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Introduction to Physical Oceanography
Homework 1 - Solutions

1. Given the trajectories of fluid elements

x � x0e
� αt

y � y0eαt

z � z0

(a) the Lagrangian velocities are found by taking the time derivatives of x
�
t � x0 � � y � t � y0 � and

z
�
t � z0 �

u
�
x0 � t � � ∂x

�
t � x0 �
∂t

� � αx0e
� αt

v
�
y0 � t � � ∂y

�
t � y0 �
∂t

� αy0eαt

w
�
z0 � t � � ∂z

�
t � z0 �
∂t

� 0

Remember that to find the Lagrangian velocity, we are following a fluid parcel which was at
the location

�
x0 � y0 � z0 � at time t � t0.

In order to find the Eulerian velocity field, we need to express the Lagrangian velocity as
function of t and x � y � z. Using the trajectories of the fluid elements, we obtained that

u
�
x � t � � � αx

v
�
y � t � � αy

w
�
z � t � � 0

For the Eulerian velocity, we are asking what is the local velocity at a fixed location
�
x � y � z �

at time t.

(b) The 3rd component of the velocity, w, is zero, we can therefore consider the motion as
being 2D. In order to find the streamlines (curves tangential to the velocity field at a given
time), we can use the following expression derived in class

dy
dx
� v

u
(1)

Using the results from (a), we obtained a differential equation for the streamlines:

dy
dx
��� y

x
(2)

An equation for the streamlines y � y
�
x � is obtained by integrating the previous ODE using

the initial conditions
�
x0 � y0 � such that� y dy

y
��� � x dx

x � yx � c � y � y0x0

x
(3)
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The streamlines are then given by
y � x0y0

x
(4)

A plot of few streamlines is given in Fig. 3.
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Figure 1: Streamlines plotted in the x � y plane where the arrows are determined by the Eulerian
velocity field.

2. Challenge problem: In this problem, the velocity field is given and we are left with finding
the trajectories of the fluid elements. The simplest way to solve this coupled system of 1st
order linear ODEs will be linear algebra.

The velocities are defined by u � ∂x
∂t , v � ∂y

∂t and w � ∂z
∂t , such that the system is given by

∂x
∂t
� � µx � Ωy

∂y
∂t
� µy 	 Ωx

∂z
∂t
� 0

The solution to the equation ∂z 
 ∂t � 0 using the initial conditions is simply given by z � z0.
Since the 3rd equation which was uncoupled has been solved, we can rewrite the 2D system
in matrix form such that ∂

∂t �x � A �x, where the matrix A is such that

A �� � µ � Ω
Ω µ ���

and the vector �x is given by �x � � x � y � .
To solve the system, one needs to look for the eigenvalues λ and corresponding eigenvectors�a of the system. The general solution is expressed as�x � α �a1eλ1t 	 β �a2eλ2t (5)

By solving the characteristic polynomial det
�
A � λI � � 0, we found that the eigenvalues are

given λ ����� µ2 � Ω2.
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The eigenvectors, by definition, satisfy A �a � λ �a. Some algebra leads to

�a1
����� � µ2 � Ω2 	 µ

Ω
� 1 � (6)

and �a2
� � � µ2 � Ω2 � µ

Ω
� 1 � (7)

The trajectories x
�
t � and y

�
t � are given by

x � α
��� µ2 � Ω2 � µ

Ω
e
��� µ2 � Ω2t 	 β

� µ2 � Ω2 � µ
Ω

e
� µ2 � Ω2t

y � αe
� � µ2 � Ω2t 	 βe

� µ2 � Ω2t

Using the initial conditions, we obtain the coefficients α and β such that

α � � Ωx0 	 y0 � � µ2 � Ω2 � µ �
2 � µ2 � Ω2

β � Ωx0 	 y0 � � µ2 � Ω2 	 µ �
2 � µ2 � Ω2

Two different behaviors of the trajectories will emerge depending on the relative values of Ω
and µ.

(a) Case 1: Ω � µ, the eigenvalues are purely imaginary, λ ��� i � Ω2 � µ2. The solutions
for x and y are then oscillatory. The frequency of the oscillations in both x and y is
given by ω � � Ω2 � µ2.

(b) Case 2: Ω � µ, the eigenvalues are real, λ � � � µ2 � Ω2. The solutions are growing
exponentially.

Some plots below are showing the trajectories x and y as function of time for case 1 and 2.
In addition, I added a plot of the streamlines for both cases. In case 1, the streamlines are
ellipses (since the frequency of oscillations in both directions are equal) while in case 2 they
are hyperbolas (due to exponent form of the solution).
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Case 1: Ω > µ 
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Case 2: Ω < µ 
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Figure 2: Fluid trajectories x and y as function of time for the two different cases Ω � µ and Ω � µ.
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Figure 3: Streamlines plotted in the x � y plane for the two different cases where Ω � µ and Ω � µ.
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