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Problem Set 7 Solutions
1. (a) Expand x(ε) as a perturbation series in ε:

x
�
ε ��� x0 � x1ε � x2ε2 � O

�
ε3 � (1)

Substitute into our equation and consider the equation at each order:

O
�
ε0 � : x3

0 � 1 � 0

O
�
ε1 � : 3x2

0x1 � x0 � 0 � x1 � 1
3x0

O
�
ε2 � : 3

�
x2

0x2 � x0x2
1 � � x1 � 0 � x2 � 0

The solutions to for x0 are x0=1, � 1
2 � � 3

2 i. Let’s consider only the real root for now.
We have found:

x
�
ε ��� 1 � 1

3
ε � O

�
ε3 � (2)

For ε=0.001, MATLAB gives x(ε)=1.00033333332099 while our approximation gives
x(ε) 	 1.00033333333333. These solutions differ by approximately 1 
 23 � 10 � 11, con-
firming that our solution is valid at least to O(ε3).

(b) Expand x(ε) as a perturbation series in ε:

x
�
ε ��� x0 � x1ε � x2ε2 � O

�
ε3 � (3)

Substitute into our equation and consider the equation at each order:

O
�
ε0 � : x3

0 � x0 � 0

O
�
ε1 � : 3x2

0x1 � x2
0 � x1 � 0 � x1 � x2

0

1 � 3x2
0

O
�
ε2 � : 3

�
x2

0x2 � x0x2
1 � � 2x0x1 � x2 � 0 � x2 � x0x1

�
2 � 3x1 �

1 � 3x2
0

The solutions for x0 are x0=-1,0,1. So near the roots we have:

x
�
ε �
� � 1 � 1

2
ε � 1

8
ε2 � O

�
ε3 � (4)

x
�
ε �
� 0 � O

�
ε3 � (5)

x
�
ε �
� 1 � 1

2
ε � 1

8
ε2 � O

�
ε3 � (6)

Here is a table showing x(ε) as calculated with MATLAB compared to our expansion.

x0 x0 � εx1 x0 � εx1 � ε2x2 x(ε)
-1 -1.00050000000000 -1.00050012500000 -1.00050012499999
0 0 0 0
1 0.99950000000000 0.99950012500000 0.99950012499999
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2. Write the system as a 2D dynamical system:

ẋ � v (7)
v̇ � a � x � µ

�
1 � x2 � v (8)

The fixed point of this system is (x,v)=(a,0). The Jacobian is:

J � �
0 1� 1 � 2µxv µ

�
1 � x2 ���

Evaluated at the fixed point:

J � �
0 1� 1 µ

�
1 � a2 � �

So we have:

λ ��� µ
�
1 � a2 �

2 ��� µ2
�
1 � a2 � 2

4 � 1 (9)

To have a Hopf bifurcation we need µ
�
1 � a2 � =0 and µ2 � 1 � a2 � 2

4 � 1<0. Notice that the first
condition implies the second condition. So we only need µ

�
1 � a2 � =0. This means that Hopf

bifurcations occur on the curves a= � 1 and µ=0. I checked this numerically and found it to
be true.

3. The Jacobian is:

J � �
µ � y2 2xy � 1
1 � 2x µ �

Evaluate at the origin:

J � �
µ � 1
1 µ �

So the eigenvalues are λ ��� µ � i and are pure imaginary when µ=0.

4. There is an unstable limit cycle around the origin and a stable spiral at the origin for µ<0:
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x ’ = − y + mu x + x y2

y ’ = x + mu y − x2    
mu = − 0.01
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The origin is a unstable spiral and no limit cycle for µ>0. So a subcritical Hopf bifurcation
occurs at µ=0.

x ’ = − y + mu x + x y2

y ’ = x + mu y − x2    
mu = 0.01
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5. (a) Use x=r cos(θ) and y=r sin(θ). The system can be rewritten:

ṙ � µr � r2cos2 � θ � sin
�
θ ��� rsin

�
θ � � 1 � (10)

θ̇ � 1 � rcos
�
θ ��� cos2 � θ � � r2sin3 � θ ��� (11)

(b) Consider the average of these equations over θ. This will give us a qualitative idea of
the behavior. We expect this method to capture the behavior best for r � 1 when θ is
less important for the dynamics.

ṙ � µr � 1
8

r3 (12)

θ̇ � 1 (13)

(c) These equations suggest that an unstable limit cycle exists for negative µ with a radius
of approximately � � 8µ (consider the 1D dynamics in r) and the origin is unstable for
positive µ. There is a subcritical Hopf bifurcation. Although not rigorous, this justifies
the numerical results given above.
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