
Harvard School of Engineering and Applied Sciences — Computer Science 152

Inductive definitions and proofs

Lecture 2 Thursday, January 28, 2010

1 Expressing Program Properties

Now that we have defined our small-step operational semantics, we can formally express different proper-
ties of programs. For instance:

• Progress: For each store σ and expression e that is not an integer, there exists a possible transition for
〈e, σ〉:

∀e ∈ Exp. ∀σ ∈ Store. either e ∈ Int or ∃e′, σ′. 〈e, σ〉 −→ 〈e′, σ′〉

• Termination: The evaluation of each expression terminates:

∀e ∈ Exp. ∀σ0 ∈ Store. ∃σ ∈ Store. ∃n ∈ Int. 〈e, σ0〉 −→∗ 〈n, σ〉

• Deterministic Result: The evaluation result for any expression is deterministic:

∀e ∈ Exp. ∀σ0, σ, σ
′ ∈ Store. ∀n, n′ ∈ Int.

if 〈e, σ0〉 −→∗ 〈n, σ〉 and 〈e, σ0〉 −→∗ 〈n′, σ′〉 then n = n′ and σ = σ′.

How can we prove such kinds of properties? Inductive proofs allow us to prove statements such as the
properties above. We first introduce inductive sets, introduce inductive proofs, and then show how we can
prove progress (the last property above) using inductive techniques.

2 Inductive sets

Induction is an important concept in the theory of programming language. We have already seen it used to
define language syntax, and to define both the small-step operational semantics.

An inductively defined set A is a set that is built using a set of axioms and inductive (inference) rules.
Axioms of the form

a ∈ A
indicate that a is in the set A. Inductive rules

a1 ∈ A . . . an ∈ A
a ∈ A

indicate that if a1, . . . , an are all elements of A, then a is also an element of A.
The set A is the set of all elements that can be inferred to belong to A using a (finite) number of applica-

tions of these rules, starting only from axioms. In other words, for each element a of A, we must be able to
construct a finite proof tree whose final conclusion is a ∈ A.

Example 1. The language of a grammar is an inductive set. For instance, the set of arithmetic expressions
(without assignment) can be described with 2 axioms, and 2 inductive rules:

x ∈ Exp
x ∈ Var

n ∈ Exp
n ∈ Int

e1 ∈ Exp e2 ∈ Exp
e1 + e2 ∈ Exp

e1 ∈ Exp e2 ∈ Exp
e1 × e2 ∈ Exp

This is equivalent to the grammar e ::= x | n | e1 + e2 | e1 × e2.

Lecture 2 Inductive definitions and proofs

Example 2. The natural numbers can be inductively defined:

0 ∈ N
n ∈ N

succ(n) ∈ N

Example 3. The small-step evaluation relation −→ is an inductively defined set. The definition of this set
is given by the semantic rules.

Example 4. The transitive, reflexive closure−→∗ (i.e., the multi-step evaluation relation) can be inductively
defined:

〈e, σ〉 −→∗ 〈e, σ〉
〈e, σ〉 −→ 〈e′, σ′〉 〈e′, σ′〉 −→∗ 〈e′′, σ′′〉

〈e, σ〉 −→∗ 〈e′′, σ′′〉

3 Inductive proofs

We can prove facts about elements of an inductive set using an inductive reasoning that follows the struc-
ture of the set definition.

3.1 Mathematical induction

You have probably seen proofs by induction over the natural numbers, called mathematical induction. In such
proofs, we typically want to prove that some property P holds for all natural numbers, that is, ∀n ∈ N. P (n).
A proof by induction works by first proving that P (0) holds, and then proving for all m ∈ N, if P (m) then
P (m+ 1). The principle of mathematical induction can be stated succinctly as

P (0) and (∀m ∈ N. P (m) =⇒ P (m+ 1)) =⇒ ∀n ∈ N. P (n).

The assertion that P (0) is the basis of the induction (also called the base case). Establishing that P (m) =⇒
P (m+1) is called inductive step, or the inductive case. While proving the inductive step, the assumption that
P (m) holds is called the inductive hypothesis.

3.2 Structural induction

Given an inductively defined set A, to prove that property P holds for all elements of A, we need to show:

1. Base cases: For each axiom

a ∈ A ,

P (a) holds.

2. Inductive cases: For each inference rule

a1 ∈ A . . . an ∈ A
a ∈ A ,

if P (a1) and . . . and P (an) then P (a).

If the set A is the set of natural numbers (see Example 2 above), then the requirements given above for
proving that P holds for all elements of A is equivalent to mathematical induction.

If A describes a syntactic set, then we refer to induction following the requirements above as structural
induction. If A is an operational semantics relation (such as the small-step operational semantics relation
−→) then such induction is called induction on derivations. We will see examples of structural induction and
induction on derivations throughout the course.

Page 2 of 3

Lecture 2 Inductive definitions and proofs

3.3 Example: Proving progress

Let’s consider the progress property defined above, and repeated here:

Progress: For each store σ and expression e that is not an integer, there exists a possible transition for 〈e, σ〉:

∀e ∈ Exp. ∀σ ∈ Store. either e ∈ Int or ∃e′, σ′. 〈e, σ〉 −→ 〈e′, σ′〉

Let’s rephrase this property as: for all expressions e, P (e) holds, where:

P (e) = ∀σ. (e ∈ Int) ∨ (∃e′, σ′. 〈e, σ〉 −→ 〈e′, σ′〉)

The idea is to build a proof that follows the inductive structure in the grammar of expressions:

e ::= x | n | e1 + e2 | e1 × e2 | x := e1; e2.

This is called “structural induction on the expressions e”. We must examine each case in the grammar
and show that P (e) holds for that case. Since the grammar productions e = e1 + e2 and e = e1 × e2 are
inductive definitions of expression, they are inductive steps in the proof; the other two cases e = x and
e = n are the basis of induction. The proof goes as follows.

• Case e = x. By the VAR axiom, we can evaluate 〈x, σ〉 in any state: 〈x, σ〉 −→ 〈n, σ〉, where n = σ(x).
So e′ = n is a witness that there exists e′ such that 〈x, σ〉 −→ 〈e′, σ〉, and P (x) holds.

• Case e = n. Then e ∈ Int, so P (n) trivially holds.

• Case e = e1 + e2. This is an inductive step. We assume that P holds for subexpressions e1 and e2 and
we want to prove that is holds for e. In other words, we want to show that P (e1) and P (e2) implies
P (e). Let’s expand these properties. We know that the following hold:

P (e1) = ∀σ. (e1 ∈ Int) ∨ (∃e′. 〈e1, σ〉 −→ 〈e′, σ〉)
P (e2) = ∀σ. (e2 ∈ Int) ∨ (∃e′. 〈e2, σ〉 −→ 〈e′, σ〉)

and we want to show:
P (e) = ∀σ. (e ∈ Int) ∨ (∃e′. 〈e, σ〉 −→ 〈e′, σ〉)

We must inspect several subcases.

First, if both e1 and e2 are integer constants, say e1 = n1 and e2 = n2, then by rule ADD we know that
the transition 〈n1+n2, σ〉 −→ 〈n, σ〉 is valid, where n is the sum of n1 and n2. Hence, P (e) = P (n1+n2)
holds (with witness e′ = n).

Second, if e1 is not an integer constant, then by the inductive hypothesisP (e1) we know that 〈e1, σ〉 −→
〈e′, σ〉 for some e′. We can then use rule LADD to conclude 〈e1 + e2, σ〉 −→ 〈e′ + e2, σ〉, so P (e) =
P (e1 + e2) holds.

Third, if e1 is an integer constant, say e1 = n1, but e2 is not, then by the inductive hypothesis P (e2)
we know that 〈e2, σ〉 −→ 〈e′, σ〉 for some e′. We can then use rule RADD to conclude 〈n1 + e2, σ〉 −→
〈n1 + e′, σ〉, so P (e) = P (n1 + e2) holds.

• Case e = e1 × e2 and case e = x := e1; e2. The proof in these cases are similar to that in the previous
case.

Page 3 of 3

