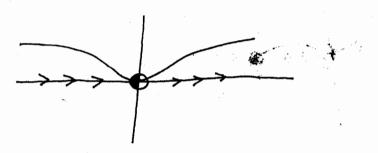
## **Problem Set 1 Solutions**

A.

1. 
$$\dot{x} = F(x) = 1 - e^{-x^2} \Rightarrow x^* = 0$$

$$\frac{dF}{dx} = 2xe^{-x^2} \Rightarrow \frac{dF}{dx}|_{x^*} = 0$$

Linearized stability fails.



The graphical approach shows that the fixed point is half-stable.

2. 
$$\dot{x} = F(x) = ax - x^3 \Rightarrow x^* = 0, \pm \sqrt{a}$$

$$\frac{dF}{dx} = a - 3x^2$$
, so:

$$\frac{dF}{dx}|_{x^*=0} = a \Rightarrow unstable$$

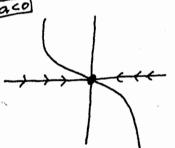
$$\frac{dF}{dx}|_{x^*=0} = a \Rightarrow unstable$$

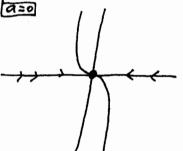
$$\frac{dF}{dx}|_{x^*=\sqrt{a}} = -2a \Rightarrow stable$$

$$\frac{dF}{dx}|_{x^*=-\sqrt{a}} = -2a \Rightarrow stable$$

Notice that the  $x^* = \pm \sqrt{a}$  roots only exist as distinct roots for a>0. A supercritical pitchfork bifurcation occurs as a passes through zero. Notice that linear stability fails at a=0.

aco





 $\frac{dF}{dx} = 3x^2 - 6x + 2$ , so:

3. 
$$\dot{x} = F(x) = x(1-x)(2-x) \Rightarrow x^* = 0,1,2$$

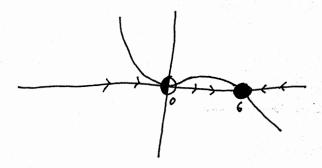
$$\frac{dF}{dx}|_{x^*=0} = 2 \Rightarrow unstable$$

$$\frac{dx}{dF}\Big|_{x^*=1} = -1 \Rightarrow stable$$

$$\frac{dF}{dx}|_{x^*=2} = 2 \Rightarrow unstable$$

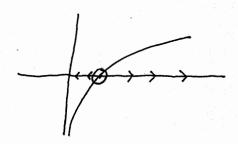
4. 
$$\dot{x} = F(x) = x^2(6-x) \Rightarrow x^* = 0,6$$
  $\frac{dF}{dx} = 12x - 3x^2$ , so: 
$$\frac{dF}{dx} \mid_{x^*=0} = 0 \Rightarrow ?$$
 
$$\frac{dF}{dx} \mid_{x^*=6} = -36 \Rightarrow stable$$

Using the graphical approach we find that the fixed point at x=0 is half-stable.



5. 
$$\dot{x} = F(x) = ln(x) \Rightarrow x^* = 1$$
  
The fixed point at x=1 is unstable.

$$\frac{dF}{dx} = \frac{1}{x} \Rightarrow \frac{dF}{dx} \mid_{x^*} = 1$$



B.

1. 
$$x^* = rx^*(1 - x^*) \Rightarrow x^*(rx^* + (1 - r)) = 0 \Rightarrow x^* = 0, 1 - \frac{1}{r}$$
  
 $\frac{dF}{dx} = r(1 - 2x) \Rightarrow \frac{dF}{dx} \mid_{x^* = 0} = r \text{ and } \frac{dF}{dx} \mid_{x^* = 1 - \frac{1}{r}} = 2 - r$ 

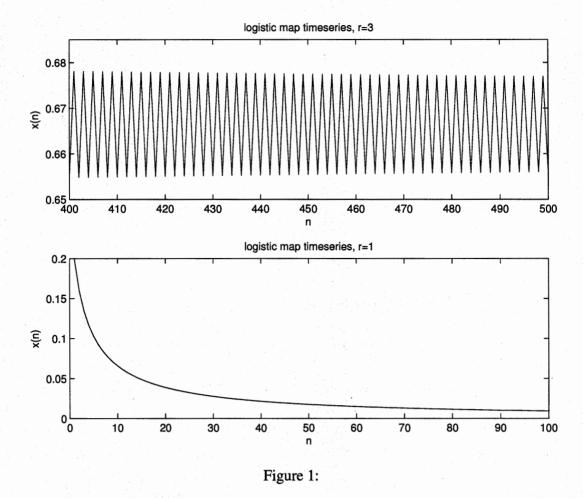
A fixed point is stable if  $\left|\frac{dF}{dx}\right|_{x^*}$  | < 1 and unstable if  $\left|\frac{dF}{dx}\right|_{x^*}$  | > 1. We'll only consider r>0 on physical grounds.

The fixed point  $x^* = 0$  is stable for  $0 \le r < 1$  and unstable for r > 1. At r=1 we'll need to use graphical methods.

The fixed point  $x^* = 1 - \frac{1}{r}$  is stable for 1 < r < 3 and unstable for and r > 3. For  $0 \le r < 1$  this fixed point is unphysical. At r=1 both fixed points overlap. At r=3 we'll need to use graphical methods.

It's hard to see what's happening at r=3 with a cobweb diagram, so we'll use a timeseries. Fig. 1 shows that at r=3 the fixed point at  $x^* = 1 - \frac{1}{r}$  is very slightly stable. We would have to expand to  $O(\eta^2)$  to see this analytically. The fixed point at  $x^* = 0$  is clearly stable for r=1.

2. Fig. 2 shows the timeseries plots for the different values of r. At r=0.4 the system approaches the fixed point at x=0. At r=2 the system monotonically approaches the fixed point at  $x^* = 1 - \frac{1}{r}$ .



At r=2.8 and r=2.9 this fixed point is approached in an oscillatory manner. At r=3 a flip bifurcation occurs and for r=3.2 we have a 2-cycle. The system undergoes the period-doubling route to chaos and at r=4 there is chaotic behavior.

C. For large n we expect the system to be very near the fixed point at x=0. This means  $x_n \ll 1$  so we have:  $x_{n+1} = rx_n(1-x_n) \approx rx_n$ . The solution to this is  $x_n = (const.)r^n$ . The constant is determined by when the system enters this regime.

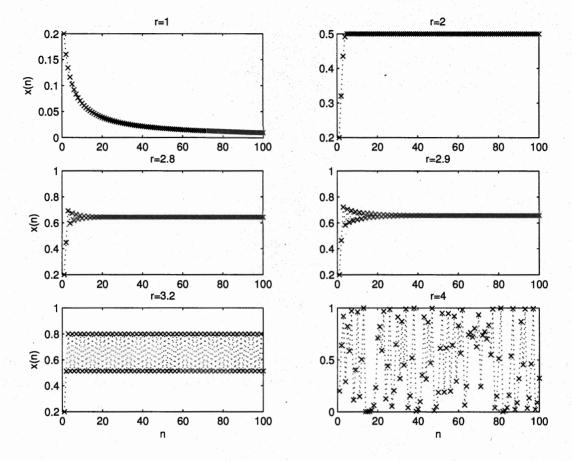


Figure 2: