Introduction to Physical Oceanography

Homework 6 - Solutions

1. Buoyancy oscillations with friction: the expression equivalent to
linearized vertical acceleration = buoyancy + vertical (non-scale selective) friction is given by

$$
\begin{equation*}
\frac{\partial w}{\partial t}=-\frac{\rho_{0}-\rho}{\rho_{0}} g-J w \tag{1}
\end{equation*}
$$

where ρ_{0} is the density of the environment and ρ is the density of a fluid parcel.
For a small vertical displacement δz of a parcel of fluid, the density ρ using a Taylor expansion around its rest position at $z=0$ is equal to

$$
\begin{equation*}
\rho(z)=\rho_{0}+\frac{d \rho}{d z} \delta z=\rho_{0}\left(1+\frac{1}{\rho_{0}} \frac{d \rho}{d z} \delta z\right) \tag{2}
\end{equation*}
$$

By definition, the velocity is given by

$$
\begin{equation*}
w=\frac{\delta z}{\delta t} \tag{3}
\end{equation*}
$$

leading to

$$
\begin{equation*}
\frac{\delta^{2} z}{\delta t^{2}}=\frac{g}{\rho_{0}} \frac{d \rho}{d z} \delta z-J \frac{\delta z}{\delta t} \tag{4}
\end{equation*}
$$

or

$$
\begin{equation*}
\frac{\delta^{2} z}{\delta t^{2}}+J \frac{\delta z}{\delta t}-\frac{g}{\rho_{0}} \frac{d \rho}{d z} \delta z=0 \Rightarrow \frac{\delta^{2} z}{\delta t^{2}}+J \frac{\delta z}{\delta t}+N^{2} \delta z=0 \tag{5}
\end{equation*}
$$

such that $N^{2}=-\left(g / \rho_{0}\right) d \rho / d z$ where N is the Brunt-Vaisala frequency (note: we assumed that we are in a stably stratified ocean therefore $d \rho / d z<0$ and $N^{2}>0$). We expect the solution to this 2 nd ODE to be of the form $\delta z=A e^{\lambda t}$ such that

$$
\begin{equation*}
\lambda^{2}+J \lambda+N^{2}=0 \Rightarrow \lambda=-\frac{J}{2} \pm \sqrt{\frac{J^{2}}{4}-N^{2}} \tag{6}
\end{equation*}
$$

The solution is then given by

$$
\begin{equation*}
\delta z=A e^{0.5\left(-J+\sqrt{J^{2}-4 N^{2}}\right) t}+B e^{0.5\left(-J-\sqrt{J^{2}-4 N^{2}}\right) t} \tag{7}
\end{equation*}
$$

The coefficients A and B can be determined from the initial conditions. Assuming that $\delta z(t=$ $0)=\delta z_{0}$ and $\delta z /\left.\delta t\right|_{t=0}=0$, we find that

$$
\begin{aligned}
A & =\frac{\delta z_{0}}{2}\left(1+\frac{J}{\sqrt{J^{2}-4 N^{2}}}\right) \\
B & =\frac{\delta z_{0}}{2}\left(1-\frac{J}{\sqrt{J^{2}-4 N^{2}}}\right)
\end{aligned}
$$

The solution is

$$
\begin{equation*}
\delta z=\frac{\delta z_{0}}{2} e^{-0.5 J t}\left[\left(1+\frac{J}{\sqrt{J^{2}-4 N^{2}}}\right) e^{0.5 \sqrt{J^{2}-4 N^{2}} t}+\left(1-\frac{J}{\sqrt{J^{2}-4 N^{2}}}\right) e^{-0.5 \sqrt{J^{2}-4 N^{2}} t}\right] \tag{8}
\end{equation*}
$$

Two cases arise from this solution

- If $J^{2}>4 N^{2}$ (the argument under the square root is positive), then there are no oscillations. The friction coefficient is larger than N (see Fig. 1 case 1). In this case, the friction is so large that the fluid parcel returns to its equilibrium position without oscillating.
- If $J^{2}<4 N^{2}$ (the argument under the square root is negative leading to an imaginary number). We can write

$$
\frac{J^{2}}{4}-N^{2}=i^{2}\left(N^{2}-\frac{J^{2}}{4}\right)
$$

and the solution is now

$$
\begin{equation*}
\delta z=\delta z_{0} e^{-0.5 J t}\left[\cos \left(\sqrt{N^{2}-\frac{J^{2}}{4} t}\right)+\frac{J}{\sqrt{4 N^{2}-J^{2}}} \sin \left(\sqrt{N^{2}-\frac{J^{2}}{4}} t\right)\right] \tag{9}
\end{equation*}
$$

In this case, the parcel oscillates around its equilibrium position and the amplitude of the oscillations decays in time (see Fig. 1 case 2). The frequency of the oscillations is now equal to the Brunt-Vaisala frequency but to $\sqrt{N^{2}-\frac{J^{2}}{4}}$.
How do we know if the parcel of fluid will be oscillating before decaying? Let's compare the values of N and $J / 2$ in the ocean.

$$
N^{2}=-\frac{g}{\rho_{0}} \frac{d \rho}{d z}=-\frac{9.81}{1026} \frac{-3}{5000} \approx 5.7 \cdot 10^{-6} s^{-2} \Rightarrow N \approx 0.0024 s^{-1}
$$

Friction in the ocean is roughly taken to be of the order $J=O\left(10^{-3}, 10^{-4}\right)$. Therefore, both cases described above are theoretically possible.
Note: this problem is equivalent to a damped harmonic oscillator: for example, an object attached to a spring assuming that there is friction between the table and the object.
2. Surface Ekman Spiral: Consider the balance of Coriolis force and vertical friction:

$$
\begin{gather*}
-f v=A_{v} u_{z z} \tag{10}\\
f u=A_{v} v_{z z} \tag{11}
\end{gather*}
$$

(a) We wish to find a single equation for u. First we take $\partial^{2} / \partial z^{2}$ of eq. 10

$$
\begin{equation*}
-f v_{z z}=A_{v} u_{z z z z} \Rightarrow v_{z z}=-\frac{A_{v}}{f} u_{z z z z} \tag{12}
\end{equation*}
$$

Substitute $v_{z z}$ obtained above into eq. 11

$$
\begin{equation*}
f u=-A_{v} \frac{A_{v}}{f} u_{z z z z} \Rightarrow u_{z z z z}+\frac{f^{2}}{A_{v}^{2}} u=0 . \tag{13}
\end{equation*}
$$

Case 1: $\mathrm{N}<\mathrm{J} / 2$

Case 2: $\mathrm{N}>\mathrm{J} / 2$

Figure 1: Displacement δz and vertical velocity $\delta z / \delta t$ for 2 different cases: $1 . J / 2=4 * 10^{-3}>$ $N=0.0024$, and 2. $J / 2=10^{-4}>N=0.0024$.
(b) We can assume that the solution is of the form $u=e^{a z}$ such that

$$
\begin{equation*}
a^{4}+\frac{f^{2}}{A_{v}^{2}}=0 \Rightarrow a= \pm \sqrt{ \pm \frac{i f}{A_{v}}} \tag{14}
\end{equation*}
$$

Using $i=e^{i \pi / 2}, i^{ \pm 1 / 2}=e^{ \pm i \pi / 4}=1 / \sqrt{2} \pm i / \sqrt{2}$, we get

$$
a_{1}=(1+i) \sqrt{\frac{f}{2 A_{v}}} ; a_{2}=(1-i) \sqrt{\frac{f}{2 A_{v}}} ; a_{3}=-(1+i) \sqrt{\frac{f}{2 A_{v}}} ; a_{4}=-(1-i) \sqrt{\frac{f}{2 A_{v}}}
$$

(c) The solution for $u(z)$ is given by a linear combination of the four exponents found above such that

$$
\begin{equation*}
u(z)=b_{1} e^{\gamma(1+i) z}+b_{2} e^{\gamma(1-i) z}+b_{3} e^{-\gamma(1+i) z}+b_{4} e^{-\gamma(1-i) z} \tag{15}
\end{equation*}
$$

where $\gamma=\sqrt{f / 2 A_{v}}$ and the coefficients $b_{1,2,3,4}$ are defined from the boundary conditions. Away from the surface, we expected the solution to decay exponentially: since the forcing is applied at $z=0$ and will decay with depth, as $z \rightarrow-\infty$ the solution should be bounded. Therefore we require $b_{3}=b_{4}=0$, and we are left with

$$
\begin{equation*}
u(z)=b_{1} e^{\gamma(1+i) z}+b_{2} e^{\gamma(1-i) z} \tag{16}
\end{equation*}
$$

(d) We can now find $v(z)$ such that

$$
\begin{equation*}
-f v=A_{v} u_{z z} \Rightarrow v=-i\left(a_{1} e^{\gamma(1+i) z}-a_{2} e^{\gamma(1-i) z}\right) \tag{17}
\end{equation*}
$$

Using the boundary conditions $u(z=0)=1$ and $v(z=0)=0$, we obtain

$$
\begin{equation*}
b_{1}+b_{2}=1 ; b_{1}=b_{2} \Rightarrow b_{1}=b_{2}=\frac{1}{2} \tag{18}
\end{equation*}
$$

such that

$$
\begin{aligned}
u(z) & =e^{\gamma z} \cos (\gamma z) \\
v(z) & =e^{\gamma z} \sin (\gamma z)
\end{aligned}
$$

where $\gamma=\sqrt{f / 2 A_{v}}$.
(e) From fig. 2, we see that our solution describes a spiral, in 3D we can see the decay and rotation of the velocity vector.
(f) The decay scale of the velocity (called also the Ekman depth) is given by

$$
\begin{equation*}
\delta_{E}=\frac{1}{\gamma}=\sqrt{\frac{2 A_{v}}{f}} \tag{19}
\end{equation*}
$$

Note that the Ekman depth depends on the Coriolis parameter and on the friction coefficient. The Ekman depth increases with increasing friction (the stronger friction will penetrate deeper into the Ekman layer) and with decreasing latitude (for the same friction, the Ekman layer thickness will be larger near the equator than at higher latitudes). Using $f=2 \Omega \sin \left(45^{\circ} N\right) \approx 1.0324 \cdot 10^{-4} \mathrm{sec}^{-1}$ and $A_{v}=100 \mathrm{~cm}^{2} / \mathrm{sec}$, the Ekman depth is estimated to be $\delta_{E} \approx 14 m$.
3. Review of equations
(a) 3D momentum equation

Horizontal momentum equations:

$$
\begin{array}{cccccccc}
\frac{\partial \vec{u}_{H}}{\partial t} & +\left(\vec{u}_{H} \cdot \nabla_{H}\right) \vec{u}_{H} & +w \frac{\partial \vec{u}_{H}}{\partial z} & +f \hat{k} \times \vec{u}_{H}= & -\frac{1}{\rho} \nabla_{H} p & +A_{h} \nabla_{H}^{2} \vec{u}_{H} & +A_{z} \frac{\partial^{2} \vec{u}_{H}}{\partial z^{2}} & -J \vec{u}_{H} \\
h m_{1} & h m_{2} & h m_{3} & h m_{4} & h m_{5} & h m_{6} & h m_{7} & h m_{8}
\end{array}
$$

where horizontal velocity vector is given by $\vec{u}_{H}=(u, v)$, the 2 D operator $\nabla_{H}=\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)$.
Vertical momentum equation:

$$
\begin{array}{ccccccc}
\frac{\partial w}{\partial t} & +\left(\vec{u}_{H} \cdot \nabla_{H}\right) w & +w \frac{\partial w}{\partial z}= & -g \frac{\rho}{\rho_{0}} & -\frac{1}{\rho_{0}} \frac{\partial p}{\partial z} & +A_{h} \nabla_{H}^{2} w & +A_{z} \frac{\partial^{2} w}{\partial z^{2}} \\
v m_{1} & v m_{2} & v m_{3} & v m_{4} & v m_{5} & v m_{6} & v m_{7}
\end{array}
$$

(b) Continuity equation for an incompressible fluid

$$
\begin{array}{cc}
\nabla_{H} \cdot \vec{u}_{H} & +\frac{\partial w}{\partial z}=0 \\
c_{1} & c_{2}
\end{array}
$$

Temperature equation

$$
\begin{array}{cccccc}
\frac{\partial T}{\partial t} & +\left(\vec{u}_{H} \cdot \nabla_{H}\right) T & +w \frac{\partial T}{\partial z}= & \kappa_{h} \nabla_{H}^{2} T+ & \kappa_{v} \frac{\partial^{2} T}{\partial z^{2}}+ & H^{\text {air-sea }} \\
t_{1} & t_{2} & t_{3} & t_{4} & t_{5} & t_{6}
\end{array}
$$

Figure 2: Ekman spiral
(c) Physical Meaning:

Horizontal momentum equation: $h m_{1}$: local rate of change of horizontal velocity; $h m_{2,3}$: horizontal and vertical advection of horizontal velocity; $h m_{4}$: Coriolis force ; $h m_{5}$: horizontal pressure gradient; $h m_{6,7}$: scale selective friction; $h m_{8}$: bottom friction Vertical momentum equation: $v m_{1}$: local rate of change of vertical velocity; $v m_{2,3}$: horizontal and vertical advection of vertical velocity; $v m_{4}$: gravity; $v m_{5}$: vertical pressure gradient; $v m_{6,7}$: scale selective friction; $v m_{8}$: bottom friction
Continuity equation: c_{1} : horizontal divergence; c_{2} : vertical divergence
Temperature equation: t_{1} : local rate of change of temperature; $t_{2,3}$: horizontal and vertical advection of temperature; $t_{4,5}$: horizontal and vertical diffusion of temperature; t_{6} : air-sea heat flux

Some of the important phenomena described in class
geostrophy: $h m_{4} \approx h m_{5}$
hydrostatic balance: $v m_{4} \approx v m_{5}$
inertial oscillations: $h m_{1} \approx h m_{4}$
buoyancy oscillations: $v m_{1} \approx v m_{4}$
Ekman layer: $h m_{4} \approx h m_{7}$
abyssal recipes: $t_{3} \approx t_{5}$
(d) We wrote 4 equations: horizontal momentum equation, vertical momentum equation, continuity equation and temperature equation. Since the horizontal momentum equation is in a vector form for $\vec{u}_{H}=(u, v)$, this equation is equivalent to 2 scalar equations.

Therefore, we have 5 scalar equations.
We have 6 unknowns which are: u, v, w, p, ρ, T, and only 5 equations. The missing equation will be the equation of state given by

$$
\begin{equation*}
\rho=\rho(T, S, p) \tag{20}
\end{equation*}
$$

and S is given by the salinity equation (similar to the heat equation).

