Dorian Abbot APM147 12/9/04

Problem Set 12 Solutions

- 1. The time series is plotted for $\dot{\theta}$ instead of θ itself because θ may become very large if the pendulum winds around the top and it may be hard to understand the system's behavior.
 - (a) For k=0.5 we see similar behavior to the transition to chaos in the circle map. We can enter and leave mode-locked regions (Arnold tongues) and have quasi-periodic behavior between them. After the onset of chaos we can still get mode-locked regions.

Figure 1: f=0.1, a mode-locked solution (periodic).

Figure 2: f=0.5, a quasi-periodic solution. The bagel in phase space and circle in the Poincare section signify this.

Figure 3: f=1.25, we enter another mode-locked solution. Interestingly, from here we follow a period-doubling route to chaos.

Figure 4: f=1.3, the period has doubled.

Figure 5: f=1.31, the period has doubled again.

Figure 6: f=1.4, chaos! If we keep increasing f we will reach a phase-locked solution near f=1.9 that will go through another period-doubling cascade back to chaos.

(b) When k=0, we don't find any quasi-periodic behavior. So we might consider this a degenerate case of the quasi-periodic route to chaos. The quasi-periodicity is lost due to the symmetry gained by setting k=0.

Figure 7: For small forcing (f=0) the system is damped.

Figure 8: At larger forcing (f=0.5) we get mode-locked behavior.

Figure 9: Then the system becomes chaotic (f=1).

Figure 10: You can find mode-locked periodic behavior after the onset of chaos (f=1.1 here).

(c) I was able to get a very rough picture of what was going on using this method. A major annoyance is that the behavior seems to depend pretty strongly on the time-stepping. When I decreased the time-stepping by a factor of 10 the behavior changed dramatically. To give you an idea of how complex an actual state plot of a system like this is, here's one from (D'Humieres *et al.*, 1982) for k=0.

Figure 11: The x-axis is the frequency of the driving and the y-axis is the coefficient of the periodic forcing.

2. In general when the map of an experimental system that is similar to the circle map becomes non-invertible, chaos occurs.

Figure 12: For K<1 θ_{n+1} is a single-valued function of θ_n and vice versa, so the circle map is invertible for K<1.

Figure 13: For K>1 θ_{n+1} is a single-valued function of θ_n , but θ_n is not a single-valued function of θ_{n+1} . so the circle map is not invertible for K>1. I had to use 30 random starting points the get a decent picture of the function here.

3. The nth iteration of the Koch curve has 4^n intervals of length $(\frac{1}{3})^n$. So the box dimension is:

$$D_{box} = \lim_{\epsilon \to \infty} \frac{ln(N(\epsilon))}{ln(\frac{1}{\epsilon})}$$

=
$$\lim_{n \to \infty} \frac{ln(4^n)}{ln(3^n)}$$

=
$$\frac{ln(4)}{ln(3)}$$

 ≈ 1.26 (1)

4. The nth iteration has 3^{2n} 2D boxes each with side length $\varepsilon = (\frac{1}{3})^n$. 4^n are filled. The box dimension is:

$$D_{box} = \lim_{\epsilon \to \infty} \frac{ln(N(\epsilon))}{ln(\frac{1}{\epsilon})}$$

=
$$\lim_{n \to \infty} \frac{ln(4^n)}{ln(3^n)}$$

=
$$\frac{ln(4)}{ln(3)}$$

 ≈ 1.26 (2)

The same as the Koch curve!

5. We have a 3D cube, such that divide into 27, we obtain $27 = 3^3$ cubes. After one iteration, we removed $2 \cdot 3 + 1$ cubes $(2 \cdot 3$ faces and 1 center). We are left with $[3^3 - (2 \cdot 3 + 1)]$ cubes. After 2 iterations $[3^3 - (2 \cdot 3 + 1)]^2$... After n iterations, $[3^3 - (2 \cdot 3 + 1)]^n$ each with side length $\varepsilon = (\frac{1}{3})^n$. The box dimension is:

$$D_{box} = \lim_{\epsilon \to \infty} \frac{ln(N(\epsilon))}{ln(\frac{1}{\epsilon})}$$

=
$$\lim_{n \to \infty} \frac{ln[3^3 - (2 \cdot 3 + 1)]^n}{ln(3^n)}$$

=
$$\frac{ln(20)}{ln(3)}$$

 ≈ 2.73 (3)

6. Now imagine we have an N-dimensional cube and we keep the only the corners at each fractal iteration. We still have $\varepsilon = (\frac{1}{3})^n$ for the nth iteration. So the box dimension is:

$$D_{box} = \lim_{\epsilon \to \infty} \frac{\ln(N(\epsilon))}{\ln(\frac{1}{\epsilon})}$$

=
$$\lim_{n \to \infty} \frac{\ln[3^N - (2 \cdot N + 1)]^n}{\ln(3^n)}$$

=
$$\lim_{n \to \infty} \frac{\ln[3^N - (2 \cdot N + 1)]}{\ln(3)}$$
(4)

7. There are 4^{2n} 2D boxes at the nth iteration, so $\varepsilon = (\frac{1}{4})^n$. 8^n of these boxes are filled. So the box dimension is:

$$D_{box} = \lim_{\epsilon \to \infty} \frac{ln(N(\epsilon))}{ln(\frac{1}{\epsilon})}$$

=
$$\lim_{n \to \infty} \frac{ln(8^n)}{ln(4^n)}$$

=
$$\frac{ln(8)}{ln(4)}$$

=
$$\frac{3}{2}$$
 (5)