Problem Set 9 Solutions

1. I played with a simple MATLAB script to try to determine where the period doubling bifurcations occurred manually. This is not a particularly accurate way of doing this because near bifurcation points convergence is slow and round-off errors are a big problem. Because of these issues, this is not the way people actually try to determine δ. The eigenvalue method from Feigenbaum, involving taking advantage of super-stable cycles, is usually still used. See feigenbaum.m on the website for an example.
For the sine map, I found $r_{1} \approx 0.713, r_{2} \approx 0.831, r_{3} \approx 0.858$ so $\delta \approx \frac{0.831-0.713}{0.858-0.831} \approx 4.4$. We know this is a quadratic map, and this estimate is relatively close to the value $\delta=4.669 \ldots$.
For the quartic map given, I found $r_{1} \approx 0.746, r_{2} \approx 1.113, r_{3} \approx 1.161$ so $\delta \approx \frac{1.113-0.746}{1.161-1.113} \approx$ 7.6. (Briggs, 1990) give $\delta=7.28 \ldots$ for quartic maps, so again the estimate is not too bad.
2. This problem uses Schuster's notation, in which α is a positive number. In Strogatz α is a negative number. This is why equation 3.22 in Schuster looks slightly different from equation (2) in section 10.7 of Strogatz.
(a) Assume $\mathrm{g}(\mathrm{x})$ is a fixed point of the doubling transformation, so:

$$
\begin{equation*}
g(x)=-\alpha g\left[g\left(\frac{x}{-\alpha}\right)\right] \equiv T[g] \tag{1}
\end{equation*}
$$

Multiply by μ and let $\mathrm{x}=\frac{x}{\mu}$:

$$
\begin{equation*}
\mu g\left(\frac{x}{\mu}\right)=-\alpha \mu g\left[g\left(\frac{x}{-\alpha \mu}\right)\right] \tag{2}
\end{equation*}
$$

Rearrange inside of function:

$$
\begin{equation*}
\mu g\left(\frac{x}{\mu}\right)=-\alpha \mu g\left[\frac{1}{\mu}\left(\mu g\left(\frac{x}{-\alpha \mu}\right)\right)\right]=T\left[\mu g\left(\frac{x}{\mu}\right)\right] \tag{3}
\end{equation*}
$$

So $\mu g\left(\frac{x}{\mu}\right)$ is also a fixed point of the doubling transformation.
(b) By definition, $\mathrm{g}(\mathrm{x})=-\alpha g^{2}\left(\frac{x}{-\alpha}\right)$. So we must have $g(-\alpha x)=-\alpha g^{2}(x)$ for any x . If x^{*} is a fixed point of $\mathrm{g}(\mathrm{x})$, then $g^{2}\left(x^{*}\right)=x^{*}$ so $g\left(-\alpha x^{*}\right)=-\alpha x^{*}$ and $-\alpha x^{*}$ is also a fixed point of $g(x)$.
This means that if $g(x)$ has a single fixed point, then it must have an infinite number of them.
$g(0)=1$ and $g(1)=-\frac{1}{\alpha}<1$ so assuming g is well-behaved it must have one fixed point between $x=0$ and 1 . This means it must have an infinite number of fixed points and so crossings of the line $y=x$.
We expect the g to be an even function of x. So we also expect an infinite number of crossings of the line $\mathrm{y}=-\mathrm{x}$.
(c) Approximate $g(x)=1+c_{2} x^{2}$. So we have:

$$
\begin{align*}
g(x) & =-\alpha g^{2}\left(\frac{x}{-\alpha}\right) \\
1+c_{2} x^{2} & =-\alpha\left[1+c_{2}\left(1+c_{2}\left(\frac{x}{-\alpha}\right)^{2}\right)^{2}\right]+O\left(x^{4}\right) \\
1+c_{2} x^{2} & =-\alpha\left(1+c_{2}\right)-2 \frac{c_{2}^{2}}{\alpha} x^{2}+O\left(x^{4}\right) \tag{4}
\end{align*}
$$

To satisfy this equation at for all x up to $\mathrm{O}\left(x^{2}\right)$, we need:

$$
\begin{equation*}
1+c_{2}=\frac{1}{-\alpha} \text { and } c_{2}=\frac{-\alpha}{2} \tag{5}
\end{equation*}
$$

This leads to a quadratic in α (or c_{2}). If we take the positive root we get $\alpha=1+\sqrt{3} \approx$ 2.73 so $c_{2} \approx-1.37$. Not to shabby for so little work!
3. Following from Schuster, page 46:

$$
\begin{aligned}
g_{i-1}(x) & \equiv \lim _{n \rightarrow \infty}(-\alpha)^{n} f_{R_{n+i-1}}^{2^{n}}\left[\frac{x}{(-\alpha)^{n}}\right](\text { by definition) } \\
& =\lim _{n \rightarrow \infty}(-\alpha)(-\alpha)^{n-1} f_{R_{n+i-1}}^{2^{n-1+1}}\left[\frac{1}{(-\alpha)} \frac{x}{(-\alpha)^{n-1}}\right] \text { (rearrangement) } \\
& =\lim _{m \rightarrow \infty}(-\alpha)(-\alpha)^{m} f_{R_{m-1}}^{2^{m+1}}\left[\frac{1}{(-\alpha)} \frac{x}{(-\alpha)^{m}}\right](\text { letm }=n-1) \\
& \left.=\lim _{m \rightarrow \infty}(-\alpha)(-\alpha)^{m} f_{R_{m+i}}^{2 \cdot 2^{m}}\left[\frac{1}{(-\alpha)} \frac{x}{(-\alpha)^{m}}\right] \text { (rearrange exponent }\right) \\
& \left.=\lim _{m \rightarrow \infty}(-\alpha)(-\alpha)^{m} f_{R_{m+i}}^{2^{m}}\left[f_{R_{m+i}}^{2^{m}}\left[\frac{1}{(-\alpha)} \frac{x}{(-\alpha)^{m}}\right]\right] \text { (what we mean by } f^{2}\right) \\
& =\lim _{m \rightarrow \infty}(-\alpha)(-\alpha)^{m} f_{R_{m+i}}^{2^{m}}\left[\frac{1}{(-\alpha)^{m}}(-\alpha)^{m} f_{R_{m+i}}^{2^{m}}\left[\frac{1}{(-\alpha)} \frac{x}{(-\alpha)^{m}}\right]\right] \text { (clearly) } \\
& =-\alpha g_{i}\left[g_{i}\left(-\frac{x}{\alpha}\right)\right](\text { by definition })
\end{aligned}
$$

4. This is directly out of Strogatz. If you have a question about it please see me. Mathematica helps with the algebra.
5. In the quartic case we expect $g_{1}(x)=1+\sum_{i=1}^{n} c_{i} x^{4 i}$. If we keep only the first term, we find:

$$
\begin{align*}
g(x) & =-\alpha g^{2}\left(\frac{x}{-\alpha}\right) \\
1+c_{1} x^{4} & =-\alpha\left[1+c_{1}\left(1+c_{1}\left(\frac{x}{-\alpha}\right)^{4}\right)^{4}\right]+O\left(x^{8}\right) \\
1+c_{1} x^{4} & =-\alpha\left(1+c_{1}\right)-4 \frac{c_{1}^{2}}{\alpha^{3}} x^{4}+O\left(x^{8}\right) \tag{6}
\end{align*}
$$

Which gives two equations:

$$
\begin{align*}
-\frac{1}{\alpha} & =1+c_{1} \\
1 & =-4 \frac{c_{1}}{\alpha^{3}} \tag{7}
\end{align*}
$$

These yield a quartic equation for α : $\alpha^{4}-4 \alpha-4=0$. Using 'fzero' in MATLAB I find the solution to be $\alpha \approx 1.835$. (Briggs, 1990) gives $\alpha=1.690 \ldots$ for the quartic case, so this method gets us within 10%.
6. From section notes 8. I'll explain the plots as I did in section.

For certain values of r the Lorenz system exhibits "windows of periodic behavior." For the standard choices of $b=\frac{8}{3}$ and $\sigma=10$, a "period doubling cascade" to chaos occurs as r decreases for r just below 100 .

Figure 1: For $\mathrm{r}=100$ we have a limit cycle. Notice that if we were randomly trying r values and happened to try $\mathrm{r}=100$ (which might be a common choice) we would see periodic behavior in the middle of chaos.

Figure 2: A period doubling bifurcation has occurred. Notice that this cycle is very close to two limit cycles for $\mathrm{r}=100$. In fact, I wouldn't be able to tell the difference except from the time series plots, only from the plots in phase space.

Figure 3: Here the behavior is chaotic, but for some time it almost behaves like the limit cycle for $\mathrm{r}=100$. So if we start at $\mathrm{r}=90$ or so and increase r toward $\mathrm{r}=100$ we would see what looks like a limit cycle start to materialize from chaos.

Figure 4: Even at $\mathrm{r}=95$ there is structure that looks like the $\mathrm{r}=100$ limit cycle near $\mathrm{t}=50$.

Figure 5: Here I've zoomed in on one region of phase space to show 3 period doublings. It is very hard to see the period doublings from a time series or a larger region in phase space. Notice that the doublings start happening very close together as r decreases.

