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A Lecture
on the
Classical KAM Theorem

Jürgen Pöschel

1 The Classical KAM-Theorem

a. The purpose of this lecture is to describe the kam theorem in its most basic form
and to give a complete and detailed proof. This proof essentially follows the traditional
lines laid out by the inventors of this theory, Kolmogorov, Arnold and Moser (whence the
acronym ‘kam’), and the emphasis is more on the underlying ideas than on the sharpness of
the arguments. After all, kam theory is not only a collection of specific theorems, but rather
a methodology, a collection of ideas of how to approach certain problems in perturbation
theory connected with “small divisors”.

b. The classical kam theorem is concerned with the stability of motions in hamil-
tonian systems, that are small perturbations of integrable hamiltonian systems. These inte-
grable systems are characterized by the existence of action angle coordinates such that the
hamiltonian depends on the action variable alone – see [2,14] for details. Thus we are going
to consider hamiltonians of the form

H(p, q) = h(p) + fε(p, q), fε(p, q) = ε f∗(p, q, ε)

for small ε , where p = (p1, . . . , pn) are the action variables varying over some domain
D ⊂ R

n , while q = (q1, . . . , qn) are the conjugate angular variables, whose domain is
the usual n -torus T

n obtained from R
n by identifying points whose components differ by

integer multiples of 2π . Thus, fε has period 2π in each component of q . Moreover, all
our hamiltonians are assumed to be real analytic in all arguments.
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The equations of motion are, as usual,

ṗ = −Hq(p, q), q̇ = Hp(p, q)

in standard vector notation, where the dot indicates differentiation with respect to the time t ,
and the subscripts indicate partial derivatives. The underlying phase space is D × T

n ⊂
R

n × T
n with the standard symplectic structure

υ =
∑

j

dpj ∧ dqj .

The hamiltonian vectorfield X H associated with the equations of motions then satisfies
υ�X H = −d H .

We assume that the number n of degrees of freedom is at least 2, since one degree of
freedom systems are always integrable.

c. For ε = 0 the system is governed by the unperturbed, integrable hamiltonian h ,
and the equations of motion reduce to

ṗ = 0, q̇ = ω

with

ω = hp(p).

They are easily integrated – hence the name integrable system – and their general solution is

p(t) = p0, q(t) = q0 + ω(p0)t.

Hence, every solution curve is a straight line, which, due to the identification of the q -
coordinates modulo 2π , is winding around the invariant torus

Tp0 = {p0} × T
n

with constant frequencies, or winding numbers, ω(p0) = (ω1(p0), . . . , ωn(p0)) . Such tori
with linear flow are also called Kronecker tori.

In addition these tori are Lagrangian. That is, the restriction of the symplectic form υ

to their tangent space vanishes, and their dimension is maximal with respect to this property.
Thus, the whole phase space is foliated into an n -parameter family of invariant

Lagrangian tori Tp0 , on which the flow is linear with constant frequencies ω(p0) . – This
is the geometric picture of an integrable hamiltonian system.

It should be kept in mind that due to the introduction of action angle coordinates these
solutions are related to “real world solutions” by some coordinate transformation, which is
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periodic in q1, . . . , qn . Expanding such a transformation into Fourier series and inserting
the linear solutions obtained above, the “real world solutions” are represented by series of
the form

∑

k∈Zn

ak(p0) e〈k,q0〉+t〈k,ω(p0)〉, ak ∈ R
2n,

where 〈 · , · 〉 denotes the usual scalar product. Thus, every solution is now quasi-periodic
in t : its frequency spectrum in general does not consist of integer multiples of a single
frequency – as is the case with periodic solutions –, but rather of integer combinations of
a finite number of different frequencies. In essence, the “real world solutions” are super-
positions of n oscillations, each with its own frequency. Moreover, these quasi-periodic
solutions occur in families, depending on the parameter q0 , which together fill an invariant
embedded n -torus.

Let us return to action angle coordinates. We observe that the topological nature of
the flow on each Kronecker torus crucially depends on the arithmetical properties of its
frequencies ω . There are essentially two cases.

1. – The frequencies ω are nonresonant, or rationally independent:

〈k, ω〉 �= 0 for all 0 �= k ∈ Z
n .

Then, on this torus, each orbit is dense, the flow is ergodic, and the torus itself is minimal.
2. – The frequencies ω are resonant, or rationally dependent: that is, there exist

integer relations

〈k, ω〉 = 0 for some 0 �= k ∈ Z
n .

The prototype is ω = (ω1, . . . , ωn−m, 0 . . . , 0) , with 1 ≤ m ≤ n − 1 trailing zeroes and
nonresonant (ω1, . . . , ωn−m) . In this case the torus decomposes into an m -parameter family
of invariant n−m -tori. Each orbit is dense on such a lower dimensional torus, but not in T

n .
A special case arises when there exist m = n − 1 independent resonant relations.

Then each frequency ω1, . . . , ωn is an integer multiple of a fixed non-zero frequency ω∗ ,
and the whole torus is filled by periodic orbits with one and the same period 2π/ω∗ .

In an integrable system the frequencies on the tori may or may not vary with the torus,
depending on the nature of the frequency map

hp: D → �, p 
→ ω(p) = hp(p),

where � ⊂ R
n . We now make the assumption that this system is nondegenerate in the

sense that

det hpp = det
∂ω

∂p
�= 0
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on D . Then hp is an open map, even a local diffeomorphism between D and some open fre-
quency domain � ⊂ R

n , and “the frequencies ω effectively depend on the amplitudes p ”,
as a physicist would say. It follows that nonresonant tori and resonant tori of all types each
form dense subsets in phase space. Indeed, the resonant ones sit among the nonresonant
ones like the rational numbers among the irrational numbers.

This “frequency-amplitude-modulation” is a genuinely nonlinear phenomenon. By
contrast, in a linear system the frequencies are the same all over the phase space. As we will
see, this is essential for the stability results of the kam theory. As it is said, “the nonlinearities
have a stabilizing effect”.

d. Now we consider the perturbed hamiltonian. The objective is to prove the per-
sistence of invariant tori for small ε �= 0.

The first result in this direction goes back to Poincaré and is of a negative nature. He
observed that the resonant tori are in general destroyed by an arbitrarily small perturbation.
In particular, out of a torus with an n − 1-parameter family of periodic orbits, usually only
finitely many periodic orbits survive a perturbation, while the others disintegrate and give
way to chaotic behavior. – So in a nondegenerate system a dense set of tori is usually
destroyed. This, in particular, implies that a generic hamiltonian system is not integrable
[6,9,27].

Incidentally, it would not help to drop the nondegeneracy assumption to avoid resonant
tori. If h is too degenerate, the motion may even become ergodic on each energy surface,
thus destroying all tori [7].

A dense set of tori being destroyed there seems to be no hope for other tori to survive.
Indeed, until the fifties it was a common belief that arbitrarily small perturbations can turn
an integrable system into an ergodic one on each energy surface. In the twenties there even
appeared an – erroneous – proof of this “ergodic hypothesis” by Fermi.

But in 1954 Kolmogorov observed that the converse is true – the majority of tori
survives. He proved the persistence of those Kronecker systems, whose frequencies ω are
not only nonresonant, but are strongly nonresonant in the sense that there exist constants
α > 0 and τ > 0 such that

|〈k, ω〉| ≥ α

|k|τ for all 0 �= k ∈ Z
n , (1)

where |k| = |k1| + · · · + |kn| . Such a condition is called a diophantine or small divisor
condition.

The existence of such frequencies is easy to see. Let 	τ
α denote the set of all ω ∈ R

n

satisfying these infinitely many conditions with fixed α and τ . Then 	τ
α is the complement

of the open dense set Rτ
α = ⋃

0�=k∈Zn Rτ
α,k , where

Rτ
α,k = {

ω ∈ R
n : |〈k, ω〉| < α/ |k|τ }

.
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Obviously, for any bounded domain � ⊂ R
n , we have the Lebesgue measure estimate

m(Rτ
α,k ∩ �) = O(α/ |k|τ+1) , and thus

m(Rτ
a ∩ �) ≤

∑

k

m(Rτ
α,k ∩ �) = O(α) ,

provided that τ > n−1. Hence, Rτ = ⋂
α>0 Rτ

α is a set of measure zero, and its complement

	τ =
⋃

α>0

	τ
α

is a set of full measure in R
n , for any τ > n − 1. In other words, almost every ω in R

n

belongs to 	τ , τ > n − 1, which is the set of all ω in R
n satisfying (1) for some α > 0

while τ is fixed..
As an aside we remark that 	τ = ∅ for τ < n−1, because for every nonresonant ω ,

min
0�=|k|∞≤K

|〈k, ω〉| ≤ |ω|
K n−1

(2)

by Dirichlet’s pigeon hole argument. And for τ = n−1, the set 	n−1 has measure zero, but
Hausdorff dimension n – see [17] for references. So there are continuum many diophantine
frequencies to the exponent n − 1, although they form a set of measure zero. – But here
we will fix τ > n − 1 and drop it from the notation, letting 	α = 	τ

α .

e. But although almost all frequencies are strongly nonresonant for any fixed τ >

n − 1, it is not true that almost all tori survive a given perturbation fε , no matter how
small ε . The reason is that the parameter α in the nonresonance condition limits the size
of the perturbation through the condition

ε � α2.

Conversely, under a given small perturbation of size ε , only those Kronecker tori with
frequencies ω in 	α with

α � √
ε,

do survive. Thus, we can not allow α to vary, but have to fix it in advance.
To state the kam theorem, we therefore single out the subsets

�α ⊂ �, α > 0,

whose frequencies belong to 	α and also have at least distance α to the boundary of � .
These, like 	α , are Cantor sets: they are closed, perfect and nowhere dense, hence of first
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Baire category. But they also have large Lebesgue measure:

m(� − �α) = O(α) ,

provided the boundary of � is piecewise smooth, or at least of dimension n − 1 so that the
measure of a boundary layer of size α is O(α) .

The main theorem of Kolmogorov, Arnold and Moser can now be stated as follows.

The Classical KAM Theorem [1,8,10]. Suppose the integrable hamiltonian h is
nondegenerate, the frequency map hp is a diffeomorphism D → � , and H = h + fε is
real analytic on D̄ × T

n . Then there exists a constant δ > 0 such that for

|ε| < δα2

all Kronecker tori (Tn, ω) of the unperturbed system with ω ∈ �α persist as Lagrangian
tori, being only slightly deformed. Moreover, they depend in a Lipschitz continuous way
on ω and fill the phase D × T

n up to a set of measure O(α) .

Here, “real analytic on D̄ × T
n ” means that the analyticity extends to a uniform

neighborhood of D .
Is is an immediate and important consequence of the kam theorem that small per-

turbations of nondegenerate hamiltonians are not ergodic, as the Kronecker tori form an
invariant set, which is neither of full nor of zero measure. Thus the ergodic hypothesis of
the twenties was wrong.

It has to be stated again, however, that this invariant set, although of large measure,
is a Cantor set and thus has no interior points. It is therefore impossible to tell with finite
precision whether a given initial position falls onto an invariant torus or into a gap between
such tori. From a physical point of view the kam theorem rather makes a probabilistic
statement: with probability 1 − O(α) a randomly chosen orbit lies on an invariant torus
and is thus perpetually stable.

f. We conclude with some remarks about the necessity of the assumptions of the
kam theorem.

First, neither the perturbation nor the integrable hamiltonian need to be real analytic.
It suffices that they are differentiable of class Cl with

l > 2τ + 2 > 2n

to prove the persistence of individual tori [12,15,20]. For their Lipschitz dependence some
more regularity is required [16].
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The nondegeneracy condition may also be relaxed. It is not necessary that the fre-
quency map is open. Roughly speaking, it suffices that the intersection of its range with any
hyperplane in R

n has measure zero. For example, if it happens that

hp(p) = (
ω1(p1), . . . , ωn(p1)

)

is a function of p1 only (and thus completely degenerate), it suffices to require that

det

(
∂ jωi

∂p j
1

)

1≤i, j≤n

�= 0.

For a more general statement see [18], and [19,22,26] for proofs.
Finally, the hamiltonian nature of the equations is almost indispensable. Analogous

result are true for reversible systems [13,16]. But in any event the system has to be con-
servative. Any kind of dissipation immediately destroys the Cantor family of tori, although
isolated ones may persist as attractors.

2 The KAM Theorem with Parameters

a. Instead of proving the classical kam theorem directly, we are going to deduce
it from another kam theorem, which is concerned with perturbations of a family of linear
hamiltonians. This is accomplished by introducing the frequencies of the Kronecker tori as
independent parameters. This approach was first taken in [11].

To this end we write p = p0 + I and expand h around p0 so that

h(p) = h(p0) + 〈
hp(p0), I

〉 +
∫ 1

0
(1 − t)

〈
hpp(pt )I, I

〉
dt,

where pt = p0 + t I . By assumption, the frequency map is a diffeomorphism

hp: D → �, p0 
→ ω = hp(p0).

Hence, instead of p0 ∈ D we may introduce the frequencies ω ∈ � as independent
parameters, determining p0 uniquely. – Incidentally, the inverse map is given as

gω: � → D, ω 
→ p0 = gω(ω),

where g is the Legendre transform of h , defined by g(ω) = supp(〈p, ω〉 − h(p)) . See [2]
for more details on Legendre transforms.
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Thus we write h(p) = e(ω) + 〈ω, I 〉 + Ph(I ; ω) and fε(p, q) = Pε(I, q; ω) with

Ph =
∫ 1

0
(1 − t)

〈
hpp(pt )I, I

〉
dt, Pε = ε f∗(p0 + I, q, ε).

Writing also θ instead of q for the angular variables, we obtain the family of hamiltonians
H = N + P with

N = e(ω) + 〈ω, I 〉 , P = Ph(I ; ω) + Pε(I, θ; ω).

They are real analytic in the coordinates (I, θ) in B × T
n , B some sufficiently small ball

around the origin in R
n , as well as in the parameters ω in some uniform neighborhood of � .

This family is our new starting point. For P = 0 it reduces to the normal form
N = e(ω) + 〈ω, I 〉 . There is an invariant Kronecker torus Tω = {0} × T

n with constant
vectorfield

X N =
∑

j

ωj
∂

∂θj

for each ω ∈ � , and all these tori are given by the family

�0: T
n × � → B × T

n, (θ, ω) 
→ (0, θ)

of trivial embeddings of T
n over � into phase space. Moreover, each such torus clearly

is Lagrangian. Our aim is to prove the persistence of a ‘subfamily’ of such Lagrangian
Kronecker tori under sufficiently small perturbations P �= 0 over the Cantor set �α ⊂ �

of frequency parameters ω . – Thus, instead of proving the existence of a Cantor family of
invariant tori in one hamiltonian system, we first prove the existence of one invariant torus
within a Cantor family of hamiltonian systems.

This change of perspective has several advantages. — The unperturbed hamiltonian
is as simple as possible, namely linear. This simplifies the kam proof. — The frequencies
are separated from the actions. This makes their rôle more transparent. For example, the
Lipschitz dependence of the tori on ω is easily established. — Generalizations such as
weaker nondegeneracy conditions and extension to infinite dimensional systems are easier.
Also, this approach lends itself to applications in bifurcation theory, where systems naturally
depend on parameters.
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b. To state the basic result quantitatively we need to introduce a few notations. Let

Dr,s = {I : |I | < r} × {θ : |Im θ | < s} ⊂ C
n × C

n

and

Oh = {ω : |ω − �α| < h} ⊂ C
n

denote complex neighborhoods of the torus {0}×T
n and �α , respectively, where | · | stands

for the sup-norm of real vectors. The sup-norm of functions on Dr,s × Oh is denoted by
| · |r,s,h .

We will also consider the Lipschitz constants of mappings with respect to ω . We
define

|ϕ|L = sup
υ �=ω

|ϕ(υ) − ϕ(ω)|
|υ − ω| ,

where the underlying domain will be clear from the context or indicated by a subscript.

Theorem A. Let H = N + P . Suppose P is real analytic on Dr,s × Oh with

|P|r,s,h ≤ γαrsν, αsν ≤ h,

where ν = τ + 1 and γ is a small constant depending only on n and τ . Suppose also that
r, s, h ≤ 1 . Then there exists a Lipschitz continuous map ϕ: �α → � close to the identity
and a Lipschitz continuous family of real analytic torus embeddings �: T

n ×�α → B×T
n

close to �0 , such that for each ω ∈ �α the embedded tori are Lagrangian and

X H |ϕ(ω) � � = D� · X N .

Moreover, � is real analytic on T∗ = {θ : |Im θ | < s/2} for each ω , and

|W (� − �0)| , αsν |W (� − �0)|L ≤ c

αrsν
|P|r,s,h ,

|ϕ − id| , αsν |ϕ − id|L ≤ c

r
|P|r,s,h ,

uniformly on T∗ × �α and �α , respectively, where c is a large constant depending only
on n and τ , and W = diag(r−1Id, s−1Id) .

By slight abuse of notation we wrote X N also for the analogous constant vectorfield
on T

n alone. – The theorem states that for each ω in �α there is an embedded invariant
Kronecker torus Tω = �(Tn; ω) with frequencies ω for the hamiltonian vectorfield X H
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at the slightly shifted parameter value ω̃ = ϕ(ω). Conversely, for each ω̃ in the slightly
deformed Cantor set

�̃α = ϕ(�α) ⊂ �,

the vectorfield X H |ω̃ admits an invariant Kronecker torus Tω with frequencies ω =
ϕ−1(ω̃) . Each such torus is Lagrangian and close to the corresponding unperturbed torus.

c. The Lipschitz estimates allow us to control the measure of �̃α and its comple-
ment. To this end we first extend ϕ to a lipeomorphism ϕ̄ of � .

Proposition 1. There exists an extension of ϕ to a lipeomorphism ϕ̄: � → � with

|ϕ̄ − id|L,� ≤ max
(|ϕ − id|L,�α

, α−1 |ϕ − id|�α

)
.

Proof. Let ψ be any coordinate function of ϕ − id defined on �α . Define ψ on
�c = R

n − � to be zero. Then

|ψ |L,�α∪�c ≤ max
(|ϕ − id|L,�α

, α−1 |ϕ − id|�α

)
< 1.

According to Appendix B we can extend ψ to a function ψ̄ on all of R
n preserving its

Lipschitz constant . Doing this with every coordinate of ϕ we obtain an extension ϕ̄ of ϕ

such that ϕ̄ = id on �c and

|ϕ̄ − id|L,Rn = |ψ |L,�α∪�c < 1.

Hence ϕ̄ is a lipeomorphism on R
n . Since it is the identity outside of � , it is also a

lipeomorphism of � , extending ϕ .

Proposition 2. For �̃α = ϕ(�α) the estimate

m(� − �̃α) = O(α)

holds, where the implicit constant depends only on �

Proof. Let ϕ̄ be the extension of Proposition 1. Then

m(� − �̃α) = m(� − ϕ(�α))

= m(� − ϕ̄(�α))

= m(ϕ̄(� − �α))

≤ |ϕ̄|L,� m(� − �α)

= O(α).
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The Cantor family of torus embeddings may also be extended to a family over � .
This extension can even be chosen so that the additional embedded tori are still Lagrangian,
though of course not invariant.

Proposition 3. There exists an extension of � to a Lipschitz continuous family of
real analytic torus embeddings

�̄: T
n × � → B × T

n

such that each embedded torus is Lagrangian, and the estimates for �̄ are the same as
for � , though with a different constant c .

d. We thus arrive at the following conclusion.

Theorem B. Suppose the assumptions of Theorem A are satisfied. Then there exist
a lipeomorphism ϕ̄: � → � close to the identity and a family of torus embeddings

�̄: T
n × � → R

n × T
n

close to �0 such that for every parameter value

ω̃ ∈ �̃α = ϕ̄(�α)

the hamiltonian vectorfield X H |ω̃ admits an invariant Lagrangian Kronecker torus Tω =
�̄(Tn; ω) , where ω = ϕ̄−1(ω̃) . Moreover, the estimates for ϕ̄ and �̄ are the same as for
ϕ and � in Theorem A, though with a different constant c , and

m(� − �̃α) = O(α),

where the implicit constant depends only on � .

We will see at the end of section 5 that the map ϕ actually can be assigned ω -
derivatives of every order on the Cantor set �α . This may be formalized by introducing the
intrinsically defined notion of a differentiable function on an arbitrary closed set [24,25].
The point is that – due to the Whitney extension theorem – such functions can be extended
to functions on the whole space with the same differentiability properties. The upshot is
that there even exists an extension of ϕ to a C∞ -function ϕ̄ on � . The same applies to �

and leads to the notion of smooth foliations of invariant tori over Cantor sets [16].
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d. We now prove the classical kam theorem. Introducing the frequencies as param-
eters we wrote the hamiltonian as H = N + P , where

P = Ph + Pε

is real analytic on B × T
n × �̄ , B some small ball around the origin in R

n . Thus we can
fix some small h and s , with sν ≤ h , so that P is real analytic on the complex domain
Dr,s × Oh for all small r , and so that

|P|r,s,h ≤ |Ph |r,s,h + ∣∣Pfε

∣∣
r,s,h

≤ Mr2 + Fε,

where M is a bound on the hessian of h and F = supp,q,ε | f∗(p, q, ε)| .
To meet the smallness condition of Theorems A and B, we choose r by Mr2 = Fε

and arrive at the condition

2Fε ≤ γαrsν = γαsν

√
Fε

M
,

or

ε ≤ γ 2α2s2ν

4F M
= δα2, δ = γ 2s2ν

4F M
.

So there is a δ depending on n , τ and H such that Theorems A and B apply for ε ≤ δα2 .
By construction, an orbit (I (t), θ(t)) for the hamiltonian H at the parameter value ω̃

translates into an orbit (p(t), q(t)) = (p0(ω̃) + I (t), θ(t)) for this hamiltonian in p, q -
coordinates. It therefore follows with Theorem B that the mapping

�: T
n × � → D × T

n,

which is a composition of �̄ and ϕ̄ with

�: B × T
n × � → D × T

n, (I, θ; ω) 
→ (h−1
p (ω) + I, θ),

is an embedding of an invariant Lagrangian Kronecker torus (Tn, ω) for every ω ∈ �α .
Moreover, � is Lipschitz close to the real analytic unperturbed embedding

�0: T
n × � → D × T

n, (θ; ω) 
→ (h−1
p (ω), θ).

It follows that the measure of the complement of all those tori in the phase space is bounded
by a constant times the measure of �α × T

n , hence is O(α) . This finishes the proof of the
classical kam theorem.
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3 Outline of the Proof of Theorem A

a. We prove Theorem A by a rapidly converging iteration procedure that was pro-
posed by Kolmogorov [8]. At each step of this scheme a hamiltonian

Hj = Nj + Pj

is considered, which is a small perturbation of Nj = ej +〈ω, I 〉 . A coordinate and parameter
transformation Fj is constructed such that

Hj � Fj = Nj+1 + Pj+1

with another normal form Nj+1 and a much smaller error term Pj+1 . Namely,

∣∣Pj+1

∣∣ ≤ C
∣∣Pj

∣∣κ

with some exponent κ > 1. Repetition of this process leads to a sequence of transforma-
tions F0, F1, . . . , whose products F j = F0 � F1 � · · · � Fj−1 converge to an embedding of
an invariant Kronecker torus.

In the meantime a number of other proofs have been given, for example by formulating
some generalized implicit function theorem suited for small divisor problems [28], or by
referring to an implicit function theorem in tame Frechet spaces [4]. Recently, Salamon and
Zehnder [21] gave a proof that avoids coordinate transformations altogether and works in
configuration space. Also, Eliasson [5] described a way of using power series expansions
and majorant techniques in a very tricky way.

But here we stick to the traditional method of proof, as it probably is the most
transparent way to get to know the basic techniques. They are indeed quite flexible and
robust, and not at all restricted to perturbations of integrable hamiltonian systems. As we
mentioned in the beginning, these techniques rather amount to a strategy of how to approach
a large class of perturbation problems.

b. To describe one cycle of this iterative scheme in more detail we now drop the
subscript j .

First, the perturbation P is approximated by some hamiltonian R by truncating its
Taylor series in I at first order and its Fourier series in θ at some suitable high order K . The
approximation error P − R will be small, and we now consider the hamiltonian H̄ = N + R
instead of H = N + P . The purpose of this approximation will become clear later.

The transformation F consists of a parameter dependent symplectic change of coor-
dinates � and a change ϕ of the parameters alone:

F = (�, ϕ): (I, θ; ω) 
→ (�(I, θ; ω), ϕ(ω)).
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Moreover, this coordinate transformation is of the form

�: (I, θ; ω) → (U (I, θ; ω), V (θ; ω)),

where U is affine in I , and V is independent of I . Such transformations F form a group G

under composition.
We obtain � as the time-1-map of the flow Xt

F of a hamiltonian F , which is affine
in I . That is, � is the time-1-shift determined by the equations of motion

İ = −Fθ (I, θ; ω), θ̇ = FI (θ; ω).

Then � is symplectic for each ω .
To describe the transformed hamiltonian H � � we recall that for a function K ,

d

dt
K � Xt

F = {K , F} � Xt
F ,

the Poisson bracket of K and F evaluated at Xt
F . Indeed,

d

dt
K � Xt

F

∣∣∣∣
t=0

=
∑

1≤ j≤n

Kθj θ̇j + K Ij İj

=
∑

1≤ j≤n

Kθj FIj − K Ij Fθj = {K , F} ,

and the general formula follows.
So we can use Taylor’s formula to expand H̄ � � = H̄ � Xt

F

∣∣
t=1 with respect to t

at 0 and write

H̄ � � = N � Xt
F

∣∣
t=1 + R � Xt

F

∣∣
t=1

= N + {N , F} +
∫ 1

0
(1 − t) {{N , F} , F} � Xt

F dt

+ R +
∫ 1

0
{R, F} � Xt

F dt

= N + {N , F} + R +
∫ 1

0
{(1 − t) {N , F} + R, F} � Xt

F dt.

This is a linear expression in R and F – the linearization of H̄ � � – plus a quadratic
integral remainder. That is, if R and F are both roughly of order ε , then the integral will
roughly be of order ε2 � ε and may be ascribed to the next perturbation P+ = Pj+1 .

The point is to find F such that

N + {N , F} + R = N+
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is again a normal form. Equivalently, we want to solve

{F, N } + N̂ = R, N̂ = N+ − N (3)

for F and N̂ when R is given. Suppose for a moment that such a solution exists. Then
(1 − t) {N , F} + R = (1 − t)N̂ + t R , and altogether we obtain

H � � = H̄ � � + (P − R) � � = N+ + P+

with N+ = N + N̂ and

P+ =
∫ 1

0
{(1 − t)N̂ + t R, F} � Xt

F dt + (P − R) � X1
F (4)

as the new error term.

c. Let us consider equation (3) first on a formal level. Clearly,

∂ω F
def= {F, N } =

∑

j

Fθj NIj =
∑

j

ωj Fθj

is a first order partial differential operator on the torus T
n with constant coefficients ω .

Expanding F into a Fourier series,

F =
∑

k∈Zn

Fkei〈k,θ〉,

with coefficients depending on I and ω , we find

∂ω F =
∑

k∈Zn

i 〈k, ω〉 Fkei〈k,θ〉.

Thus, ∂ω admits a basis of eigenfunctions ei〈k,θ〉 with eigenvalues i 〈k, ω〉 , k ∈ Z
n . In

other words, ∂ω diagonalizes with respect to this basis.
If ω is now nonresonant, then these eigenvalues are all different from zero except

when k = 0. We then can solve for all Fourier coefficients Rk of the given function R ,
except for R0 , which is given by the mean value of R over T

n ,

R0 = [R] = 1

vol Tn

∫

Tn

R dθ.

Hence, if R is given, then we can always solve the equation ∂ω F = R − [R] formally by
setting

F =
∑

0�=k∈Zn

Rk

i 〈k, ω〉 ei〈k,θ〉. (5)
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We are still free to add a θ -independent function to F , but we choose to normalize F so
that [F] = 0.

Finally, equation (3) is completely solved by setting

N̂ = [R].

Of course, this choice of N̂ is in no way uniquely determined, but this is in some sense the
simplest one.

d. There is a more systematic interpretation of the preceding construction. For
irrational ω , the domain of ∂ω , consisting of all formal Fourier series in θ (ignoring the
other coordinates here), splits into two invariant subspaces, its nullspace N consisting of
all constant functions, and its range R , consisting of all series with vanishing constant term.
Moreover, ∂ω is invertible on R .

Decompose R into its respective components in N and R ,

R = RN + RR.

The projection onto N is given by taking the mean value, so

RN = [R], RR = R − [R].

The equation

∂ω F + N̂ = R = RR + RN

is then solved by “solving componentwise”,

N̂ = RN = [R], ∂ω F = RR = R − [R],

where the latter can be solved uniquely for F in R , since ∂ω is invertible on R .
This general procedure – “solve for all the terms you can solve for, and keep the

rest” – is at the basis of all normal form theory. It just happens to take a particularly simple
form in our case.

e. So far our considerations were formal. But in estimating the series representation
(5) of F , we are confronted with the well known and notorious problem of “small divisors”.
Even if ω is nonresonant, infinitely many of the divisors 〈k, ω〉 become arbitrarily small
in view of (2), threatening to make the series (5) divergent.

This divergence is avoided, if ω is required to be strongly nonresonant. To formulate
this key lemma, let As denote the space of all analytic functions u defined in the complex
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strip {θ : supj

∣∣Im θj

∣∣ < s} ⊂ C
n with bounded sup-norm |u|s over that strip. Let

As
0 = {

u ∈ As : [u] = 0
}
,

and recall that ω ∈ 	τ
a satisfies |〈k, ω〉| ≥ α/ |k|τ for all 0 �= k ∈ Z

n .

Lemma 1. Suppose that ω ∈ 	τ
α . Then the equation

∂ωu = v, v ∈ As
0,

has a unique solution u in
⋃

0<σ<s As−σ
0 , with

|u|s−σ ≤ c

ασ τ
|v|s , 0 < σ < s,

where the constant c depends only on n and τ .

Proof. We prove the lemma with σ τ+n in place of σ τ to avoid lengthy technicalities.
The interested reader is referred to [17] or [15] for a proof of the sharper result. – Expanding
u and v into Fourier series, the unique formal solution u with [u] = 0 is

u =
∑

0�=k∈Zn

vk

i 〈k, ω〉 ei〈k,θ〉.

As to the estimate we recall that the Fourier coefficients of an analytic function on T
n decay

exponentially fast:

|vk | ≤ |v|s e−|k|s,

where |k| = |k1|+ . . . |kn| . See Lemma A.1 for a reminder. Together with the small divisor
estimate for ω we obtain

|u|s−σ ≤
∑

k �=0

|vk |
|〈k, ω〉|e|k|(s−σ) ≤ |v|s

α

∑

k �=0

|k|τ e−|k|σ .

The infinite sum is now easily estimated by constant times σ−τ−n .

We observe that ∂−1
ω is unbounded as an operator in As

0 . It is bounded only as an
operator from As

0 into the larger spaces As−σ
0 , with its bound tending to infinity as σ tends

to zero. This phenomenon is known as “loss of smoothness” affected by the solution operator
∂−1
ω , and is the main culprit why small divisor problems are technically so involved. During

the iteration we have to let σ → 0 in order to stay in the classes As
0 . But then the operator

∂−1
ω is getting unbounded. By the rapid convergence of the Newton scheme, however, the
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error term converges to zero even faster, thus allowing to overcome this effect of the small
divisors.

It is absolutely essential for Lemma 1 to be true that ω satisfies infinitely many small
divisor conditions, thus restricting ω to a Cantor set with no interior points. On the other
hand, we will also need to transform the frequencies and thus want them to live in open
domains. This conflict is resolved by approximating P by a trigonometric polynomial R .
Then only finitely many Fourier coefficients need to be considered at each step, and only
finitely many small divisor conditions need to be required, which are easily satisfied on
some open ω -domain. Of course, during the iteration more and more conditions have to be
satisfied, and in the end these domains will shrink to some Cantor set.

f. We still have to finish one cycle of the iteration. Solving (3) we arrive at H �� =
N+ + P+ , where

N+ = N + [R] = e+(ω) + 〈ω + v(ω), I 〉 ,

since [R] is affine in I and independent of θ . To write N+ again in normal form, we have
to introduce

ω+ = ω + v(ω)

as new frequencies. Since v is small, there exists an inverse map ϕ: ω+ 
→ ω by the implicit
function theorem – see Appendix A. With this change of parameters,

N+ = e+(ω+) + 〈ω+, I 〉

is again in normal form. This finishes one cycle of the iteration.

g. The next section describes the quantitative details, and the final section its itera-
tion.

4 The KAM Step

a. To avoid a flood of constants we will write

u <· v, u ·< v,

if there exists a positive constant c ≥ 1, which depends only on n and τ and could be
made explicit, such that u ≤ cv and cu ≤ v , respectively. – Now let P be a real analytic
perturbation of some normal form N .
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The KAM Step. Suppose that |P|r,s,h ≤ ε with

ε ·< αηrσ ν, (a)

ε ·< hr, (b)

h ≤ α

2K ν
, (c)

for some 0 < η < 1/8 , 0 < σ < s/5 and K ≥ 1 , where ν = τ + 1 . Then there exists a
real analytic transformation

F = (�, ϕ): Dηr,s−5σ × Oh/4 → Dr,s × Oh

in the group G such that H � F = N+ + P+ with

|P+|ηr,s−5σ,h/4 <· ε2

αrσ ν
+ (

η2 + K ne−Kσ
)
ε.

Moreover,

|W (� − id)| , ∣∣W (D� − Id)W −1
∣∣ <· ε

αrσ ν
,

|ϕ − id| , h |Dϕ − Id| <· ε

r
,

uniformly on Dηr,s−5σ × Oh and Oh/4 , with the weight matrix W = diag(r−1Id, σ−1Id) .

b. The proof of the kam Step follows the lines of the preceding section and consists
of six small steps. Except for the last step everything is uniform in Oh , whence we write
| · |r,s for | · |r,s,h throughout.

1. Truncation. We approximate P by a hamiltonian R , which is affine in I and
a trigonometric polynomial in θ . To this end, let Q be the linearization of P in I at
I = 0. By Taylor’s formula with remainder and Cauchy’s estimate – see Appendix A for a
reminder –, we have

|Q|r,s <· ε, |P − Q|2ηr,s <· η2ε.

Then we simply truncate the Fourier series of Q at order K to obtain R . By Lemma A.2,

|R − Q|r,s−σ <· K ne−Kσ ε.

Since the factor K ne−Kσ will be made small later on, we also have

|R|r,s−σ <· ε.

See Appendix A for some remarks about this truncation of Fourier series.
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2. Extending the small divisor estimate. The nonresonance conditions (6) are assumed
to hold on the real set �α only. But assumption (c) implies that

|〈k, ω〉| ≥ α

2 |k|τ for all 0 �= |k| ≤ K (7)

for all ω in the neighborhood Oh of �α . Indeed, for ω ∈ Oh there is some ω∗ ∈ �α with
|ω − ω∗| < h , hence

|〈k, ω − ω∗〉| ≤ |k| · |ω − ω∗| ≤ K h ≤ α

2K τ
≤ α

2 |k|τ

for |k| ≤ K . Together with the estimate (6) for 〈k, ω∗〉 this proves the claim.

3. Solving the linearized equation {F, N } + N̂ = R . We solve this equation as
described in the preceding section. We have N̂ = [R] and thus

|N̂ |r ≤ |R|r,s−σ <· ε.

We can solve for F uniformly for all ω in Oh because of (7) and the fact that R contains
only Fourier coefficients up to order K , by truncation. Hence the estimate of Lemma 1
applies as well, and we obtain a real analytic function F with

|F |r,s−2σ <· |R|r,s−σ

ασ τ
<· ε

ασ τ
.

With Cauchy we get |Fθ |r,s−3σ <· ε/ασ τ+1 and |FI |r/2,s−2σ <· ε/αrσ τ , hence

1

r
|Fθ | , 1

σ
|FI | <· ε

αrσ ν

uniformly on Dr/2,s−3σ with ν = τ + 1.

4. Transforming the coordinates. The coordinate transformation � is obtained as the
real analytic time-1-map of the flow Xt

F of the hamiltonian vectorfield X F , with equations
of motions

İ = −Fθ , θ̇ = FI .

With assumption (a) and the preceding estimates we can assure that we have |Fθ | ≤ ηr ≤
r/8 and |FI | ≤ σ on Dr/2,s−3σ uniformly in ω . Therefore, the time-1-map is well defined
on Dr/4,s−4σ , with

� = Xt
F

∣∣
t=1 : Dr/4,s−4σ → Dr/2,s−3σ , (8)

and

|U − id| ≤ |Fθ | <· ε

ασ ν
, |V − id| ≤ |FI | <· ε

αrσ ν−1
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on that domain for � = (U, V ) . The Jacobian of � is

D� =
(

UI Uθ

0 Vθ

)
,

since F is linear in I , hence FI and V are independent of I . By the preceding estimates
and Cauchy,

|UI − Id| <· ε

αrσ ν
, |Uθ | <· ε

ασ ν+1
, |Vθ − Id| <· ε

αrσ ν

on the domain Dr/8,s−5σ ⊇ Dηr,s−5σ . This proves all the estimates for � . Finally, we
observe that |U − id| ≤ |Fθ | ≤ ηr implies that we also have �: Dηr,s−5σ → D2ηr,s−4σ .

5. New error term. To estimate P+ as given in (4) we first consider the term {R, F} .
Again, by Cauchy’s estimate,

|{R, F}|r/2,s−3σ <· |RI | |Fθ | + |Rθ | |FI |

<· ε

r
· ε

ασ ν
+ ε

σ
· ε

αrσ ν−1
<· ε2

αrσ ν
.

The same holds for |{N̂ , F}|r/2,s−3σ . Together with (8) and η < 1
8 we get

∣∣∣∣
∫ 1

0
{(1 − t)N̂ + t R, F} � Xt

F dt

∣∣∣∣
ηr,s−5σ

≤
∣∣∣ {(1 − t)N̂ + t R, F}

∣∣∣
r/2,s−4σ

<· ε2

αrσ ν
.

The other term in (4) is bounded by

|(P − R) � �|ηr,s−5σ ≤ |P − R|2ηr,s−4σ

≤ |P − Q|2ηr,s−4σ + |Q − R|2ηr,s−4σ

<· (
η2 + K ne−Kσ

)
ε.

These two estimates together give the bound for |P+| .
6. Transforming the frequencies. Finally, we have to invert the map

ω 
→ ω+ = ω + v(ω), v = N̂I = [RI ]

to put N + N̂ back into a normal form N+ . With assumption (b) and Cauchy’s estimate we
can assure that

|v|h/2 = |N̂I |h/2 <· ε

r
≤ h

4
.
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The implicit function theorem of Appendix A applies, and there exists a real analytic inverse
map ϕ: Oh/4 → Oh/2 , ω+ 
→ ω , with the estimates

|ϕ − id| , h |Dϕ − Id| <· ε

r

on Oh/4 . Setting N+ = (N + N̂ ) � ϕ the proof of the kam Step is completed.

5 Iteration and Proof of Theorem A

a. We are going to iterate the kam Step infinitely often, choosing appropriate se-
quences for the parameters σ , η and so on. To motivate our choices, let us start by fixing a
geometric sequence for σ , say, σ+ = σ/2, where the plus sign indicates the corresponding
parameter value for the next step. Let r+ = ηr , and let us consider the weighted error terms

E = ε

αrσ ν
, E+ = ε+

αr+σ ν
+

.

Then we have

E+ <· E2

η
+ (

η2 + K ne−Kσ
) E

η
.

Suppose we can choose η and K so that η2 = E and K ne−Kσ ≤ E . Then

E+ <· η−1 E2 = Eκ , κ = 3

2
.

That is, E+ ≤ cκ−1 Eκ for some constant c determined by the kam Step and depending
only on n and τ . Consequently,

cE+ ≤ cκ Eκ ,

and this scheme converges exponentially fast for E < c−1 .
It remains to discuss our assumptions

η2 = E (d)

K ne−Kσ ≤ E (e)

as well as assumptions (a–c) of the kam Step. There is no obstacle to take (d) as the definition
of η , as this implies E ·<η and thus (a) for E sufficiently small. The other three conditions
amount to

ε

r
·< h ≤ α

2K ν
, K ne−Kσ ≤ E = ε

αrσ ν
.
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They are combined into the sufficient condition

K νσ νe−Kσ ≤ Eσ ν = ε

αr
·< h

α
≤ 1

2K ν
. (f)

Now it suffices to set up geometric sequences for K and h such that, say,

K+σ+ = 2Kσ, K ν
+ h+ ≤ K νh.

Then these inequalities hold inductively, provided they hold initially, with K0σ0 sufficiently
large. In particular, after fixing σ0 , K0 and E0 , we may set

h0 = αc0 E0σ
ν
0

with a suitable constant c0 .

b. We are now ready to set up our parameter sequences. Let

σj+1 = σj

2
, Kj+1 = 4Kj , hj+1 = hj

4ν
,

where σ0 = s0/20, and K0 is chosen so large that the left hand side of (f) is smaller than its
right hand side, and small enough so that E0 can be fixed to meet (a) and (d). In addition,
K0σ0 has to be so large that the left hand side of (f) decreases at least at an exponential
rate κ . Thus we need 1 ·< K0σ0 . Subsequently, we fix h0 as above.

Next, let

Ej+1 = cκ−1 Eκ
j , rj+1 = ηj rj , η2

j = Ej ,

where r0 is still free and c given by the kam Step. Finally, we define sj+1 = sj − 5σj and
the complex domains

Dj = {|I | < rj } × {|Im θ | < sj }, Oj = {|ω − �α| < hj }.

Note that sj → s/2 and rj → 0. – Now let H = N + P0 .

Iterative Lemma. Suppose P0 is real analytic on D0 × O0 with

|P0|r0,s0,h0
≤ ε0

def= αE0r0σ
ν
0 ,

Then for each j ≥ 0 there exists a normal form Nj and a real analytic transformation
F j = F0 �· · ·�Fj−1: Dj × Oj → D0 × O0 in the group G such that H �F j = Nj + Pj with

∣∣Pj

∣∣
rj ,sj ,hj

≤ εj
def= αEjrjσ

ν
j .
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Moreover,
∣∣W̄0(F

j+1 − F j )
∣∣ <· εj

rj h j

on Dj+1 × Oj+1 with the weight matrix W̄0 = diag(r−1
0 Id, σ−1

0 Id, h−1
0 Id) .

c. Proof. Letting F0 = id , there is nothing to do for j = 0. To proceed by induction,
we have to check the assumptions of the kam Step for each j ≥ 0. But (a) is satisfied by
the definition of ηj and the sufficiently small choice of E0 , and (b–c) hold by the definition
of hj and Kj and the choice of their initial values.

We obtain a transformation

Fj : Dj+1 × Oj+1 → Dj × Oj

taking Hj = Nj + Pj into Hj � Fj = Nj+1 + Pj+1 with

∣∣Pj+1

∣∣ <· εj Ej + (
η2

j + K n
j e−Kj σj

)
εj

<· εj Ej = αE2
j rjσ

ν
j <· αη−1

j E2
j rj+1σ

ν
j+1.

Since η−1
j E2

j = Eκ
j = c1−κ Ej+1 , we obtain

∣∣Pj+1

∣∣ ≤ εj+1 by an appropriate choice of c as
required. Thus, the transformation F j+1 = F j �Fj = F0 �· · ·�Fj takes H into Nj+1 + Pj+1

with the proper estimate for Pj+1 .
The estimate of F j requires a bit more, though elementary work. We observe that the

estimates of the kam Step and Cauchy imply

∣∣W̄j (Fj − id)
∣∣ ,

∣∣W̄j (D̄Fj − Id)W̄ −1
j

∣∣ <· max

(
εj

αrjσ
ν
j
,

εj

rj h j

)
<· εj

rj h j

on Dj+1 × Oj+1 , where D̄ denotes the Jacobian with respect to I , θ and ω , and W̄j =
diag(r−1

j Id, σ−1
j Id, h−1

j Id) . We then have

∣∣W̄0(F
j+1 − F j )

∣∣ = ∣∣W̄0(F
j � Fj − F j )

∣∣

≤ ∣∣W̄0 D̄F j W̄ −1
j

∣∣ ∣∣W̄j (Fj − id)
∣∣

<· ∣∣W̄j (Fj − id)
∣∣

<· εj

rj h j

provided we can uniformly bound the first factor in the second row on the domain Dj × Oj .
But by induction we have D̄F j = D̄F0 � · · · � D̄Fj−1 , with the Jacobians evaluated

at different points, which we do not indicate. Since
∣∣W̄i W̄

−1
i+1

∣∣ ≤ 1 for all i , we can use a
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telescoping argument and the inductive estimates for the Fi to obtain

∣∣W̄0 D̄F j W̄ −1
j

∣∣ ≤ ∣∣W̄0 D̄F0 � · · · � Fj−1W̄ −1
j

∣∣

≤ ∣∣W̄0 D̄F0W̄ −1
0

∣∣ ∣∣W̄0W̄ −1
1

∣∣ × · · ·
× ∣∣W̄j−1 D̄Fj−1W̄ −1

j−1

∣∣ ∣∣W̄j−1W̄ −1
j

∣∣

≤
∏

j

(
1 + c1εj

rj h j

)
,

which is uniformly bounded and small, since εj/rj h j converges rapidly to zero.

d. We can now prove Theorem A by applying the Iterative Lemma to H = N + P ,
letting P0 = P and r0 = r , s0 = s . We have h0 ·< ασν

0 ≤ αsν ≤ h by construction and
assumption, and

|P0|r0,s0,h0
≤ |P|r,s,h ≤ ε ≤ γαrs ≤ ε0 = αE0r0σ

ν
0 ,

by fixing the constant γ in Theorem A sufficiently small.
By the estimates of the Iterative Lemma the maps F j converge uniformly on

⋂

j≥0

Dj × Oj = T∗ × �α, T∗ = {0} × {|Im θ | < s/2},

to a map F consisting of a family of embeddings �: T
n × �α → D × T

n and a parameter
transformation ϕ: �α → � , which are real analytic on T

n and uniformly continuous
on �α . Moreover, ∣∣W̄0(F − id)

∣∣ <· ε0

r0h0

uniformly on T∗ × �α by the usual telescoping argument.
From the estimate

∣∣H � F j − Nj

∣∣ <· εj on Dj × Oj we obtain

∣∣Wj (J (D� j )t∇ H � F j − J∇Nj )
∣∣ <· εj

rjσj

on T∗ × Oj with Wj = diag(r−1
j Id, σ−1

j Id) . The symplectic nature of the map � j and the
uniform estimate of W̄0 D̄F j W̄ −1

j above then imply

∣∣X H � F j − D� j ·X N

∣∣ <· εj

rjσj

on T∗ × �α for all j , where X N is the hamiltonian vectorfield of N = 〈ω, I 〉 . Going to
the limit we obtain

X H � F = D�·X N .
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Thus, � is an embedding of the Kronecker torus (Tn, ω) as an invariant torus of the
hamiltonian vectorfield X H at the parameter ϕ(ω) . Moreover, this torus is Lagrangian,
since

�∗υ = lim
j→∞

(� j )∗υ
∣∣

I=0 = lim
j→∞

υ|I=0 = 0

by the symplecticity of the � j .

e. Let us now look at the ω -derivatives of the F j . Since Ej converges to zero at an
exponential rate, we have

εj

rj hl
j

→ 0 for all l ≥ 0 .

Hence, all ω -derivatives of the F j converge uniformly on T∗ × �α , and we could assign
ω -derivatives of any order to the limit map F on the Cantor set �α [24]. Without making
this concept precise, however, we can at least conclude that F is Lipschitz continuous in ω .
Its Lipschitz norm is bounded by the limit of the bounds on the first ω -derivatives of the
F j . The usual Cauchy estimate yields

∣∣W̄0(F − id)
∣∣
L <· ε0

r0h2
0

on T∗ × �α .

f. We finally look at the estimate of F . So far it does not reflect the actual size ε of
the perturbation, since we fixed E0 and thus ε0 independently of ε . But we observe that
everything is still all right if in all the estimates for Pj , Fj and F j , the εj are scaled down
by the linear factor

ε

ε0
= αE0r0σ

ν
0 .

Scaling down our estimates of F by this factor we can finally extract our estimates of �

and ϕ as stated in Theorem A, since ασν
0 ·< h0 . This finishes the proof.

A Some Facts about Analytic Functions

a. First we recall a variant of the Cauchy estimate, which is used over and over. Let
D be an open domain in C

n , let Dr = { z : |z − D| < r } be the neighborhood of radius r
around D , and let F be an analytic function on Dr with bounded sup-norm | f |r . Then

∣∣ fzj

∣∣
r−ρ

≤ 1

ρ
| f |r
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for all 0 < ρ < r and 1 ≤ j ≤ n . This follows immediately from the Cauchy estimate for
one complex variable.

b. Next we give the estimate for the Fourier coefficients of an analytic function v

on T
n used in the proof of Lemma 1. Recall that As denotes the space of all functions on

T
n bounded and analytic in the strip {θ : |Im θ | < s} .

Lemma A.1. If v ∈ As , then v = ∑
k vkei〈k,θ〉 with

|vk | ≤ |v|s e−|k|s

for all k ∈ Z
n .

Proof. The Fourier coefficients vk of v are given by

vk = 1

(2π)n

∫

Tn

v(θ)e−i〈k,θ〉 dθ.

Since the integral of an analytic function over a closed contractible loop in any of the
coordinate planes is zero, and since v is 2π -periodic in each argument also in the complex
neighborhood, the path of integration may be shifted into the complex, so that

vk = 1

(2π)n

∫

Tn

v(θ − iϕ)e−i〈k,θ−iϕ〉 dθ

for any constant real vector ϕ with |ϕ| < s . Choosing ϕ = (s − σ)(e1, . . . , en) with
0 < σ < s and ej = sgn kj , 1 ≤ j ≤ n , we obtain

|vk | ≤ |v|s e−|k|(s−σ)

for all σ > 0. Letting σ → 0 the lemma follows.

We can now also estimate very roughly the remainder, when we truncate the Fourier
series of v at order K to obtain TK v = ∑

|k|≤K vkei〈k,θ〉 .

Lemma A.2. If v ∈ As , then

|v − TK v|s−σ ≤ C K ne−Kσ |v|s , 0 ≤ σ ≤ s,

where the constant C only depends on n .
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Proof. With Lemma A.1,

|v − TK v|s−σ ≤
∑

|k|>K

|vk | e|k|(s−σ)

≤ |v|s
∑

|k|>K

e−|k|σ ≤ |v|s
∑

l>K

4nln−1e−lσ ,

by summing first over all k with |k| = l , whose number is bounded by 4nln−1 . The last
sum is then easily bounded by a constant times K ne−Kσ .

There are much more efficient ways to approximate a periodic function v by trigono-
metric polynomials. The above crude way amounts to multiplying the Fourier transform v̂

of v with a discontinuous cut off function. Instead, one should multiply v̂ with a smooth
cut off function ψK . For instance, one could take ψK (x) = ψ(x/K ) , where ψ is a fixed
function, which is 1 on the ball |x | ≤ 1

2 , 0 outside the ball |x | ≥ 1, and between 0 and 1
otherwise. Transforming back,

(v̂ψK ) ˆ = v ∗ ψ̂K

amounts to a convolution of v with a real analytic approximation of the identity ψ̂K , as
K → ∞ . Such smoothing operators have many interesting properties. For more details,
see for example [28].

c. Wefinally formulate a special version of the implicit function theorem for analytic
maps, which we need to invert the frequency map during the kam Step. Recall that Oh is
an open complex neighborhood of radius h of some subset � of R

n . In the following, | · |
denotes the sup-norm for vectors and maps, and the induced operator-norm for Jacobians.

Lemma A.3. Suppose f is a real analytic map from Oh into C
n . If | f − id| ≤

δ ≤ h/4 on Oh , then f has a real analytic inverse ϕ on Oh/4 . Moreover,

|ϕ − id| , h

4
|Dϕ − Id| ≤ δ

on this domain.

Proof. Let η = h/4. Let u, v be two points in O2η with f (u) = f (v) . Then we
have

u − v = (u − f (u)) − (v − f (v)) ,

hence |u − v| ≤ 2δ ≤ 2η . It follows that the segment (1 − s)u + sv , 0 ≤ s ≤ 1, is strictly
contained in O3η . Along this segment,

θ = max |D f − I | < δ/η ≤ 1
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by Cauchy’s inequality and so

|u − v| ≤ |D f − I | |u − v| ≤ θ |u − v|

by the mean value theorem. It follows that u = v . Thus, f is one-to-one on the domain O2η .
By elementary arguments from degree theory the image of O2η under f covers Oη ,

since | f − id| ≤ δ . So f has a real analytic inverse ϕ on Oη , which clearly satisfies
|ϕ − id| ≤ δ . Finally,

|Dϕ − I |η ≤ ∣∣(D f )−1 − I
∣∣
2η

≤ 1

1 − |D f − I |2η

− 1 ≤ 1

1 − δ/2η
− 1 ≤ δ

η

by applying Cauchy to the domain O2η .

B Lipschitz Functions

Let B ⊂ R
n be a closed set. We prove the basic fact – used in section 2 – that

a Lipschitz continuous function u: B → R can be extended to a Lipschitz continuous
function U : R

n → R without affecting its Lipschitz constant

|u|L,B = sup
x,y∈B
x �=y

|u(x) − u(y)|
|x − y| ,

where on R
n we may take any norm | · | . That is, we have

U |B = u, |U |L,Rn = |u|L,B ,

Incidentally, for this extension B could be any point set.
Indeed, U is given by

U (x) = sup
z∈B

(u(z) − λ |z − x |), x ∈ R
n,

where λ = |u|L,B . By the triangle inequality,

(u(z) − λ |z − y|) ≥ (u(z) − λ |z − x |) − λ |x − y| .

Taking suprema over z we obtain U (y) ≥ U (x) − λ |x − y| , or equivalently

U (x) − U (y) ≤ λ |x − y| .
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Interchanging x and y we obtain

|U (x) − U (y)| ≤ λ |x − y| ,

whence |U |L,Rn ≤ |u|L,B . We leave it to the reader to check that U = u on B .
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