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Problem Set 6 Solutions

1. (a) In the weakly nonlinear regime the solution slowly spirals out to nearly symmetric
periodic solution with amplitude 2+O

�
µ � . In the strongly nonlinear regime the solution

has a fast and a slow phase and consequently a sawtooth structure.
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(b) In the strongly nonlinear regime we expect the slow phase to take a time of O(µ). This
plot shows the time taken by the slow phase (obtained numerically) for a few values
of µ. Red circles show numerical times and the blue line is the theoretical prediction
that the time should be linear in µ. Notice that the actual solution deviates from the
theoretical solution as µ decreases. Since very little time is spent in the fast phase, we
expect the period to scale like µ.
The time spent in the fast phase is strongly dependent on how the fast phase is defined,
so a plot of this quantity is less useful and won’t be provided here. Analytically we
know that the time spent in the fast phase should scale like O(µ � 1).
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(c) Here is a plot of phase space with trajectories superimposed.

x ’ = y                 
y ’ = mu (1 − x2) y − x

mu = 5
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From the time series plot you can see that the slow phases are approximately 1<x<2
with ẋ negative and -2<x<-1 with ẋ positive.
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2. (a)

r ��� � rcos
�
θ � sin

�
θ ���	� 0 (1)

rφ ��� � rcos2 � θ �
��� 1
2

r (2)

So our solution can be written x0 � r0cos
���

1  ε
2 � t  φ0 � . The limit cycle has amplitude

r0 and frequency ω � 1  ε
2  O

�
ε2 � . Applying IC: x0=a cos

���
1  ε

2 � t � . The exact
solution is x=a cos( � 1  εt), confirming our perturbation solution.

(b)

r � � ��� r2cos
�
θ � sin2 � θ �
�	� 0 (3)

rφ � � ��� r2cos2 � θ � sin
�
θ ���	� 0 (4)

The amplitude and the phase are constant to O(ε2). x0=a cos(t).

(c)

r ��� � r5 � cos2 � θ � sin4 � θ ���� r3 � sin4 � θ ������� 1
16

r5  3
8

r3 (5)

rφ � � � r5 � cos3 � θ � sin3 � θ ���� r3 � sin3 � θ � cos
�
θ ����� 0 (6)

So a limit cycle with r � � 6 and ω � 1  O
�
ε2 � is approached in the long term.

3. (a) E=ν3 � 3νcos
�
u � , so:

Ė � 3ν2ν̇ � 3cos
�
u � ν̇  3νsin

�
u � u̇ (7)� �

3ν2 � 3cos
�
u ��� � � sin

�
u ���� 3sin

�
u � � � cos

�
u �� ν2 � (8)� 0 (9)

Since E must be conserved along trajectories ν
�
u � is specified by the equation E �

ν
�
u � 3 � 3ν

�
u � cos

�
u � . E takes a different value for each trajectory.

(b) Orbits with E<0 can never have cos(u)<0 (so for E<0 � π
2 � u � π

2 ) while orbits with
E>0 can have u take any value. So we expect the separatrix to occur at E=0. Calling
ν̃
�
u � the equation for the separatrix we have, ν̃

�
u ����� 3cos

�
u � (we only consider non-

negative ν here).
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(c) The upper panel is inside the separatrix while the lower panel is outside it.
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Trajectories inside the separatrix circle the fixed point while those outside it wind
around the cylinder.

v ’ = − sin(u) − D v2

u ’ = − cos(u)/v + v  
D = 0
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(d) The f.p. of the system is at u=-arcsin( D�
1 � D2 ), v=

� 1
1 � D2 � 14 . The Jacobian is:

J � � � 2Dν � cos
�
u �

1  cos � u �
ν2

sin � u �
ν �

So τ � � 2Dν  sin � u �
ν � � 3D� 1 � D2 � 14 and ∆ � � 2Dsin

�
u �! cos

�
u �" cos2 � u �

ν2 � 2 � 1  D2

while τ2 � 4∆ � D2 � 8�
1 � D2 . So the f.p. is a stable spiral for 0<D< � 8 and a stable node for� 8<D.

(e) Plots without friction are shown above. Here are some plots with friction. The glider
eventually lands when there is friction.
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4. (a) Rewrite the system as a 3D dynamical system:

ẇ � �
ε � αz � w � ω2u (10)

u̇ � w (11)
ż � u2 � τz (12)

The fixed point is at the origin.
(b) Expand each variable in terms of small parameter δ to order δ3:

w # t $&% w0 # T0 ' T1 ' T2 $)( δw1 # T0 ' T1 ' T2 $)( δ2w2 # T0 ' T1 ' T2 $)( δ3w3 # T0 ' T1 ' T2 $)( O # δ4 $ (13)

u # t $*% u0 # T0 ' T1 ' T2 $)( δu1 # T0 ' T1 ' T2 $+( δ2u2 # T0 ' T1 ' T2 $)( δ3u3 # T0 ' T1 ' T2 $)( O # δ4 $ (14)

z # t $&% z0 # T0 ' T1 ' T2 $)( δz1 # T0 ' T1 ' T2 $+( δ2z2 # T0 ' T1 ' T2 $+( δ3z3 # T0 ' T1 ' T2 $)( O # δ4 $ (15)

Here T0 � t , T1 � δt , and T2 � δ2t. If we set ε=0 the system approaches the origin, so
the zeroth order terms should be zero. Another way to think about this is that the zeroth
order behavior is for the system to be near the fixed point (at the origin) we expect no
zeroth order terms. If u and w are O(δ), we expect z to be O(δ2) so ε will affect the
solution at O(δ2). Define ε � ε̃δ2 where ε̃ is O(1).

(c) Expand to O(δ):

∂w1

∂T0
 ω2u1 � 0 (16)

∂u1

∂T0
� w1 (17)

∂z1

∂T0
 τz1 � 0 (18)

Which has the solution:

u1 � A
�
T1 , T2 � cos -ωT0  β

�
T1 , T2 �/. (19)

w1 � � A
�
T1 , T2 � ω sin -ωT0  β

�
T1 , T2 �/. (20)

z1 � ∆
�
T1 , T2 � exp

� � τT0 � (21)

Since T0 and τ are O(1), z1 0 0 on a time scale much faster than variations in T1 and
T2, so we will take z1 � 0 in what follows. This is consistent with the scaling analysis
above.
Expanding to O(δ2) and using z1 � 0:

∂w2

∂T0
 ω2u2 � � ∂w1

∂T1
� αz1w1 � ∂A

∂T1
ωsin -ωT0  β .1 Aω

∂β
∂T1

cos -ωT0  β . (22)

∂u2

∂T0
� w2 � � ∂u1

∂T1
��� ∂A

∂T1
cos -ωT0  β .1 A

∂β
∂T1

sin -ωT0  β . (23)

∂z2

∂T0
 τz2 � u2

1 � ∂z1

∂T1
� A2cos2 -ωT0  β . (24)

To avoid singular terms, we must take ∂A
∂T1
� ∂β

∂T1
� 0. And we are left with:

u2 � C
�
T1 , T2 � cos -ωT0  D

�
T1 , T2 �/. (25)

w2 � � C
�
T1 , T2 � ω sin -ωT0  D

�
T1 , T2 �/. (26)
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Integrating the equation for z2 we find (I did this in Mathematica, but it can be done by
hand):

z2 � γ
�
T1 , T2 � exp

� � τT0 �� A2 - τ2  4ω2  τ2cos - 2 � ωT0  β �/.2 2τωsin - 2 � ωT0  β �/.3.
2τ
�
τ2  4ω2 �

(27)
By the same argument as above the homogenous part of this solution can be neglected
and we are left only with the particular part.
Now expand to O(δ3):

∂w3

∂T0
 ω2u3 � �

ε̃ � αz2 � w1 � αz1w2 � ∂w1

∂T2
� ∂w2

∂T1
(28)

∂u3

∂T0
� w3 � � ∂u1

∂T2
� ∂u2

∂T1
(29)

∂z3

∂T0
 τz3 � 2u1u2 � ∂z1

∂T2
� ∂z2

∂T1
(30)

Eliminating u3 from the first two equations and again taking z1=0:

∂2w3

∂T 2
0
 ω2w3 � � ε̃ � αz2 � ∂w1

∂T0
� αw1

∂z2

∂T0
� ∂2w1

∂T2∂T0
� ∂2w2

∂T1∂T0
 ω2 ∂u1

∂T2
 ω2 ∂u2

∂T1
(31)

At this point there is a considerable amount of algebra. If we had written our pe-
riodic solutions in terms of exponentials the algebra would have been slightly eas-
ier, but I sometimes find it easier to think in terms of sines and cosines. In any
case, it is easy to see that ∂C

∂T1
� ∂D

∂T1
� 0. Using trigonometric identities such as

cos(x)cos(3x)=1
2 cos(x)+1

2cos(3x) we find that to eliminate the coefficient of cos -ωT0 
β
�
T1 , T2 �/. we must require:

∂A
∂T2
� 1

2
Aε̃ � α

�
τ2  8ω2 �

8τ
�
τ2  4ω2 � A3 (32)

While to eliminate the coefficient of sin -ωT0  β
�
T1 , T2 �/. we must require:

∂β
∂T2
��� αω

4
�
τ2  4ω2 � A2 (33)

Next use the ∂A
∂T2
� 1

δ2
∂A
∂t and ∂β

∂T2
� 1

δ2
∂β
∂t since A and β are independent of T0 and T1.

Also define a 4 δA � O
� � ε � to find:

u 5 acos
�
ωt  β � (34)

ȧ � 1
2

aε � α
�
τ2  8ω2 �

8τ
�
τ2  4ω2 � a3 (35)

β̇ � � αω
4
�
τ2  4ω2 � a2 (36)

These equations describe a supercritical Hopf bifurcation with ε as the control param-
eter. The multiple scale approximation is reasonable here because we have a solution
that slowly spirals toward a limit cycle while completing many circuits of the origin.
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