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Introduction to Physical Oceanography
Homework 5 - Solutions

1. Inertial oscillations with bottom friction (non-selective scale): The governing equations for
this problem are

∂u
∂t

− f v = −Ju

∂v
∂t

+ f u = −Jv

This system can be written as
∂~u
∂t

= A~u (1)

where ~u = (u,v) and

A =

(

−J f
− f −J

)

.

I will solve the system a little bit more rigorously than what was done in class, but we should
all get the same answer at the end! The general solution to this equation is given by

~u = α~a1eλ1t +β~a2eλ2t (2)

We can find the eigenvalues λ1,2 of the system by calculating the determinant of the matrix
A−λI. This leads to

λ2 +2λJ +(J2 + f 2) = 0 ⇒ λ1,2 = −J ± i f (3)

(This is equivalent to the coefficient a found in class). We can look for the eigenvectors ~a1
and ~a2 corresponding to the eigenvalues λ1 = −J + i f and λ2 = −J − i f respectively. The
eigenvectors satisfies A~ai = λi~ai. I found ~a1 = (1, i) and ~a2 = (1,−i). We can write the
velocity components as

u = αe(−J+i f )t +βe(−J−i f )t

v = iαe(−J+i f )t
− iβe(−J−i f )t

The coefficients α and β can be found from the initial conditions, I will assume that u(t =
0) = u0 and v(t = 0) = 0 leading to

u0 = α+β
0 = iα− iβ

such that α = β = u0/2.

u = αe(−J+i f )t +βe(−J−i f )t
⇒ u = u0e−Jtcos( f t)

v = iαe(−J+i f )t
− iβe(−J−i f )t

⇒ v = −u0e−Jtsin( f t)
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(You recognize the u velocity found in class). The velocity is oscillating with a frequency
equal to the Coriolis parameter as expected from inertial oscillations but also decays expo-
nentially in time due to the addition of bottom friction. The decay of the velocity depends
only on the friction coefficient (non-selective scale friction). Figure 1(a) and (c) show that
the velocity oscillates and decays as function of time. As t → ∞, u,v → 0.

Now that we have found the velocities, we can look for the Lagrangian trajectories x(t;x0)
and y(t;y0) of a fluid parcel which was at the location (x0,y0) at t = 0. We need to integrate
the velocity:

Z x

x0

dx =
Z t

t=0
u0e−Jtcos( f t)dt

⇒ x = x0 +
u0

f 2 + J2

[

J + e−Jt (−Jcos( f t)+ f sin( f t))
]

Z y

y0

dy = −

Z t

t=0
u0e−Jtsin( f t)

⇒ y = y0 +
u0

f 2 + J2

[

− f + e−Jt ( f cos( f t)+ Jsin( f t))
]

For the trajectories of a fluid parcel, we see in figure 1(b) and (d) that the trajectories oscillate
and decay too. But as t → ∞, we have

x → x0 +
u0J

J2 + f 2

y → y0 −
u0 f

J2 + f 2
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Figure 1: (a) u(t) as function of v(t), (b) the trajectory of a fluid parcel in the x-y plane, (c) u and v
as function of time, (d) x and y as function of time.
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2. Coastal upwelling: Strong seasonal winds are displacing warm surface water away from the
coast leaving a space that is filled in by water coming from the deep ocean. This rise of water
is called upwelling. The water upwelling is cold, rich in nutrient and comes from below the
thermocline.

Example 1: Californian coast (see figure 2). In a strip near the coast, we see that the sea
surface temperature is colder than away from the coast. We conclude that this region is an
upwelling zone. If we look at satellite pictures, we will see that this region is characterized
by greenish color due to the chlorophyll. We expect the wind to have a strong southward
component, causing a net Ekman transport to the right of the wind (in the Northern Hemi-
sphere), such that the water transport is westward (away from the coast) and as a result we
have upwelling of cold water rich in nutrient.

Figure 2: Sea surface temperature along the central Californian coast

Example 2: Coast of Senegal (see figure 2). The upwelling mechanism is the same than the
one described above.

3. Scale selective friction: The velocity at t = 0 is given by

u(t = 0,x,y) = U cos(kx+ ly); v(t = 0,x,y) = −U cos(lx+ ky).

and the governing equations are simply

ut = Kh(uxx +uyy); vt = Kh(vxx + vyy)

(a) The balance in these equations is represented by the linearized acceleration (where
Du/Dt ≈ ∂u/∂t, here we have neglected the nonlinear advective terms such that the
acceleration is now equal to the local rate of change) and a scale selective friction.

(b) The velocity field at t = 0 is shown in figure 4. I have plotted the contours of each of
velocity component at t = 0 and the vector field using quiver.

(c) We wish to find u and v as function of time. Because of friction, we expect the am-
plitude of the velocity to decrease exponentially with time while the oscillations in the
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Figure 3: Sea surface temperature along the coast of Senegal
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Figure 4: Contours of u0 and v0, and velocity field.
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x− y plane are not affected. We can guess solutions of the form u = Aeγ1tcos(kx + ly)
and v = Beγ2tcos(lx+ ky).

ut = Kh(uxx +uyy) ⇒ γ1 = Kh(−k2
− l2) ⇒ γ1 = −Kh(k2 + l2)

vt = Kh(vxx + vyy) ⇒ γ2 = Kh(−l2
− k2) ⇒ γ2 = −Kh(l2 + k2)

We have γ1 = γ2 = −Kh(k2 + l2) = γ, such that

u = Ae−Kh(k2+l2)tcos(kx+ ly)

v = Be−Kh(k2+l2)tcos(lx+ ky)

Using the initial conditions, we can find A and B such that

u(t = 0) = Acos(kx+ ly) = Ucos(kx+ ly) ⇒ A = U
v(t = 0) = Bcos(lx+ ky) = −Ucos(lx+ ky) ⇒ B = −U

Therefore the velocities as function of time are given by

u = Ue−Kh(k2+l2)tcos(kx+ ly)

v = −Ue−Kh(k2+l2)tcos(lx+ ky)

(d) The parameters k and l are the wavenumber. The wavenumber is proportional to the
number of peaks per unit distance, and then inversely proportional to the wavelength
(the wavelength is basically it is the distance between 2 crests or 2 troughs of the wave
in a given direction).
The corresponding wavelength for k and l will be

λk =
2π
k

λl =
2π
l

For this specific problem, we have λk = 10km and λl = 40km. For the x-component of
the velocity u, λk is the wavelength in the x-direction while λl is the wavelength in the
y-direction. For the y-component of the velocity v, the situation is opposite, λk is the
wavelength in the y-direction and λl is the wavelength in the x-direction.

(e) Since we found that the solution decays exponentially, where γ = −Kh(k2 + l2), the
decay time scale is given by

τ =
∣

∣

∣

1
γ

∣

∣

∣
=

1
Kh(k2 + l2)

(4)

In this case, the decay of the velocity depends on the friction coefficient Kh and on
the scale of the problem (given by k and l). Increasing the friction coefficient and the
wavenumber (equivalent to decreasing the wavelength) results in increasing the decay
time scale (the decay is faster).
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4. Challenge problem: Inertial oscillations in presence of bottom friction and pressure gradient.
Consider the following equations

ut − f v = −
px

ρ0
− Ju

vt + f u = −Jv

assuming that the pressure gradient px is constant in space and time. For simplicity, I will
define C = −

px
ρ0

since it is just a constant.

Using the x-momentum equation, we can write v as function of u, such that

v = −
C
f

+
J
f

u+
1
f

ut (5)

and plugging v into the y-momentum equation, we obtain a 2nd order ODE:

utt +2Jut +( f 2 + J2)u = CJ (6)

The solution to this equation is the homogeneous solution (sine and cosine) plus a particular
solution (up = CJ/(J2 + f 2)) and is given by

u =
CJ

J2 + f 2 +C1e−Jtsin( f t)+C2e−Jtcos( f t) (7)

The coefficients C1 and C2 depend on the initial conditions. By using u(t = 0) = u0, we get

u =
CJ

J2 + f 2 +C1e−Jtsin( f t)+

(

u0 −
CJ

J2 + f 2

)

e−Jtcos( f t) (8)

Now that we have u, we can find v using Eq. 5, I found

v = −
C f

J2 + f 2 +

(

CJ
J2 + f 2 −u0

)

e−Jt sin( f t)+C1e−Jtcos( f t) (9)

Using the initial condition for v where v(t = 0) = 0, I found that C1 = C f/(J2 + f 2), such
that our solutions are

u =
CJ

J2 + f 2 +
C f

J2 + f 2 e−Jtsin( f t)+

(

u0 −
CJ

J2 + f 2

)

e−Jtcos( f t)

v = −
C f

J2 + f 2 +

(

CJ
J2 + f 2 −u0

)

e−Jtsin( f t)+
C f

J2 + f 2 e−Jtcos( f t)

Recall that C = −px/ρ0, if we set C = 0, we recover the limit of inertial oscillations in
presence of bottom friction from question 1.

The velocity is oscillating and decaying as in question 1 but due to the presence of a constant
pressure gradient in the x-direction, the steady state achieved by the velocity is not zero! (see
figure 5). As t → ∞, the velocity tends to

u = −
Jpx

ρ0 (J2 + f 2)

v =
f px

ρ0 (J2 + f 2)

6



−1 −0.5 0 0.5
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

u
v

(a) u−v

−4 −3 −2 −1 0 1

x 104

0

0.5

1

1.5

2

2.5

3

3.5
x 105

x

y

(b) Trajectories in the x−y plane

0 1 2 3 4

x 105

−1

−0.5

0

0.5

1

1.5

t

v

(c) Velocity as fct of time

0 1 2 3 4

x 105

−0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 105

t

y

(d) Position as fct of time

x(t)
y(t)

u(t)
v(t)

Figure 5: (a) u(t) as function of v(t), (b) the trajectory of a fluid parcel in the x-y plane, (c) u and v
as function of time, (d) x and y as function of time.

To better understand this problem, I have also calculated the Lagrangian trajectories and
found that

x =
−px

ρ0(J2 + f 2)

[

Jt +

(

J2
− f 2

J2 + f 2 +
u0Jρ0

px

)

e−Jtcos( f t)+

(

−2J f
J2 + f 2 −

u0 f ρ0

px

)

e−Jtsin( f t)
]

y =
−px

ρ0(J2 + f 2)

[

− f t +

(

−J2 + f 2

J2 + f 2 −
u0Jρ0

px

)

e−Jt sin( f t)−
(

u0 f px

ρ0
+

−2J f
J2 + f 2

)

e−Jtcos( f t)
]

Due to the constant pressure gradient, in addition to a decaying oscillation, the trajectories
also have a linear trend. Physically, we can compare the constant pressure gradient to the
slope of an inclined plane. If a ball starts moving on this inclined planed, due to Coriolis it
will be deflected to the right. Due to friction, the ball will never reach back to the top of the
inclined plane. It will continue to oscillate but the amplitude of the oscillation will decrease
with time due to friction (see figure 5).
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