
Laure Zanna
11/09/05

Introduction to Physical Oceanography
Homework 7 - Solutions

1. Short review on coordinate systems: The unit vectors in Cartesian coordinates are: x̂ and ŷ,
while the unit vectors in polar coordinates are: r̂ and θ̂. Some definitions:

x = rcos(θ); r =
√

x2 + y2

y = rsin(θ); θ = tan−1 (y
x

)

and

r̂ = cos(θ)x̂+ sin(θ)ŷ =
xx̂ + yŷ
√

x2 + y2

θ̂ = −sin(θ)x̂+ cos(θ)ŷ =
−yx̂ + xŷ
√

x2 + y2

where I used the identities

cos
[

tan−1
(y

x

)]

=
x

√

x2 + y2

sin
[

tan−1
(y

x

)]

=
y

√

x2 + y2

The curl or ∇× in 3D is given by

∇×~u =
∣

∣

∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

u v w

∣

∣

∣

∇×~u = x̂
(

∂w
∂y

−
∂v
∂z

)

− ŷ
(

∂w
∂x

−
∂u
∂z

)

+ ẑ
(

∂v
∂x

−
∂u
∂y

)

(1)

(a) Solid body rotation: ur = 0, uθ = ωr

~u = ur r̂ +uθθ̂

= ω
√

x2 + y2 −yx̂ + xŷ
√

x2 + y2

= ω(−yx̂ + xŷ)

such that the velocity components in the x− and y−directions are given by u = −ωy
and v = ωx respectively. Figure 1a shows the velocity vector as function of (x,y) for
this example.
The vorticity is given by ∇×~u such that

∇×~u = ẑ
(

∂
∂x

(ωx)−
∂
∂y

(−ωy)
)

= 2ωẑ (2)

The vorticity has only a vertical component and is equal to twice the angular velocity,
similar to the results obtained in class using cylindrical coordinates.
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(a) Solid body rotation
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(b) Irrotational vortex

Figure 1: Velocity vectors in the x− y plane using quiver for (a) solid body rotation and (b) irrota-
tional vortex.

(b) Irrotational vortex: ur = 0, uθ = Λ/2πr

~u = ur r̂ +uθθ̂

=
Λ

2π
√

x2 + y2

−yx̂ + xŷ
√

x2 + y2

=
Λ
2π

(

−yx̂ + xŷ
x2 + y2

)

Figure 1b shows the velocity vector as function of (x,y). The vorticity is

∇×~u = ẑ
Λ
2π

[

∂
∂x

(

x
x2 + y2

)

−
∂
∂y

(

−
y

x2 + y2

)]

= 0 (3)

The vorticity is equal to zero. By definition, the vorticity is a measure of the rotation
of the flow, in this case the vorticity is zero therefore the name irrotational.

(c) Exponential velocity: ur = 0, uθ = ae−r/r0

~u = ur r̂ +uθθ̂

= ae−
√

x2+y2/r0
−yx̂ + xŷ
√

x2 + y2

= −
aye−

√
x2+y2/r0

√

x2 + y2
x̂+

axe−
√

x2+y2/r0

√

x2 + y2
ŷ

The vorticity is then

∇×~u = ẑ

[

∂
∂x

(

axe−
√

x2+y2/r0
√

x2 + y2

)

−
∂
∂y

(

−
aye−

√
x2+y2/r0

√

x2 + y2

)]

= a
r0 −

√

x2 + y2

r0
√

x2 + y2
e−

√
x2+y2/r0 ẑ

Figure 2 shows the velocity field in the x− y plane and contours of vorticity. As ex-
pected from our solutions, the velocity and vorticity are infinite at the origin and decay
away from it. The rotation is counterclockwise and therefore the vorticity is positive.
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Figure 2: Velocity vectors in the x− y plane using quiver and contours of the vorticity field.

2. Wind stress and Sverdrup relation: Assume that the wind stress is given by

~τ = (τ(x),τ(y)) = (τ0 cos[
π
20

(40−θ)],0) (4)

where τ0 = 0.7dyn/cm2 = 0.07N/m2 and 20N ≤ θ ≤ 60N.

(a) The wind stress as function of latitude is shown in Fig. 3.
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Figure 3: Wind stress as function of latitude.

(b) North-South velocity in the interior from the Sverdrup relation: the Sverdrup relation
is a balance between the north-south advection of planetary vorticity and the Ekman
pumping at the base of the Ekman layer. This balance is valid in the ocean interior and
away from the western boundaries. The Sverdrup relation is given by

βv =
1

ρ0H
∇×~τwind (5)
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The wind stress is a function of θ, using the fact that we have approximatively

1◦ lat =
1

360
(2πR) ≈ 111km

we can convert all the angles to meters such that the domain defined by 20N ≤ θ≤ 60N
is equivalent to 222 ·104 m ≤ y ≤ 666 ·104 m, such that

~τ = (τ(x),τ(y)) = (τ0 cos[
π

222 ·104 (444 ·104− y)],0) (6)

The curl of the wind stress is given by

∇×~τ = −
∂
∂y

(

τ0 cos[
π

222 ·104 (444 ·104− y)]
)

= −
τ0π

222 ·104 sin[
π

222 ·104(444 ·104− y)]

It is easy now to write an expression for the north-south velocity such that

v = −
τ0π

βρ0H(222 ·104)
sin[

π
222 ·104(444 ·104− y)] (7)

Note: another way to do this will be to use the chain rule such that

∂τ(x)

∂y
=

∂τ(x)

∂θ
∂θ
∂y

=
9τ0

R
sin[

π
20

(40−θ)]

where θ = 360 · y/(2πR)⇒ ∂θ/∂y = 180/(πR) such that

v = −
9τ0

ρ0HβR
sin[

π
20

(40−θ)] (8)

Obviously you get the exact same answer.
(c) Volume transport:

Msverdrup = H∆xv

= −
τ0π

βρ0H(222 ·104)
sin[

π
222 ·104(444 ·104− y)]

Figure 4 shows the velocity and the Sverdrup transport as function of latitude. We see
that the velocity and the transport are antisymmetric about 40◦N, where the curl of the
wind stress vanishes.

(d) In the Sverdrup interior, the velocity and therefore the transport are proportional to the
curl of the wind stress. Between 20◦N and 40◦N, the curl of the wind stress is clockwise
and add negative vorticity to the ocean between those latitudes, the flow will therefore
moves to the south. The velocity and transport are negative between the latitudes 20◦N
and 40◦N consistent with the southward velocity in the subtropical gyre. The values
for the maximum velocity in the interior are roughly 0.4cm/s and the transport close
to 30Sv consistent with observations. Between 40◦N and 60◦N, the curl of the wind
stress is counterclockwise and therefore add positive vorticity to the ocean between
those latitudes and the flow is northward. This picture is consistent with the existence
of the subpolar gyre in the Atlantic and the Pacific oceans.
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Figure 4: Velocity in cm/s and volume transport in Sv in the interior as function of latitude using
β = 2Ωcos(40◦N)/R ≈ 1.76 ·10−11(m · s)−1, ρ0 = 1026kg/m3, τ0 = 0.07N/m2, H = 1000m, W =
5000km and R = 6371km.

5


