Problem Set 7 Solutions

1. (a) Expand $x(\varepsilon)$ as a perturbation series in ε :

$$
\begin{equation*}
x(\varepsilon)=x_{0}+x_{1} \varepsilon+x_{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right) \tag{1}
\end{equation*}
$$

Substitute into our equation and consider the equation at each order:

$$
\begin{array}{ll}
O\left(\varepsilon^{0}\right): & x_{0}^{3}-1=0 \\
O\left(\varepsilon^{1}\right): & 3 x_{0}^{2} x_{1}-x_{0}=0 \Rightarrow x_{1}=\frac{1}{3 x_{0}} \\
O\left(\varepsilon^{2}\right): & 3\left(x_{0}^{2} x_{2}+x_{0} x_{1}^{2}\right)-x_{1}=0 \Rightarrow x_{2}=0
\end{array}
$$

The solutions to for x_{0} are $x_{0}=1,-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i$. Let's consider only the real root for now. We have found:

$$
\begin{equation*}
x(\varepsilon)=1+\frac{1}{3} \varepsilon+O\left(\varepsilon^{3}\right) \tag{2}
\end{equation*}
$$

For $\varepsilon=0.001$, MATLAB gives $x(\varepsilon)=1.00033333332099$ while our approximation gives $x(\varepsilon) \approx 1.00033333333333$. These solutions differ by approximately 1.23×10^{-11}, confirming that our solution is valid at least to $\mathrm{O}\left(\varepsilon^{3}\right)$.
(b) Expand $x(\varepsilon)$ as a perturbation series in ε :

$$
\begin{equation*}
x(\varepsilon)=x_{0}+x_{1} \varepsilon+x_{2} \varepsilon^{2}+O\left(\varepsilon^{3}\right) \tag{3}
\end{equation*}
$$

Substitute into our equation and consider the equation at each order:

$$
\begin{array}{ll}
O\left(\varepsilon^{0}\right): & x_{0}^{3}-x_{0}=0 \\
O\left(\varepsilon^{1}\right): & 3 x_{0}^{2} x_{1}+x_{0}^{2}-x_{1}=0 \Rightarrow x_{1}=\frac{x_{0}^{2}}{1-3 x_{0}^{2}} \\
O\left(\varepsilon^{2}\right): & 3\left(x_{0}^{2} x_{2}+x_{0} x_{1}^{2}\right)+2 x_{0} x_{1}-x_{2}=0 \Rightarrow x_{2}=\frac{x_{0} x_{1}\left(2+3 x_{1}\right)}{1-3 x_{0}^{2}}
\end{array}
$$

The solutions for x_{0} are $x_{0}=-1,0,1$. So near the roots we have:

$$
\begin{align*}
& x(\varepsilon)=-1-\frac{1}{2} \varepsilon-\frac{1}{8} \varepsilon^{2}+O\left(\varepsilon^{3}\right) \tag{4}\\
& x(\varepsilon)=0+O\left(\varepsilon^{3}\right) \tag{5}\\
& x(\varepsilon)=1-\frac{1}{2} \varepsilon+\frac{1}{8} \varepsilon^{2}+O\left(\varepsilon^{3}\right) \tag{6}
\end{align*}
$$

Here is a table showing $x(\varepsilon)$ as calculated with MATLAB compared to our expansion.

x_{0}	$x_{0}+\varepsilon x_{1}$	$x_{0}+\varepsilon x_{1}+\varepsilon^{2} x_{2}$	$\mathrm{x}(\varepsilon)$
-1	-1.00050000000000	-1.00050012500000	-1.00050012499999
0	0	0	0
1	0.99950000000000	0.99950012500000	0.99950012499999

2. Write the system as a 2 D dynamical system:

$$
\begin{align*}
\dot{x} & =v \tag{7}\\
\dot{v} & =a-x+\mu\left(1-x^{2}\right) v \tag{8}
\end{align*}
$$

The fixed point of this system is $(\mathrm{x}, \mathrm{v})=(\mathrm{a}, 0)$. The Jacobian is:

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1-2 \mu x \nu & \mu\left(1-x^{2}\right)
\end{array}\right)
$$

Evaluated at the fixed point:

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & \mu\left(1-a^{2}\right)
\end{array}\right)
$$

So we have:

$$
\begin{equation*}
\lambda_{ \pm}=\frac{\mu\left(1-a^{2}\right)}{2} \pm \sqrt{\frac{\mu^{2}\left(1-a^{2}\right)^{2}}{4}-1} \tag{9}
\end{equation*}
$$

To have a Hopf bifurcation we need $\mu\left(1-a^{2}\right)=0$ and $\frac{\mu^{2}\left(1-a^{2}\right)^{2}}{4}-1<0$. Notice that the first condition implies the second condition. So we only need $\mu\left(1-a^{2}\right)=0$. This means that Hopf bifurcations occur on the curves $a= \pm 1$ and $\mu=0$. I checked this numerically and found it to be true.
3. The Jacobian is:

$$
J=\left(\begin{array}{cc}
\mu+y^{2} & 2 x y-1 \\
1-2 x & \mu
\end{array}\right)
$$

Evaluate at the origin:

$$
J=\left(\begin{array}{cc}
\mu & -1 \\
1 & \mu
\end{array}\right)
$$

So the eigenvalues are $\lambda_{ \pm}=\mu \pm i$ and are pure imaginary when $\mu=0$.
4. There is an unstable limit cycle around the origin and a stable spiral at the origin for $\mu<0$:

The backwand orbit from $(0.036,-0.067) \cdots$ a nearly closed orbit.
Ready.
The fonward orbit from $(0.29,0.69)$ left the computation window
The backward orbit from $(0.29,0.69)$--> a possible eq. pt. near (1, 1).
Ready.

The origin is a unstable spiral and no limit cycle for $\mu>0$. So a subcritical Hopf bifurcation occurs at $\mu=0$.

5. (a) Use $x=r \cos (\theta)$ and $y=r \sin (\theta)$. The system can be rewritten:

$$
\begin{align*}
\dot{r} & =\mu r+r^{2} \cos ^{2}(\theta) \sin (\theta)[r \sin (\theta)-1] \tag{10}\\
\dot{\theta} & =1-r \cos (\theta)\left[\cos ^{2}(\theta)+r^{2} \sin ^{3}(\theta)\right] \tag{11}
\end{align*}
$$

(b) Consider the average of these equations over θ. This will give us a qualitative idea of the behavior. We expect this method to capture the behavior best for $\mathrm{r} \ll 1$ when θ is less important for the dynamics.

$$
\begin{align*}
\dot{r} & =\mu r+\frac{1}{8} r^{3} \tag{12}\\
\dot{\theta} & =1 \tag{13}
\end{align*}
$$

(c) These equations suggest that an unstable limit cycle exists for negative μ with a radius of approximately $\sqrt{-8 \mu}$ (consider the 1D dynamics in r) and the origin is unstable for positive μ. There is a subcritical Hopf bifurcation. Although not rigorous, this justifies the numerical results given above.

