Problem Set 10 Solutions

1. Here are some plots:

Method $A, a=0.1, b=1.0, w 1=2^{1 / 2}, w 2=2 e$, tau $=5$

Method B, $a=0.1, b=1.0, w 1=2^{1 / 2}, w 2=2 e$

Figure 1: Here the ratio of the frequencies is irrational. We get a torus using both methods. Although the time series never repeats itself, this is not a chaotic system because it is not sensitive to initial conditions.

Method A, $a=0.1, b=1.0, w 1=1.5, w 2=6$, tau $=5, T=30$

Method B, $a=0.1, b=1.0, w 1=1.5, w 2=6, T=30$

Figure 2: Now instead of a torus we get a line twisted around itself. It circulates around the torus faster than the small corrections are happening, so there are many twists before it repeats itself.

Method A, $a=0.1, b=1.0, w 1=1.5, w 2=6, \operatorname{tau}=5, T=80$

Method B, $a=0.1, b=1.0, w 1=1.5, w 2=6, T=80$

Figure 3: The same system is integrated for longer, and it doesn't change the phase space picture because the system is periodic.

Method A, $a=3.0, \mathrm{~b}=0.1, \mathrm{w} 1=1.5, \mathrm{w} 2=6, \mathrm{tau}=5, \mathrm{~T}=80$

Method B, $a=3.0, b=0.1, w 1=1.5, w 2=6, T=80$

Figure 4: The small correction has a shorter timescale than the main oscillation. All the corrections have already happened after one revolution, so the line doesn't twist back onto itself.

