Homework \#7

Nonlinear dynamics and chaos

1. Regular perturbation problem: use second order perturbation theory (up to and including $O\left(\varepsilon^{2}\right)$) to find approximations to one of the roots of each of the following two equations:

$$
\begin{array}{r}
x^{3}-\varepsilon x-1=0 \\
x^{3}+\varepsilon x^{2}-x=0 \tag{2}
\end{array}
$$

set $\varepsilon=0.001$ and compare your approximate results to the numerical results at $O(1), O(\varepsilon), O\left(\varepsilon^{2}\right)$ calculated using the Matlab "roots" command.
2. Hopf bifurcation: (Strogatz 8.2.1) consider the biased van der Pol oscillator $\ddot{x}+\mu\left(x^{2}-1\right) \dot{x}+x=a$. Find the curves in the (μ, a) plane at which Hopf bifurcation occur.
3. (Strogatz 8.2.2-4) By calculating the linearization at the origin, show that the system

$$
\begin{align*}
\dot{x} & =-y+\mu x+x y^{2} \tag{3}\\
\dot{y} & =x+\mu y-x^{2} \tag{4}
\end{align*}
$$

has pure imaginary eigenvalues when $\mu=0$.
4. Plot the phase portraits for the system in the previous section using the Matlab quiver command for different values of μ and show that the system under goes a Hopf bifurcation at $\mu=0$. is it subcritical, supercritical or degenerate?
5. (a) Rewrite the system from the above two equations in polar coordinates;
(b) Show that if $r \ll 1$, then $\dot{\theta} \approx 1$ and $\dot{r} \approx \mu r+\frac{1}{8} r^{3}+\ldots$ where the terms omitted are oscillatory and have essentially zero time-average around one cycle.
(c) Show that the formula from (b) suggest the presence of an unstable limit cycle of radius $\approx \sqrt{-8 \mu}$ for $\mu<0$ (valid only for $r \ll 1$ and therefore for $|\mu| \ll 1$). Which Hopf bifurcation is this therefore?

