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Problem Set 7 Solutions
Expand x(€) as a perturbation series in €:
x(e) = xo +x1€4 x26> 4+ O(&>) (1)

Substitute into our equation and consider the equation at each order:
0E€): x}-1=0
1 2 1
O(e'): Bxgxi—x=0=>x =-—
3xp
0(&%): 3(drm+xx)—x1=0=>x=0

The solutions to for xq are x0=1,—% + 41’. Let’s consider only the real root for now.
We have found:

(€)= 1+ 3¢+ 0 @

For €=0.001, MATLAB gives x(€)=1.00033333332099 while our approximation gives
x(€)~1.00033333333333. These solutions differ by approximately 1.23 x 10~!!, con-
firming that our solution is valid at least to o(ed).

Expand x(€) as a perturbation series in €:
x(€) = xo +x18+x28° + O(&%) 3)

Substitute into our equation and consider the equation at each order:

0 : xX-x=0
x2
0(81) : 3x%x1+x%—x1 =0=x = 0 5
243
0(e%):  3(xdxy+xox?) +2x0x] —x2=0=>xp = M
The solutions for xq are xgp=-1,0,1. So near the roots we have:
1 1
x(e) = —1-e- gez +0(&?) (4)
x(e) = 040(e) (5)
1 1
x(e) = 1-5e+ gez +0(&?) (6)

Here is a table showing x(€) as calculated with MATLAB compared to our expansion.

X0 Xp+ €xy X0 + €x1 +€°xp x(€)

-1 | -1.00050000000000 | -1.00050012500000 | -1.00050012499999
0 0 0 0
1 | 0.99950000000000 | 0.99950012500000 | 0.99950012499999

1



2. Write the system as a 2D dynamical system:

X = v (7
v o= a—x+u(l—x*)v (8)

The fixed point of this system is (x,v)=(a,0). The Jacobian is:

/= ( —1—02yxv ,u(lixz) )

’:<—01 u(lia2)>

2 2(1 — 2)2
7~i=u(120)i\/y(14a)—1 ©)

Evaluated at the fixed point:

So we have:

2 232
To have a Hopf bifurcation we need u(1 —a?)=0 and ’% — 1<0. Notice that the first
condition implies the second condition. So we only need u(1— a2)=0. This means that Hopf
bifurcations occur on the curves a==4-1 and u=0. I checked this numerically and found it to
be true.

3. The Jacobian is:

Evaluate at the origin:

So the eigenvalues are A, = u+i and are pure imaginary when u=0.

4. There is an unstable limit cycle around the origin and a stable spiral at the origin for u<O0:
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5.

The origin is a unstable spiral and no limit cycle for y>0. So a subcritical Hopf bifurcation

occurs at u=0.

x‘=—y+mux+xy2
y’=x+muy—x2

mu = 0.01
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(a) Use x=r cos(0) and y=r sin(0). The system can be rewritten:

o=

6 = 1—rcos(0)[cos’(0) + r’sin’(0)]

ur+ r*cos®(0)sin(0)[rsin(0) — 1]

(10)
(1)

(b) Consider the average of these equations over 0. This will give us a qualitative idea of
the behavior. We expect this method to capture the behavior best for r<1 when 0 is

less important for the dynamics.

1
ur+ §r3

-

O = 1

(12)
(13)

(c) These equations suggest that an unstable limit cycle exists for negative u with a radius
of approximately /—8u (consider the 1D dynamics in r) and the origin is unstable for
positive u. There is a subcritical Hopf bifurcation. Although not rigorous, this justifies

the numerical results given above.



