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Introduction to Physical Oceanography
Homework 6 - Solutions

1. Buoyancy oscillations with friction: the expression equivalent to
linearized vertical acceleration = buoyancy + vertical (non-scale selective) friction

is given by
∂w
∂t

= −ρ0 −ρ
ρ0

g− Jw (1)

where ρ0 is the density of the environment and ρ is the density of a fluid parcel.

For a small vertical displacement δz of a parcel of fluid, the density ρ using a Taylor expan-
sion around its rest position at z = 0 is equal to

ρ(z) = ρ0 +
dρ
dz

δz = ρ0

(

1+
1
ρ0

dρ
dz

δz
)

(2)

By definition, the velocity is given by

w =
δz
δt

(3)

leading to
δ2z
δt2 =

g
ρ0

dρ
dz

δz− J
δz
δt

(4)

or
δ2z
δt2 + J

δz
δt

− g
ρ0

dρ
dz

δz = 0 ⇒ δ2z
δt2 + J

δz
δt

+N2δz = 0 (5)

such that N2 = −(g/ρ0)dρ/dz where N is the Brunt-Vaisala frequency (note: we assumed
that we are in a stably stratified ocean therefore dρ/dz < 0 and N2 > 0). We expect the
solution to this 2nd ODE to be of the form δz = Aeλt such that

λ2 + Jλ+N2 = 0 ⇒ λ = −J
2
±
√

J2

4
−N2 (6)

The solution is then given by

δz = Ae0.5(−J+
√

J2−4N2)t +Be0.5(−J−
√

J2−4N2)t (7)

The coefficients A and B can be determined from the initial conditions. Assuming that δz(t =
0) = δz0 and δz/δt|t=0 = 0, we find that

A =
δz0

2

(

1+
J√

J2 −4N2

)

B =
δz0

2

(

1− J√
J2 −4N2

)
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The solution is

δz =
δz0

2
e−0.5Jt

[(

1+
J√

J2 −4N2

)

e0.5
√

J2−4N2t +

(

1− J√
J2 −4N2

)

e−0.5
√

J2−4N2t
]

(8)

Two cases arise from this solution

• If J2 > 4N2 (the argument under the square root is positive), then there are no os-
cillations. The friction coefficient is larger than N (see Fig. 1 case 1). In this case,
the friction is so large that the fluid parcel returns to its equilibrium position without
oscillating.

• If J2 < 4N2 (the argument under the square root is negative leading to an imaginary
number). We can write

J2

4
−N2 = i2

(

N2 − J2

4

)

and the solution is now

δz = δz0e−0.5Jt

[

cos

(
√

N2 − J2

4
t

)

+
J√

4N2 − J2
sin

(
√

N2 − J2

4
t

)]

(9)

In this case, the parcel oscillates around its equilibrium position and the amplitude of
the oscillations decays in time (see Fig. 1 case 2). The frequency of the oscillations is

now equal to the Brunt-Vaisala frequency but to
√

N2 − J2

4 .

How do we know if the parcel of fluid will be oscillating before decaying? Let’s compare
the values of N and J/2 in the ocean.

N2 = − g
ρ0

dρ
dz

= − 9.81
1026

−3
5000

≈ 5.7 ·10−6s−2 ⇒ N ≈ 0.0024s−1

Friction in the ocean is roughly taken to be of the order J = O(10−3,10−4). Therefore, both
cases described above are theoretically possible.

Note: this problem is equivalent to a damped harmonic oscillator: for example, an object
attached to a spring assuming that there is friction between the table and the object.

2. Surface Ekman Spiral: Consider the balance of Coriolis force and vertical friction:

− f v = Avuzz (10)

f u = Avvzz (11)

(a) We wish to find a single equation for u. First we take ∂2/∂z2 of eq. 10

− f vzz = Avuzzzz ⇒ vzz = −Av

f
uzzzz (12)

Substitute vzz obtained above into eq. 11

f u = −Av
Av

f
uzzzz ⇒ uzzzz +

f 2

A2
v

u = 0. (13)
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Figure 1: Displacement δz and vertical velocity δz/δt for 2 different cases: 1. J/2 = 4 ∗ 10−3 >
N = 0.0024, and 2. J/2 = 10−4 > N = 0.0024.

(b) We can assume that the solution is of the form u = eaz such that

a4 +
f 2

A2
v

= 0 ⇒ a = ±
√

± i f
Av

(14)

Using i = eiπ/2, i±1/2 = e±iπ/4 = 1/
√

2± i/
√

2, we get

a1 = (1+ i)

√

f
2Av

; a2 = (1− i)

√

f
2Av

; a3 = −(1+ i)

√

f
2Av

; a4 = −(1− i)

√

f
2Av

(c) The solution for u(z) is given by a linear combination of the four exponents found
above such that

u(z) = b1eγ(1+i)z +b2eγ(1−i)z +b3e−γ(1+i)z +b4e−γ(1−i)z (15)

where γ =
√

f/2Av and the coefficients b1,2,3,4 are defined from the boundary condi-
tions. Away from the surface, we expected the solution to decay exponentially: since
the forcing is applied at z = 0 and will decay with depth, as z→−∞ the solution should
be bounded. Therefore we require b3 = b4 = 0, and we are left with

u(z) = b1eγ(1+i)z +b2eγ(1−i)z (16)

(d) We can now find v(z) such that

− f v = Avuzz ⇒ v = −i
(

a1eγ(1+i)z −a2eγ(1−i)z
)

(17)
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Using the boundary conditions u(z = 0) = 1 and v(z = 0) = 0, we obtain

b1 +b2 = 1; b1 = b2 ⇒ b1 = b2 =
1
2

(18)

such that

u(z) = eγzcos(γz)
v(z) = eγzsin(γz)

where γ =
√

f/2Av.

(e) From fig. 2, we see that our solution describes a spiral, in 3D we can see the decay and
rotation of the velocity vector.

(f) The decay scale of the velocity (called also the Ekman depth) is given by

δE =
1
γ

=

√

2Av

f
(19)

Note that the Ekman depth depends on the Coriolis parameter and on the friction coef-
ficient. The Ekman depth increases with increasing friction (the stronger friction will
penetrate deeper into the Ekman layer) and with decreasing latitude (for the same fric-
tion, the Ekman layer thickness will be larger near the equator than at higher latitudes).
Using f = 2Ωsin(45◦N)≈ 1.0324 ·10−4sec−1 and Av = 100cm2/sec, the Ekman depth
is estimated to be δE ≈ 14m.

3. Review of equations

(a) 3D momentum equation
Horizontal momentum equations:

∂~uH
∂t +(~uH ·∇H)~uH +w∂~uH

∂z + f k̂×~uH = − 1
ρ∇H p +Ah∇2

H~uH +Az
∂2~uH
∂z2 −J~uH

hm1 hm2 hm3 hm4 hm5 hm6 hm7 hm8

where horizontal velocity vector is given by~uH = (u,v), the 2D operator ∇H = ( ∂
∂x ,

∂
∂y).

Vertical momentum equation:

∂w
∂t +(~uH ·∇H)w +w∂w

∂z = −g ρ
ρ0

− 1
ρ0

∂p
∂z +Ah∇2

Hw +Az
∂2w
∂z2 −Jw

vm1 vm2 vm3 vm4 vm5 vm6 vm7 vm8

(b) Continuity equation for an incompressible fluid

∇H ·~uH +∂w
∂z = 0

c1 c2

Temperature equation

∂T
∂t +(~uH ·∇H)T +w∂T

∂z = κh∇2
HT+ κv

∂2T
∂z2 + Hair−sea

t1 t2 t3 t4 t5 t6
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Figure 2: Ekman spiral

(c) Physical Meaning:
Horizontal momentum equation: hm1: local rate of change of horizontal velocity;
hm2,3: horizontal and vertical advection of horizontal velocity; hm4: Coriolis force ;
hm5: horizontal pressure gradient; hm6,7: scale selective friction; hm8: bottom friction
Vertical momentum equation: vm1: local rate of change of vertical velocity; vm2,3:
horizontal and vertical advection of vertical velocity; vm4: gravity; vm5: vertical pres-
sure gradient; vm6,7: scale selective friction; vm8: bottom friction
Continuity equation: c1: horizontal divergence; c2: vertical divergence
Temperature equation: t1: local rate of change of temperature; t2,3: horizontal and
vertical advection of temperature; t4,5: horizontal and vertical diffusion of temperature;
t6: air-sea heat flux

Some of the important phenomena described in class
geostrophy: hm4 ≈ hm5
hydrostatic balance: vm4 ≈ vm5
inertial oscillations: hm1 ≈ hm4
buoyancy oscillations: vm1 ≈ vm4
Ekman layer: hm4 ≈ hm7
abyssal recipes: t3 ≈ t5

(d) We wrote 4 equations: horizontal momentum equation, vertical momentum equation,
continuity equation and temperature equation. Since the horizontal momentum equa-
tion is in a vector form for~uH = (u,v), this equation is equivalent to 2 scalar equations.
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Therefore, we have 5 scalar equations.
We have 6 unknowns which are: u, v, w, p, ρ, T , and only 5 equations. The missing
equation will be the equation of state given by

ρ = ρ(T,S, p) (20)

and S is given by the salinity equation (similar to the heat equation).
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