations on proofs. Six or more author alterations per page will be charged at $4 each. Authors will not be charged to correct printer’s errors, copyediting errors, or figure errors made in composition.

Figures

1) Proofs contain low-resolution figures (so proofs can be downloaded and printed quickly). Figure quality will be higher in the printed and online html versions of the journal. Please note any figure quality concerns next to the figure on the proofs.
2) Carefully check fig. numbering, color, text labeling, and cropping; if elements are missing from or moved within a figure, or if your color figure does not appear in color in the PDF, please note this on your proofs and send us a printed copy of the correct figure for comparison;
3) Replacing, deleting, or resizing color figures will cost $150/figure and replacing a black-and-white figure will cost $25/figure.

Supporting Information

If you submitted supporting information (SI) to be posted on the PNAS web site, you will receive a PDF proof of the SI in a separate e-mail. PNAS charges for extensive author corrections in SI. Four or more author alterations per SI page will be charged at $4 each. Replacing SI figs. will cost $25/fig.

Within 2 business days, please either return your annotated proof PDF electronically to the editorial contact listed in query A of your proof, or express mail (by overnight or 2-day delivery, if possible) the following items to the address given below.

1) The original printed copy of the PDF, including query sheet(s), with your corrections marked in the margins next to the article text;
2) The reprint order form (including the price sheet). You can fax this form to the number listed on it instead of mailing the form back to us. If you have trouble printing the form, it is also available on our web site at http://www.pnas.org/misc/author_reprints.pdf.

Please retain a copy of ALL pages of the proof PDF for your records. Please include your manuscript number with all correspondence.

Thank you.

Return address for proofs:
Attn: PNAS
8621 Robert Fulton Dr., Suite 100
Columbia, MD 21046
pnas@cadmus.com
Tel: 410-850-0500 (Use this number for shipping purposes only; see query A on the Author Queries sheet in your proof PDF for contact information for your article.)
Explosively launched spores of ascomycete fungi have drag-minimizing shapes

Marcus Roper, Rachel Pepper, Michael P. Brenner, and Anne Pringle

The forcibly launched spores of ascomycete fungi must eject through several millimeters of nearly still air surrounding fruiting bodies to reach dispersive air flows. Because of their microscopic size, spores experience great fluid drag, and although this drag can aid transport by slowing sedimentation out of dispersive air flows, it also causes spores to decelerate rapidly after launch. We hypothesize that spores are shaped to maximize their range in the nearly still air surrounding fruiting bodies. To test this hypothesis we numerically calculate optimal spore shapes—shapes of minimum drag for prescribed volumes—and compare these shapes with real spore shapes taken from a phylogeny of >100 species. Our analysis shows that spores are constrained to remain within 1% of the minimum possible drag for their size. From the spore shapes we predict the speed of spore launch, and confirm this prediction through high-speed imaging of ejection in Neurospora tetrasperma. By reconstructing the evolutionary history of spore shapes within a single ascomycete family we measure the relative contributions of drag minimization and other shape determinants to spore shape evolution. Our study uses biomechanical optimization as an organizing principle for explaining shape in a mega-diverse group of species and provides a framework for future measurements of the forces of selection toward physical optima.

many organisms have visible adaptations for minimizing drag, including the streamlined shapes of fast-swimming fish and of Mayfly nymphs that cleave to rocks in rapidly flowing streams, or the precisely coordinated flapping of tarsal leaf veins in strong winds (1). However, although drag minimization may improve some aspects of individual fitness, it is also clear that physiological and ecological trade-offs will constrain the evolution of body shape. Similarly, although signatures of optimization can be seen in diverse features of organism morphology (2), behavior (3), and resource allocation (4, 5), the strength of the force of selection for one physical optimum over another can not be readily quantified (6).

Most fungi grow on highly heterogeneous landscapes and must move between disjoint patches of suitable habitat. Sexual spores can be carried by air flows and allow dispersal between patches (7, 8). To reach dispersive air flows, spores of many species of ascomycete fungi are ejected from ascus, fluid-filled sacs containing the spores (9). At maturity the turgor pressure within each sac climbs until a critical pressure is reached, whereupon a hole opens at the apex and spores are ejected (8). Spores must travel far enough from the originating fruiting body to enter dispersive air flows. In particular, it is necessary that they pass through a boundary layer of still air of thickness ~1 mm that clings to the fungal fruiting body (10).

Multiple independently evolved adaptations enhance spore range in disparate fungal species. For example, appendages and mucilaginous sheathes promote spore cohesion during launch, increasing projectile mass but allowing spores to subsequently disassociate into small, easily dispersed fragments (7, 11), whereas the long thread-like spores of some Sordariomycete fungi are ejected slowly and may physically span the layer of still air before fully leaving the ascus (12). We consider how spores lacking these conspicuous adaptations may yet be shaped to maximize range.

We analyze an entire phylogeny of >100 such species for drag minimization. We use numerical optimization to construct drag-minimizing shapes over the range of flow speeds and sizes relevant to real spores. These drag-minimizing shapes are very different from the well understood forms of macrobodies such as man-made projectiles and fast-swimming animals (13). By comparing real spores with these optimal shapes we predict the speed of spore ejection, and then confirm this prediction through high-speed imaging of ejection in Neurospora tetrasperma.

A simple physical argument shows that the speed of ejection of unappendaged spores is itself insensitive to spore shape, size, or species identity. We can estimate the speed of a launched spore by noting that during ejection, the work of the turgor pressure (∆pV, where V is the volume of a spore) is converted to kinetic energy, giving the spore a velocity which depends on the density, ρ ≈ 1, 200 kg m⁻³ (7), of the spore but not on its shape or size. Furthermore, assuming that the ascus is inflated to the largest overpressure allowed by the concentration and activity of the osmolytes present (14), we expect ∆p, and thus U₀, to be conserved across all ascomycetes with explosive spore ejection.

The speed of ejection has not been directly measured for any singly ejected, unappendaged ascomycete spore, but is constrained by previous indirect measurements. The turgor pressure within a ripe ascus has been estimated to be ∆p ≈ 0.08–0.3 MPa (16); from which Eq. 1 would give U₀ = 10–20 m s⁻¹. Such pressure-based estimates give only upper bounds on U₀, they neglect the friction between spore and ascus walls. Spore travel distances are similarly strongly affected by air flows but give a second set of upper bounds ranging between ~9–35 m s⁻¹ (14, 17, 18). Nonetheless, although the value of U₀ is not known, the assumption that launch speed is conserved among species with this mode of ejection is supported by Vogel’s remarkable collection of launch speed data for a large range of plant and fungal projectiles (15).

Ingold (7) hypothesized that spores are shaped to maximize the speed of ejection by minimizing frictional losses within the ascus. We find no evidence of selection for such shapes: in the supporting information (SI) Appendix we analyze a model for friction within the ascus and show that minimization of favors oblate

Author contributions: M.R., R.P., M.P.B., and A.P. designed research; M.R., M.P.B., and A.P. performed research; M.R., M.P.B., and A.P. analyzed data; and M.R., M.P.B., and A.P. wrote the paper.

The authors declare no conflict of interest.

© 2008 by The National Academy of Sciences of the USA
shapes. Such shapes are not seen in real spore shape data (see Fig. 3A).

With launch speed conserved, maximizing the spore range requires minimizing the ratio of drag to mass. To see this, balance the fluid drag $-\zeta u$, where u is the speed and ζ is the Stokes drag coefficient, which is approximately independent of speed for sufficiently small projectiles (10), against the inertia of the spore:

$$m \frac{du}{dx} = -\zeta u \Rightarrow x_{\text{max}} \approx \frac{mU_0}{\zeta},$$

where x is the distance traveled and m is the spore mass. This formula can only be used to infer distance traveled from spore shape for the smallest spores (for which the Reynolds number, Re, defined below, is <1). Although there is no formula relating distance traveled to spore shape for larger spores ($Re > 1$), it is clear, nevertheless, that minimization of the drag-to-mass ratio will maximize the distance traveled by the spore during the early part of its trajectory. In the SI we describe the three assumptions necessary for computing and then minimizing the drag on an ejected spore.

Results and Discussion

Shapes that minimize the ratio of drag to mass can be efficiently computed by using algorithms developed for the design of airplane wings (19); our implementation iteratively modifies the projectile shape, at each iteration solving numerically for the flow field around the shape and then for an adjoint flow field to determine the shape perturbation that gives the largest possible reduction in drag. The algorithm for computing minimum drag shapes is described in ref. 20 and summarized in the Materials and Methods. Optimal shapes are parameterized by the Reynolds number $Re \equiv U_0 a/v$, where v is the kinematic viscosity of air, and a is the volumetric radius (the radius of a sphere with matching volume) of the spore. Assuming that U_0 does not vary between species, the Reynolds number provides a dimensionless measure of the spore size. For example, $U_0 = 2$ m s$^{-1}$ implies $Re = a/(9 \mu m)$. In Fig. 1, minimal drag shapes are displayed for Re ranging from 0.1 up to 10, and compared with real spore shapes.

To determine whether the species shown in Fig. 1B are representative of ascomycetes with explosive ejection, we compared real spores with optimal shapes in over 102 species by using a previously created phylogeny of the phylum Ascomycota (21). Shape data were gathered from 77 species whose spores are launched forcibly and individually. We rejected species whose spores have adaptations such as appendages or septa, which may have different ejection dynamics (see SI). When possible, rejected species were replaced by species within the same genus lacking any such adaptations. To provide the greatest possible spread of spore sizes, additional large-spored species were added to our analysis until every 10-µm interval of volumetric radii contained at least five species. We find that the drag on a spore can be calculated by approximating its shape by an ellipsoid of matching size and aspect ratio. This applies even to spores with pointed apices, or surface decorations such as warts, spines, or ridges, because at small Reynolds numbers such shape features do not strongly contribute to drag. Four of 102 species in our phylogenetic survey have decorated surfaces. To show the validity of the approximation, we compare directly the computed drag on one smooth-spored species and three species of exceptionally rugose spores with the computed fluid drag on the corresponding ellipsoids. Rugose spore silhouettes were traced from electron micrographs: an image of the sculpted species *Aleuria aurantia* was provided by J. Dumais and images of the ridged species *Peziza baddia* and of the coarsely warty *Peziza vacinii* were taken from ref. 22, whereas the silhouette of the smooth spored species *Neurosperma crassa* was traced from a optical micrograph provided by N.B. Raju (see Fig. 2). The true spore shape was approximated by revolving the silhouette to form an three-dimensional body. The computed drag on the spore is compared with the drag on its approximating ellipsoid in Table 1. The shape approximation captures the drag on the spore with high (<1%) accuracy for smooth and rough spores, but is slightly less accurate on *A. aurantia* and *P. vacinii*.
accurate for spores with coarse, dense warts such as *P. vacinii*. For these warty spores, the drag is more accurately approximated by an ellipsoid that completely encloses the spore and its surface ornamentation.

Fig. 3.4 compares the aspect ratio and *Re* data for the species in the phylogeny with optimal shapes. Species between the two dotted curves suffer no more than 1% more drag than the drag-minimizing shape. Seventy-three of 102 species from the phylogeny have shapes within 1% of the optimum, and half of the species are within 0.46%, which corresponds to conforming to within 25% of the the optimal aspect ratio. This comparison requires us to assume a launch velocity *U₀*, to convert between size and *Re*. Launch velocities in the range 2.1(±1.4/2.1) m s⁻¹ give good agreement of real and optimal shapes (Fig. 3B). Some of the dispersion of spore shape may result from certain species being optimized for speeds larger than this assumed range. Fig. 3.4 also shows clear upper and lower bounds on spore size. Both bounds follow from fluid mechanical constraints. Spores must exceed a minimum size for their inertia to carry them through a boundary layer of nearly still air clinging to the fruiting body: for a fruiting body of size *L* = 1 mm, and wind speed *U*ₘᵢₐₜ = 20 cm s⁻¹ (24) we expect this boundary layer to have a characteristic thickness \(\sqrt{\nu L U} \approx 0.1 \mu m \). Within the boundary layer air flow normal to the boundary, i.e., in the direction of launch of the spores, is very weak (23), so the air may be treated as still, but for the smallest spores, *Re* \(\ll 1 \) (if *a* = 1 μm, then *Re* \(\approx 0.1 \)), so the Stokes formula (Eq. 2) may be then be used to determine range. For the range to exceed the characteristic boundary layer thickness we obtain, on setting \(\zeta \approx 6\pi a \eta / \rho g \), a lower bound on spore size of \(a > 1.8 \mu m \). This is comparable to the size of the smallest spores in the dataset (Graphostroma platystroma, *a* = 0.7 μm). However, spores that are too large are too heavy to be supported by the often quite weak air flows beyond the boundary layer. For the lift from an upward wind of speed *U*ₘᵢₐₜ = 20 cm s⁻¹ to exceed the spore weight \(\frac{1}{2} \pi a^2 \rho g \), it is necessary that \(a < \left(\frac{9 \pi U_{\text{m}_{\text{lift}}}^2}{2 \rho g} \right)^{1/2} \approx 40 \mu m \), which matches the size of the largest forcibly launched spores (Pertusaria melanochora, with *a* = 58 μm).

Because our fitted ejection speed is less than previous estimates based on pressure or spore range (8), we used high-speed imaging to directly measure *U₀* in laboratory cultures of *N. tetrasperma* (see Materials and Methods). One sequence was captured (Fig. 4A) showing the trajectory of the launched spore. Fitting the spore trajectory to a Stokes drag model (Eq. 2), we find *U₀* = 1.24 ± 0.01 m s⁻¹ (Fig. 4B), well-matching our predicted ejection speed.

By measuring the distances traveled by ejected spores we estimated the variability in launch speed among fruiting bodies. In contrast to previous range measurements (17, 18), we controlled for enhancement of range by air flows within the petri dish by measuring travel distances only for spores lying in piles (see Fig. 4C), which are likely to have followed identical trajectories. (By contrast, we expect spores whose ranges have been significantly augmented by random air flows to be scattered over the petri dish.) Supposing that *U₀* \(\lesssim 2 \) m s⁻¹, so that *Re* \(\lesssim 1 \), we used Eq. 2 to infer launch velocity, by taking \(\zeta = 6\pi a \psi \mu / \rho g \), where the shape factor \(\psi \approx 0.95 \) for a spore of length 31 μm and width 15 μm (25), and the number of spores in a pile was estimated from its area on the substrate. Frequency counts of the launch velocities from 100 different perithecia are shown in Fig. 4D. Variation in both speed and angle of launch leads to large dispersion in the measured ranges, but the range of launch speeds lies within the fitted limits.

Table 1. Comparison of the drag for real spore shapes with the drag on an ellipsoid having the same volume and aspect ratio, assuming launch speed *U₀* = 2.1 m s⁻¹

<table>
<thead>
<tr>
<th>Species</th>
<th>Spore drag, nN</th>
<th>Ellipsoid drag, nN</th>
<th>Error, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neurospora crassa</td>
<td>4.03</td>
<td>4.04</td>
<td>0.3</td>
</tr>
<tr>
<td>Aleuria aurantia</td>
<td>1.73</td>
<td>1.73</td>
<td>0.3</td>
</tr>
<tr>
<td>Peziza baddia</td>
<td>2.05</td>
<td>2.04</td>
<td>0.6</td>
</tr>
<tr>
<td>Peziza vacinii</td>
<td>2.31</td>
<td>2.23</td>
<td>3.7</td>
</tr>
</tbody>
</table>
family Tuberales) in ref. 27. We collected spore-shape data for the type species of each of these genera, and added two additional species per genus, either drawn from the references or randomly selected from the Cybertruffle taxonomic lists (28).

Spores from both groups of nonejected species have significantly larger mean drag (one-tailed Wilcoxon signed rank test $P < 0.001$) and fewer species within 1% of the drag minimum (ejected species, 73/102; insect dispersed group, 29/65; hypogeous group 9/57) (see Fig. 5). The appearance of nonejected, spores with almost drag-minimizing shapes may result from the retention of an ancestral shape in the absence of selection for a new optimal shape; it is certainly for this reason that at least one species of hypogeous ascomycete (Geopora) still ejects its spores forcibly, albeit into the closed cavity of the fruiting body (29).

By considering the coevolution of spore size and shape over the reconstructed history of one family of fungi, we can determine the extent to which drag minimization, as opposed to other constraints, has controlled evolution of spore shape. The Pertusariaceae are a cosmopolitan medium-sized family of lichen species, most with forcibly ejected spores, and with the widest range of spore sizes of any ascomycete family (30–32).

We model the evolution of spore shape (aspect ratio α_i) and size (represented by $u_i = \log R$) within each Pertusariacean lineage by a stochastic process:

$$
\begin{align*}
\frac{d\alpha_i(t)}{dt} &= -k_\alpha(\alpha_i - \alpha^*(u_i))dt + \sigma_\alpha dW^\alpha_i \\
\frac{du_i(t)}{dt} &= -k_u(u_i - u^*)dt + \sigma_u dW^u_i
\end{align*}
$$

[3]

where dt is any scalar increment of genetic change. The first terms in the left-hand sides of Eq. 3 represent the force of selection for shapes with an optimal aspect ratio $\alpha^*(u)\text{,}$ and size u^*, whereas dW^α_i and dW^u_i are independent Wiener processes, representing the fluctuating contributions of genetic drift and other shape constraints (33). We apply the model to a two-gene phylogeny of 44 representative extant species (32). First, we find that differences in spore size and shape between species are uncorrelated with genetic distances estimated from the phylogeny ($r^2 < 1.0 \times 10^{-3}$, Mantel test $P = 0.09$), suggestive of strong recent selection (see Materials and Methods). We therefore use shapes drawn independently from the invariant distribution of the stochastic process (Eq. 3) to fit the model to the real spore shape data and to obtain measures of the relative contributions of drag minimization and drift to shape evolution. In particular, we estimate $\sigma^2_\alpha / 2k_\alpha = 0.267$, so that in practical terms selection has dominated drift to constrain spore aspect ratio to within $\approx 25\%$ of the optimal value. Finally, by comparing the fit of the strong selection model with the fit from a drift-based reconstruction of the ancestral spore shapes (34) we confirm that the covariation of aspect ratio with size in the family is much more likely to have arisen by selection than by chance (36) (see Materials and Methods).

Materials and Methods

Calculation of Optimal Shapes. Shapes of projectiles that minimize drag for prescribed Reynolds number and body volume were calculated by using a gradient descent algorithm, in which successive volume-preserving perturbations were made to the shape of a suboptimal projectile (26). At each iteration we calculated the change in fluid drag due to an arbitrary perturbation to
We can then write down the perturbation of the shape boundary that achieves maximum drag reduction while fixing the volume of the shape:

\[\alpha(x) = \frac{\alpha u}{\eta} \frac{\partial w}{\partial n} - \eta \int_{\partial \Omega} \alpha(x) \frac{\partial w}{\partial n} dS, \]

in which \(i \) has been chosen to ensure that \(\int_{\partial \Omega} \alpha dS = 0 \), so that the volume of the body is preserved. A parameter \(\alpha \) is introduced to parameterize the sequence of shapes that the body passes through to reach the drag minimum, giving an equation \(\alpha_m = \partial x / \partial u \), which is integrated by using a low-order variable step-size routine (the Matlab function \texttt{ode23}). At each step the Navier–Stokes flow equations and adjoint Eq. 5 are solved numerically by discretizing the velocity and adjoint velocity field \((u, w) \) by quadratic finite elements, and solving the discretized system by using COMSOL Multiphysics. Computation of optimal shapes is computationally costly, so we interpolate from the aspect ratio and drag data for exact optimal shapes at a small set of values of \(Re \) to intermediate values of \(Re \), by approximating the minimum-drag body by the least-drag spindle formed by rotating the arc of a circle around the associated chord, and carrying out a single-parameter search over chord to width ratios (see S1).

Measurement of Launch Speed. Launch speed was directly measured in \textit{N. tetrasperma} (strain no. 614, obtained from the Fungal Genetics Stock Center), cultured in 10-cm-diameter Petri dishes in crossing medium at 1% sucrose concentration (37). Petri dishes were stacked, and the stacks laid in a container with a slotted lid, to control the direction of incident light, and illuminated for 10 min per day. On the ninth day of incubation cultures used for spore print photography were abraded with a cotton-tipped applicator to remove conidia and aerial mycelia. Photographs were taken 11 days after inoculation. Cultures used for high-speed imaging were deprived of light from the eighth day onward. High-speed imaging was carried out on the tenth day after inoculation. Petri dishes were righted, conidia removed, and ejection imaged at magnifications of up to 40×, and frame rates of up to 50,000 fps by using a Phantom v7 camera mounted on a Olympus SZX-ILLB2-100 dissection scope. Even a small misalignment of initial trajectory and focal plane causes the spores to leave the plane of focus. However, 40 h of imaging sufficed to capture 30 ejection events and one focused sequence of images of a launched spore.

Comparative Methods. We infer the relative strengths of drag minimization and drift as shape determinants by fitting the invariant distribution of the stochastic process (Eq. 3) to real spore shape data. Over the range of spore sizes covered by the Pertusariaceae (0.5 < log \(Re < 2.3 \), the optimal aspect ratio varies approximately linearly with \(\alpha^* - \alpha = \alpha_0 + \alpha_1 u \), where \(\alpha_0 = 2.02 \) and \(\alpha_1 = 0.38 \). Eq. 3 therefore defines an Ornstein–Uhlenbeck process with Gaussian invariant distribution (35), so that the spore shapes of tip species are independent random variables with expectation and covariance matrices

\[E\left[\frac{\alpha_i}{\alpha_j}\right] = \frac{\alpha_i \alpha_j}{\sigma_i \sigma_j}, \]

where we have defined \(\alpha_j^* = \alpha_j - E(\omega) \) and \(u_j = u_j - E(\omega) \).

Table 2. Parameter estimators and Akaike information criteria for shape evolution models fitted to spore shape data from the Pertusariaceae

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Estimator</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma_0^2 / 2 k_{\alpha})</td>
<td>0.267</td>
<td>–</td>
</tr>
<tr>
<td>(\sigma_0^2 / 2 k_{\alpha})</td>
<td>0.278</td>
<td>–</td>
</tr>
<tr>
<td>(k_{\alpha} / k_{\mu})</td>
<td>0.127</td>
<td>–</td>
</tr>
<tr>
<td>(u^*)</td>
<td>1.17</td>
<td>–</td>
</tr>
<tr>
<td>(k_{\mu} (bp/sub.))</td>
<td>–</td>
<td>10.02</td>
</tr>
<tr>
<td>(\sigma_0^2 (bp/sub.))</td>
<td>–</td>
<td>13.9</td>
</tr>
<tr>
<td>(\sigma_0^2 (bp/sub.))</td>
<td>–</td>
<td>6.50</td>
</tr>
<tr>
<td>(\omega(0))</td>
<td>2.40</td>
<td>2.40</td>
</tr>
<tr>
<td>(\omega(0))</td>
<td>–</td>
<td>1.24</td>
</tr>
<tr>
<td>(-2 \log L)</td>
<td>119.70</td>
<td>131.81</td>
</tr>
<tr>
<td>AICc</td>
<td>128.95</td>
<td>141.07</td>
</tr>
</tbody>
</table>

Strong selection (first column), stationary distribution of Eq. 3; strong drift and no selection (second column) (Eq. 9), and selection on spore size, but no selection on shape (third column) (Eq. 10).
Maximum likelihood estimates for each of the parameters in the model can then be extracted from the observed first and second moments of the species data. Four dimensionless parameters must be estimated, and we choose these to be \(u, \sigma^2 / 2k_0, \sigma^2 / 2k_z \), and \(k_z / k_0 \) (see SI Appendix, Fig. S4).

The statistical support for the hypothesis of evolution of spores under strong shape selection can be determined by comparing the fit to real spore shape data from model 3 with two other models for trait evolution: (i) a Brownian model (34), in which both \(u \) and \(\alpha \) are unconstrained:

\[
\begin{align*}
dv_a(t) &= \sigma^2 dW_t \quad \text{for} \quad t > 0, \\
dv_u(t) &= 0
\end{align*}
\]

and (ii) a Ornstein–Uhlenbeck process in which \(u \) is unconstrained, but there is selection on the size variable \(u

\[
\begin{align*}
dv_a(t) &= \sigma^2 dW_t \quad \text{for} \quad t > 0, \\
dv_u(t) &= -k_u(u - u_0) dt + \sigma^2 dW_t.
\end{align*}
\]

d\(W_t \) are independent Wiener processes, and \(f \) parameterizes the amount of genetic change from the common ancestor of the family. Distinct lineages co-evolve from the ancestral state up until the time, \(t = t_0 \) of first divergence, so that shape and size data for the observed species have multivariate Gaussian distributions. Thus, if \(t_0 \) is the “age” of the the \(t \)th lineage then for Eq. 10:

\[
\begin{align*}
E u(t) &= u(0) \\
E u(u(t)) &= (1 - e^{-k_u t_0}) u_0 + e^{-k_u t_0} u(0) \\
\text{cov}(u(t), u(t')) &= \sigma^2 \tau_t \\
\text{cov}(u(t), u(t')) &= \frac{\sigma^2}{2k_0} e^{-k_u |t-t'|/2} (1 - e^{-k_u t_0})
\end{align*}
\]

and the corresponding distribution for the pure Brownian process Eq. 9 can be obtained by setting \(k_0 = 0 \). A version of these formulae for the case when lineages have the same ages \(t = t_1 \) for all \(i, j \) is given in ref. 36. Note that genetic and phenotypic distances between tip species will become uncorrelated if and only if \(k_z \Delta t > 1 \), where \(\Delta t \) is the smallest genetic distance between any pair of species, i.e., in the presence of strong selection. We measure \(t \) in units of the average number of substitutions per base pair, in the two genetic loci used in ref. 32. \(\sigma^2 \) therefore have units of base pairs per substitution. Fitting these models to the observed species data requires estimation of (i) four or (ii) six parameters: the drift strengths, \(\sigma^2 / u \), the ancestral spore shape data \((u(0), u(0)) \), and, in the case of process 10, the force of selection \(k_z \) and optimal size \(u_0 \).

The maximum likelihood estimators for all the parameters that feature in the three models are given in Table 2. The Akaike Information Criterion can be used for small sample sizes (AICc) allows the quality of fit of the three models to be compared (36), and shows that the strong selection hypothesis provides a significantly better fit to the real spore shapes data than either of the models in which there is no shape selection (last row of Table 2).

ACKNOWLEDGMENTS. We thank Imke Schmitt, Jacques Dumais, and François Lutzoni for making their data available to us, Jacques Dumais, L. Mahadevan, Nicholas Money, Andrew Murray, Sheila Patek, Frances Trall, Dominic Vella, Howard Stone, and members of the Pringle lab for useful discussions and comments on the manuscript, and Ozymandias Agar for assistance with the spore launch imaging. This work was supported by fellowships from the Kodak-Eastman group and the Harvard University Herbaria (M.R.) and by additional support from the Harvard Materials Research Science and Engineering Center and National Science Foundation Division of Mathematical Sciences.

26. van den Aardweg C, Guarro J (1988) Sordariaceous ascomycetes without ascospore evagination; Beih Nova Hedwigia 94:

Roper et al.
AUTHOR QUERIES

AUTHOR PLEASE ANSWER ALL QUERIES

A—Au: Please contact Nancy Wachter at PNASProofReturn@cadmus.com or 410-691-6931 if you have questions about the editorial changes, this list of queries, or the figures in your article. Please include your manuscript number in all e-mail correspondence (the number begins with 06 or 07 and is followed by five additional numbers, e.g., 07-01234). Furthermore, if returning proofs electronically, please e-mail them to the above address. Please (i) review the author affiliation and footnote symbols carefully, (ii) check the order of the author names, and (iii) check the spelling of all author names and affiliations. Please indicate that the author and affiliation lines are correct by writing OK in margin next to the author line. Please note that this is your opportunity to correct errors in your article prior to publication. Corrections requested after online publication will be considered and processed as errata.

B—Au: PNAS allows up to five key terms that (i) do not repeat terms present in the title (which is searchable online) and (ii) do not include nonstandard abbreviations. You may add 2 terms.

C—Au: In each of the legends for Figures 1, 3, 4, and 5, please insert a brief, general heading at the beginning of the legend. Please approve color names that have been inserted in the legend to Fig. 3. Four-color is not used in the text or figure legends. Please correct as necessary.

D—Au: If your article contains figures that were submitted in an unsupported or problematic format (e.g., any format other than .eps or .tif), please check the quality of the figures closely. Please note that if figures need to be replaced, the standard charges listed on the reprint form may be incurred.

E—Au: Ref. 20: Please update the publication information for ref. 20 if it is available.

F—Au: Ref. 26: Please supply the issue no. and page range for this article.

G—Au: Ref. 28: Please supply the last date this site was accessed in research for this article.

H—Au: Ref. 30: Please supply page range.

I—Au: Please review the information in the author contribution footnote carefully. Please make sure that the information is correct and that the correct author initials are listed. Note that the order of author initials matches the order of the author line per journal style. You may add contributions to the list in the footnote; however, funding should not be an author’s only contribution to the work.

J—Au: Please verify that all supporting information (SI) citations are correct.
2009 Reprint and Publication Charges

Reprint orders and prepayments must be received no later than 2 weeks after return of your page proofs.

PUBLICATION FEES

Page Charges
(Research Articles Only)

Page charges of $70 per journal page are requested for each page in the article. PNAS charges for extensive author alterations on proofs. Six or more author alterations per page will be charged at $4 each. Authors will not be charged for correcting printer's errors, copyediting errors, or figure errors made in composition.

Articles Published with Figures
(Research Articles Only)

If your article contains color, add $300 for each color figure or table. Replacing, deleting, or resizing color will cost $150 per figure or table. Replacing black-and-white figures will cost $25 per figure. Replacing supporting information figures will cost $25 per figure. State the exact figure charge on the following page and add to your payment or purchase order accordingly.

Supporting Information (SI)
(Research Articles Only)

SI for the web will cost $250 per article. Four or more author alterations per SI page will be charged at $4 each.

PNAS Open Access Option

Authors may pay a surcharge of $1200 to make their paper freely available online immediately upon publication. If your institution has a 2009 Site License, the open access surcharge is $850. If you wish to choose this option, please notify the Editorial Office (pnas@nas.edu) immediately, if you have not already done so.

Shipping

UPS ground shipping within the continental U.S. (1–5 days delivery) is included in the reprint prices, except for orders over 1,000 copies. Orders are shipped to authors outside the continental U.S. via expedited delivery service (included in the reprint prices).

Multiple Shipments

You may request that your order be shipped to more than one location. Please add $45 for each additional address.

Delivery

Your order will be shipped within 2 weeks of the journal publication date.

Tax Due

For orders shipped to the following locations, please add the appropriate sales tax:

- Canada – 5%; in the U.S.: CA – 7.25% plus the county rate; CT – 6%; DC – 5.75%; FL – 6% sales tax plus local surtax, if you are in a taxing county; MD – 6%; NC – 4.5%; NY – state and local sales taxes apply; VA – 5%; WI – 5%. A copy of the state sales tax exemption certificate must accompany the order form; otherwise, sales tax will be assessed (billed).

Ordering

Prepayment or a signed institutional purchase order is required to process your order. You may use the following page as a Proforma Invoice. Please return your order form, purchase order, and payment to:

PNAS Reprints
PO Box 631694
Baltimore, MD 21263-1694
FEIN 53-0196932

Please contact Robin Wheeler by e-mail at wheeler@cadmus.com, phone 1-800-407-9190 (toll free) or 1-410-819-3903, or fax 1-410-820-9765 if you have any questions.

Covers are an additional $85 regardless of the reprint quantity ordered. Please see reprint rates and cover image samples below.

Rates for Black-and-White Reprints* (Minimum order 50. Includes shipping.)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>Add'l 50s over 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>$485</td>
<td>$655</td>
<td>$680</td>
<td>$745</td>
<td>$800</td>
<td>$850</td>
<td>$60</td>
</tr>
<tr>
<td>Foreign</td>
<td>$525</td>
<td>$695</td>
<td>$755</td>
<td>$850</td>
<td>$935</td>
<td>$1,010</td>
<td>$85</td>
</tr>
</tbody>
</table>

* Color covers may be ordered for black-and-white reprints; however, color reprint rates (below) will apply.

For Black-and-White and Color Reprint Covers add $85

Rates for Color Reprints† (Minimum order 50. Includes shipping.)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>50</th>
<th>100</th>
<th>200</th>
<th>300</th>
<th>400</th>
<th>500</th>
<th>Add'l 50s over 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td>$545</td>
<td>$675</td>
<td>$910</td>
<td>$1,220</td>
<td>$1,570</td>
<td>$1,915</td>
<td>$175</td>
</tr>
<tr>
<td>Foreign</td>
<td>$605</td>
<td>$730</td>
<td>$975</td>
<td>$1,320</td>
<td>$1,730</td>
<td>$2,220</td>
<td>$240</td>
</tr>
</tbody>
</table>

†Please return your order form promptly.

Covers for all reprints will be printed on the same paper stock as the article.

PNAS Proceedings of the National Academy of Sciences of the United States of America www.pnas.org
2009 Reprint Order Form or Proforma Invoice

(Please keep a copy of this document for your records.)

Reprint orders and payments must be received no later than 2 weeks after return of your proofs.

1 Publication Details

Reprint Order Number 3407374
Author’s Name
Title of Article
Number of Pages Manuscript Number 0805017
Are there color figures in the article? Yes No

2 Reprint Charges (Use Rates Listed on Previous Page)

Indicate the number of reprints ordered and the total due. Minimum order is 50 copies; prices include shipping.

Research, Special Feature Research, From the Academy, and Colloquium Articles:

Reprints (black/white only) $ Color Reprints (with or without color figures) $ Covers $

For Commentary, Inaugural, Solicited Review, and Solicited Perspective Articles Only:

First 100 Reprints (free; black/white or color) $ Covers $

Subtotal $ Sales Tax* $ Total $

*For orders shipped to the following locations, please add the appropriate sales tax: Canada – 5%; in the U.S.: CA – 7.25% plus the county rate; CT – 6%; DC – 5.75%; FL – 6%; sales tax plus local surtax, if you are in a taxing county; MD – 6%; NC – 4.5%; NY – state and local sales tax apply; VA – 5%; WI – 5%. A copy of the state sales tax exemption certificate must accompany the order form; otherwise, sales tax will be assessed (billed).

3 Publication Fees (Research Articles Only)

Pages in article @ $70 per page requested $ Color figures or tables in article @ $300 each $ Replacement or deletion of color figures @ $150 each $ Replacement of black/white or SI figures @ $25 each $ Supporting information @ $250 per article $ Open Access option @ $1200 ($850 if your institution has a 2009 Site License/Open Access Membership) $

Subtotal $ TOTAL AMOUNT due for reprint and publication fees $

4 Invoice Address It is PNAS policy to issue one invoice per order.

Name
Institution
Department
Address
City State Zip
Country
Phone Fax

5 Shipping Address (If different from Invoice Address)

Name
Institution
Department
Address
City State Zip
Country
Quantity of Reprints
Phone Fax

6 Additional Shipping Address†

Name
Institution
Department
Address
City State Zip
Country
Quantity of Reprints
Phone Fax

†Add $45 for each additional shipping address.

7 Method of Payment

Credit Card Personal Check Institutional Purchase Order (enclosed)

8 Credit Card Payment Details

Total Due Visa MasterCard AMEX

Card Number
Exp. Date
Signature

9 Payment Authorization

☐ I assume responsibility for payment of these charges.
(Signature is required. By signing this form, the author agrees to accept responsibility for payment of all charges described in this document.)

Signature of Responsible Author

Phone Fax

3407374 0805017
Reprint Order Number Manuscript Number

Send payment and order form to PNAS Reprints, PO Box 631694, Baltimore, MD 21263-1694 FEIN 53-0196932
Please e-mail wheelerr@cadmus.com, call 1-800-407-9190 (toll free) or 1-410-819-3903, or fax 1-410-820-9765 if you have any questions.
Instructions for Annotating Your .PDF Proof

- Use Text Boxes and the Callout Tool to indicate changes to the text.

- Use the Strike-Out tool to indicate deletions to the text.

- Use the Highlighting Tool to indicate font problems, bad breaks, and other textual inconsistencies.

- Clearly indicate where changes need to be made using arrow, lines, and the Call-Out Tool.

- Mark changes and answer queries in the margins and other areas of white space.

- Avoid obscuring the text with corrections.
Proofreader's Marks

<table>
<thead>
<tr>
<th>MARK</th>
<th>EXPLANATION</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>.</td>
<td>TAKE OUT CHARACTER INDICATED</td>
<td>. Your proof.</td>
</tr>
<tr>
<td>^</td>
<td>LEFT OUT, INSERT</td>
<td>^ Your proof.</td>
</tr>
<tr>
<td>#</td>
<td>INSERT SPACE</td>
<td># Your proof.</td>
</tr>
<tr>
<td>9</td>
<td>TURN INVERTED LETTER</td>
<td>9 Your proof.</td>
</tr>
<tr>
<td>×</td>
<td>BROKEN LETTER</td>
<td>× Your proof.</td>
</tr>
<tr>
<td>sq</td>
<td>EVEN SPACE</td>
<td>sq A good proof.</td>
</tr>
<tr>
<td>0</td>
<td>CLOSE UP: NO SPACE</td>
<td>0 Your proof.</td>
</tr>
<tr>
<td>tr</td>
<td>TRANPOSE</td>
<td>tr A proofgood</td>
</tr>
<tr>
<td>w/f</td>
<td>WRONG FONT</td>
<td>w/f Your proof.</td>
</tr>
<tr>
<td>lc</td>
<td>LOWER CASE</td>
<td>lc Your proof.</td>
</tr>
<tr>
<td>=/</td>
<td>CAPITALS</td>
<td>=/ Your proof.</td>
</tr>
<tr>
<td>ital</td>
<td>ITALIC</td>
<td>ital Your proof.</td>
</tr>
<tr>
<td>rom</td>
<td>ROMAN, NON ITALIC</td>
<td>rom Your proof.</td>
</tr>
<tr>
<td>bf</td>
<td>BOLD FACE</td>
<td>bf Your proof.</td>
</tr>
<tr>
<td>......</td>
<td>LET IT STAND</td>
<td>...... Your proof.</td>
</tr>
<tr>
<td>stet</td>
<td></td>
<td>stet Your proof.</td>
</tr>
<tr>
<td>out sc</td>
<td>DELETE, SEE COPY</td>
<td>out sc She Your proof.</td>
</tr>
<tr>
<td>spell out</td>
<td>SPELL OUT</td>
<td>spell out Queen Elizabeth</td>
</tr>
<tr>
<td>ęd</td>
<td>START PARAGRAPH</td>
<td>ęd read. Your proof.</td>
</tr>
<tr>
<td>no ęd</td>
<td>NO PARAGRAPH: RUN IN</td>
<td>no ęd marked Your proof.</td>
</tr>
<tr>
<td></td>
<td>LOWER</td>
<td>Your proof.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MARK</th>
<th>EXPLANATION</th>
<th>EXAMPLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>—</td>
<td>RAISE</td>
<td>— Your proof.</td>
</tr>
<tr>
<td>□</td>
<td>MOVE LEFT</td>
<td>□ Your proof.</td>
</tr>
<tr>
<td>□</td>
<td>MOVE RIGHT</td>
<td>□ Your proof.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>—/</td>
<td>STRAIGHTEN LINE</td>
<td>—/ Your proof</td>
</tr>
<tr>
<td>○</td>
<td>INSERT PERIOD</td>
<td>○ Your proof.</td>
</tr>
<tr>
<td>/</td>
<td>INSERT COMMA</td>
<td>/ Your proof.</td>
</tr>
<tr>
<td>:/</td>
<td>INSERT COLON</td>
<td>:/ Your proof.</td>
</tr>
<tr>
<td>/</td>
<td>INSERT SEMICOLON</td>
<td>/ Your proof.</td>
</tr>
<tr>
<td>®</td>
<td>INSERT APOSTROPHIE</td>
<td>® Your trans proof.</td>
</tr>
<tr>
<td>↘↘</td>
<td>INSERT QUOTATION MARKS</td>
<td>↘↘ Marked it proof</td>
</tr>
<tr>
<td>=/</td>
<td>INSERT HYPHEN</td>
<td>=/ A proofmark.</td>
</tr>
<tr>
<td>/</td>
<td>INSERT EXCLAMATION MARK</td>
<td>/ Prove it</td>
</tr>
<tr>
<td>?</td>
<td>INSERT QUESTION MARK</td>
<td>? Is it right</td>
</tr>
<tr>
<td>?</td>
<td>QUERY FOR AUTHOR</td>
<td>? Was Your proof read by</td>
</tr>
<tr>
<td>/</td>
<td>INSERT BRACKETS</td>
<td>/ The Smith girl</td>
</tr>
<tr>
<td>(/></td>
<td>INSERT PARENTHESSES</td>
<td>(> Your proof.</td>
</tr>
<tr>
<td>/m</td>
<td>INSERT 1-EM DASH</td>
<td>/m Your proof.</td>
</tr>
<tr>
<td>□</td>
<td>INDENT 1 EM</td>
<td>□ Your proof.</td>
</tr>
<tr>
<td>□□</td>
<td>INDENT 2 EMS</td>
<td>□□ Your proof.</td>
</tr>
<tr>
<td>□□□</td>
<td>INDENT 3 EMS</td>
<td>□□□ Your proof.</td>
</tr>
</tbody>
</table>