Problem Set 12 Solutions

1. The time series is plotted for $\dot{\theta}$ instead of θ itself because θ may become very large if the pendulum winds around the top and it may be hard to understand the system's behavior.
(a) For $\mathrm{k}=0.5$ we see similar behavior to the transition to chaos in the circle map. We can enter and leave mode-locked regions (Arnold tongues) and have quasi-periodic behavior between them. After the onset of chaos we can still get mode-locked regions.

Figure 1: $\mathrm{f}=0.1$, a mode-locked solution (periodic).

reconstructed phase space

Figure 2: $\mathrm{f}=0.5$, a quasi-periodic solution. The bagel in phase space and circle in the Poincare section signify this.

reconstructed phase space

Figure 3: $\mathrm{f}=1.25$, we enter another mode-locked solution. Interestingly, from here we follow a period-doubling route to chaos.

Figure 4: $\mathrm{f}=1.3$, the period has doubled.

Figure 5: $\mathrm{f}=1.31$, the period has doubled again.

Figure 6: $\mathrm{f}=1.4$, chaos! If we keep increasing f we will reach a phase-locked solution near $\mathrm{f}=1.9$ that will go through another period-doubling cascade back to chaos.
(b) When $\mathrm{k}=0$, we don't find any quasi-periodic behavior. So we might consider this a degenerate case of the quasi-periodic route to chaos. The quasi-periodicity is lost due to the symmetry gained by setting $\mathrm{k}=0$.

Figure 7: For small forcing $(\mathrm{f}=0)$ the system is damped.

Figure 8: At larger forcing $(\mathrm{f}=0.5)$ we get mode-locked behavior.

Figure 9: Then the system becomes chaotic $(\mathrm{f}=1)$.

Figure 10: You can find mode-locked periodic behavior after the onset of chaos ($\mathrm{f}=1.1$ here).
(c) I was able to get a very rough picture of what was going on using this method. A major annoyance is that the behavior seems to depend pretty strongly on the timestepping. When I decreased the time-stepping by a factor of 10 the behavior changed dramatically. To give you an idea of how complex an actual state plot of a system like this is, here's one from (D'Humieres et al., 1982) for $\mathrm{k}=0$.

FIG. 3. State diagram for the driven pendulum with $Q=4$ and $\gamma_{0}=0$.

Figure 11: The x -axis is the frequency of the driving and the y -axis is the coefficient of the periodic forcing.
2. In general when the map of an experimental system that is similar to the circle map becomes non-invertible, chaos occurs.

Figure 12: For $K<1 \theta_{n+1}$ is a single-valued function of θ_{n} and vice versa, so the circle map is invertible for $\mathrm{K}<1$.

Figure 13: For $K>1 \theta_{n+1}$ is a single-valued function of θ_{n}, but θ_{n} is not a single-valued function of θ_{n+1}. so the circle map is not invertible for $\mathrm{K}>1$. I had to use 30 random starting points the get a decent picture of the function here.
3. The nth iteration of the Koch curve has 4^{n} intervals of length $\left(\frac{1}{3}\right)^{n}$. So the box dimension is:

$$
\begin{align*}
D_{\text {box }} & =\lim _{\varepsilon \rightarrow \infty} \frac{\ln (N(\varepsilon))}{\ln \left(\frac{1}{\varepsilon}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(4^{n}\right)}{\ln \left(3^{n}\right)} \\
& =\frac{\ln (4)}{\ln (3)} \\
& \approx 1.26 \tag{1}
\end{align*}
$$

4. The nth iteration has $3^{2 n} 2 \mathrm{D}$ boxes each with side length $\varepsilon=\left(\frac{1}{3}\right)^{n} \cdot 4^{n}$ are filled. The box dimension is:

$$
\begin{align*}
D_{\text {box }} & =\lim _{\varepsilon \rightarrow \infty} \frac{\ln (N(\varepsilon))}{\ln \left(\frac{1}{\varepsilon}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(4^{n}\right)}{\ln \left(3^{n}\right)} \\
& =\frac{\ln (4)}{\ln (3)} \\
& \approx 1.26 \tag{2}
\end{align*}
$$

The same as the Koch curve!
5. We have a 3D cube, such that divide into 27, we obtain $27=3^{3}$ cubes. After one iteration, we removed $2 \cdot 3+1$ cubes $\left(2 \cdot 3\right.$ faces and 1 center). We are left with $\left[3^{3}-(2 \cdot 3+1)\right]$ cubes. After 2 iterations $\left[3^{3}-(2 \cdot 3+1)\right]^{2} \ldots$ After n iterations, $\left[3^{3}-(2 \cdot 3+1)\right]^{n}$ each with side length $\varepsilon=\left(\frac{1}{3}\right)^{n}$. The box dimension is:

$$
\begin{align*}
D_{b o x} & =\lim _{\varepsilon \rightarrow \infty} \frac{\ln (N(\varepsilon))}{\ln \left(\frac{1}{\varepsilon}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left[3^{3}-(2 \cdot 3+1)\right]^{n}}{\ln \left(3^{n}\right)} \\
& =\frac{\ln (20)}{\ln (3)} \\
& \approx 2.73 \tag{3}
\end{align*}
$$

6. Now imagine we have an N -dimensional cube and we keep the only the corners at each fractal iteration. We still have $\varepsilon=\left(\frac{1}{3}\right)^{n}$ for the nth iteration. So the box dimension is:

$$
\begin{align*}
D_{b o x} & =\lim _{\varepsilon \rightarrow \infty} \frac{\ln (N(\varepsilon))}{\ln \left(\frac{1}{\varepsilon}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left[3^{N}-(2 \cdot N+1)\right]^{n}}{\ln \left(3^{n}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left[3^{N}-(2 \cdot N+1)\right]}{\ln (3)} \tag{4}
\end{align*}
$$

7. There are $4^{2 n} 2 \mathrm{D}$ boxes at the nth iteration, so $\varepsilon=\left(\frac{1}{4}\right)^{n} .8^{n}$ of these boxes are filled. So the box dimension is:

$$
\begin{align*}
D_{b o x} & =\lim _{\varepsilon \rightarrow \infty} \frac{\ln (N(\varepsilon))}{\ln \left(\frac{1}{\varepsilon}\right)} \\
& =\lim _{n \rightarrow \infty} \frac{\ln \left(8^{n}\right)}{\ln \left(4^{n}\right)} \\
& =\frac{\ln (8)}{\ln (4)} \\
& =\frac{3}{2} \tag{5}
\end{align*}
$$

