Dorian Abbot APM147 11/12/04

Problem Set 7 Solutions

1. (a) Expand $x(\varepsilon)$ as a perturbation series in ε :

$$x(\varepsilon) = x_0 + x_1 \varepsilon + x_2 \varepsilon^2 + O(\varepsilon^3)$$
(1)

Substitute into our equation and consider the equation at each order:

$$O(\varepsilon^{0}): \quad x_{0}^{3} - 1 = 0$$

$$O(\varepsilon^{1}): \quad 3x_{0}^{2}x_{1} - x_{0} = 0 \Rightarrow x_{1} = \frac{1}{3x_{0}}$$

$$O(\varepsilon^{2}): \quad 3(x_{0}^{2}x_{2} + x_{0}x_{1}^{2}) - x_{1} = 0 \Rightarrow x_{2} = 0$$

The solutions to for x_0 are $x_0=1, -\frac{1}{2} \pm \frac{\sqrt{3}}{2}i$. Let's consider only the real root for now. We have found:

$$x(\varepsilon) = 1 + \frac{1}{3}\varepsilon + O(\varepsilon^3)$$
⁽²⁾

(b) Expand $x(\varepsilon)$ as a perturbation series in ε :

$$x(\varepsilon) = x_0 + x_1 \varepsilon + x_2 \varepsilon^2 + O(\varepsilon^3)$$
(3)

Substitute into our equation and consider the equation at each order:

$$O(\varepsilon^{0}): \quad x_{0}^{3} - x_{0} = 0$$

$$O(\varepsilon^{1}): \quad 3x_{0}^{2}x_{1} + x_{0}^{2} - x_{1} = 0 \Rightarrow x_{1} = \frac{x_{0}^{2}}{1 - 3x_{0}^{2}}$$

$$O(\varepsilon^{2}): \quad 3(x_{0}^{2}x_{2} + x_{0}x_{1}^{2}) + 2x_{0}x_{1} - x_{2} = 0 \Rightarrow x_{2} = \frac{x_{0}x_{1}(2 + 3x_{1})}{1 - 3x_{0}^{2}}$$

The solutions for x_0 are x_0 =-1,0,1. So near the roots we have:

$$x(\varepsilon) = -1 - \frac{1}{2}\varepsilon - \frac{1}{8}\varepsilon^2 + O(\varepsilon^3)$$
(4)

$$x(\varepsilon) = 0 + O(\varepsilon^3)$$
(5)

$$x(\varepsilon) = 1 - \frac{1}{2}\varepsilon + \frac{1}{8}\varepsilon^2 + O(\varepsilon^3)$$
(6)

Here is a table showing $x(\varepsilon)$ as calculated with MATLAB compared to our expansion.

<i>x</i> ₀	$x_0 + \varepsilon x_1$	$x_0 + \varepsilon x_1 + \varepsilon^2 x_2$	x(£)
-1	-1.0005000000000	-1.00050012500000	-1.00050012499999
0	0	0	0
1	0.99950000000000	0.99950012500000	0.99950012499999

2. Write the system as a 2D dynamical system:

$$\dot{x} = v \tag{7}$$

$$\dot{v} = a - x + \mu (1 - x^2) v$$
 (8)

The fixed point of this system is (x,v)=(a,0). The Jacobian is:

$$J = \left(\begin{array}{cc} 0 & 1\\ -1 - 2\mu xv & \mu(1 - x^2) \end{array}\right)$$

Evaluated at the fixed point:

$$J = \left(\begin{array}{cc} 0 & 1\\ -1 & \mu(1-a^2) \end{array}\right)$$

So we have:

$$\lambda_{\pm} = \frac{\mu(1-a^2)}{2} \pm \sqrt{\frac{\mu^2(1-a^2)^2}{4} - 1} \tag{9}$$

To have a Hopf bifurcation we need $\mu(1-a^2)=0$ and $\frac{\mu^2(1-a^2)^2}{4}-1<0$. Notice that the first condition implies the second condition. So we only need $\mu(1-a^2)=0$. This means that Hopf bifurcations occur on the curves $a=\pm 1$ and $\mu=0$. I checked this numerically and found it to be true.

3. The Jacobian is:

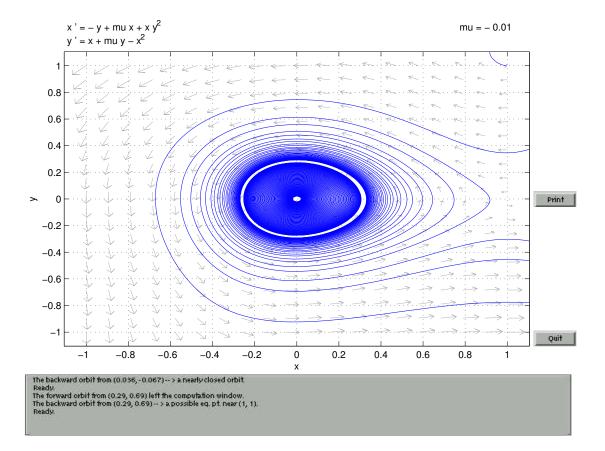
$$J = \left(\begin{array}{cc} \mu + y^2 & 2xy - 1\\ 1 - 2x & \mu \end{array}\right)$$

Evaluate at the origin:

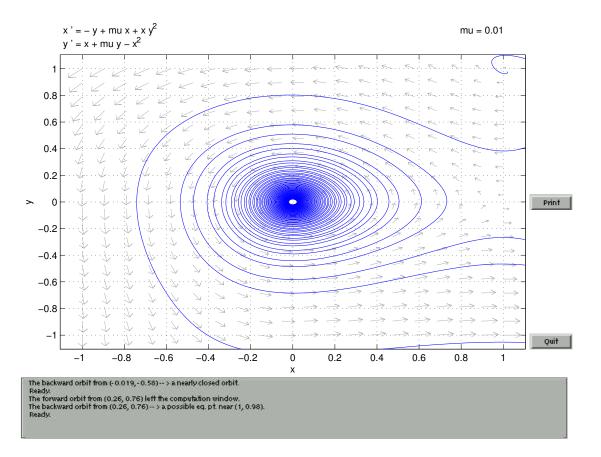
$$J = \left(\begin{array}{cc} \mu & -1 \\ 1 & \mu \end{array}\right)$$

So the eigenvalues are $\lambda_{\pm} = \mu \pm i$ and are pure imaginary when $\mu=0$.

4. There is an unstable limit cycle around the origin and a stable spiral at the origin for $\mu < 0$:



The origin is a unstable spiral and no limit cycle for $\mu > 0$. So a subcritical Hopf bifurcation occurs at $\mu = 0$.



5. (a) Use $x=r \cos(\theta)$ and $y=r \sin(\theta)$. The system can be rewritten:

$$\dot{r} = \mu r + r^2 \cos^2(\theta) \sin(\theta) [r\sin(\theta) - 1]$$
(10)

$$\dot{\theta} = 1 - rcos(\theta) [cos^2(\theta) + r^2 sin^3(\theta)]$$
(11)

(b) Consider the average of these equations over θ . This will give us a qualitative idea of the behavior. We expect this method to capture the behavior best for r \ll 1 when θ is less important for the dynamics.

$$\dot{r} = \mu r + \frac{1}{8}r^3$$
 (12)

$$\dot{\theta} = 1 \tag{13}$$

(c) These equations suggest that an unstable limit cycle exists for negative μ with a radius of approximately $\sqrt{-8\mu}$ (consider the 1D dynamics in r) and the origin is unstable for positive μ . There is a subcritical Hopf bifurcation. Although not rigorous, this justifies the numerical results given above.