
Harvard School of Engineering and Applied Sciences — Computer Science 152

Control-flow constructs; Scope

Lecture 12 Thursday, March 4, 2010

1 Control flow constructs

CPS makes control flow explicit in the lambda calculus. This makes it easier to express complex control
flow constructs. Here, we consider two non-local control-flow constructs: exceptions and co-routines.

1.1 Exceptions

Consider a CBV language with a simple exception-throwing mechanism. The syntax of the language is
given by the following grammar.

e ::= x | λx. e | e1 e2 | try e1 catch x. e2 | raise e
v ::= λx. e

The construct try e1 catch x. e2 tries to evaluate e1. If e1 does not raise an exception, then try e1 catch x. e2
evaluates to whatever e1 evaluates to. If e2 raises an exception with value v, then we evaluate e2 with x
bound to v, and the whole expression try e1 catch x. e2 evaluates to whatever e2{v/x} evaluates to.

The construct raise e evaluates e to a value v, and raises an exception with value v.
For example, the program try raise 30 + 5 catch x. x + 7 evaluates to 42, and the program try 30 +

5 catch x. x+7 evaluates 35. Finally, the program try (try raise 7 catch x. x+1) catch y. y+7 evaluates to 8.

1.1.1 Operational semantics

We will specify an operational semantics for this language that when it encounters a raise v expression, will
propagate that expression upwards in the evaluation contexts until it encounters an enclosing try construct.

E ::= E e | v E | raise E

Note that there is no evaluation context try E catch x. e. Instead, we will explicitly deal with the evalu-
ation of a try construct, so that if it raises an exception we can evaluate the handler.

e −→ e′

E[e] −→ E[e′]
β-REDUCTION

(λx. e) v −→ e{v/x}

TRY-BODY
e1 −→ e′1

try e1 catch x. e2 −→ try e′1 catch x. e2
TRY-NORMAL

try v catch x. e2 −→ v

TRY-EXCEPTION
try raise v catch x. e −→ e{v/x}

RAISE
E[raise v] −→ raise v
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1.1.2 Translational semantics

We give a translational semantics for the language using continuation passing style. The translation CPS[[e]]
of an expression e will take two continuations as arguments: the continuation k will be the “normal contin-
uation,” to be used when e does not raise an exception; the continuation h will be the “exception-handler
continuation,” and should be used when an exception is raised.

CPS[[x]]kh = k x

CPS[[λx. e]]kh = k (λx, k′, h′. CPS[[e]]k′h′) k′, h′ are not free variables of e
CPS[[e1 e2]]kh = CPS[[e1]] (λf. CPS[[e2]] (λv. f v k h) h) h f is not a free variable of e2

CPS[[try e1 catch x. e2]]kh = CPS[[e1]] k (λx. CPS[[e2]]kh)
CPS[[raise e]]kh = CPS[[e]] h h

1.2 Coroutines

Coroutines are non-preemptive threads that do not execute at the same time, and can transfer control and
data to each other. Coroutines have several uses, including implementing an actor model of computation,
and implementing iterators, where one coroutine produces values from a collection that the other coroutine
consumes.

We add two new language constructs: cobegin e1 || x. e2 and yield e. The syntax of the new language is
given by the following grammar.

e ::= x | λx. e | e1 e2 | cobegin e1 || x. e2 | yield e

A cobegin expression cobegin e1 || x. e2 starts a pair of coroutines that evaluate e1 and e2 in parallel.
When either one of the expressions finishes evaluating, the whole cobegin expression terminates with the
value of that expression. Control is initially given to the first expression e1. Each coroutine evaluates
uninterrupted until it evaluates a yield v expression, at which point, control is transferred to the other
coroutine, with the value v being used as the result of the coroutine last yield. For the first time that control
is given to e2, the variable x takes on the value of the yielded expression.

Before giving a translational semantics, let’s consider an example.

cobegin
let i = yield 1 in let j = yield (3 + i) in yield (7 + j)

||
x. yield (x+ 1)

Control starts in the first coroutine, which yields the value 1; this value replaces variable x in the second
coroutine, which then yields 1 + 1 = 2 back to the first coroutine. That value is bound to i, and the first
coroutine yields 3 + i = 5, which is the result of the yield expression of the second coroutine. The second
coroutine then terminates with the value 5.

Here’s another example. It evaluates to 42.

cobegin
yield (33 + (yield 1))

||
x. 1 + yield (cobegin yield 7 || y. y + x)

We define a CPS translational semantics for coroutines. The target language is the pure CBV lambda
calculus. We slightly change the notion of continuation for the purposes of this translation. Previously,
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a continuation took a result, and continued with the rest of the computation; now, a continuation takes a
result and a yield continuation and continues with the rest of the computation. A yield continuation is the
continuation to yield a value to in the rest of the computation. We need to pass a yield translation to the
continuation since the continuation to use for yield expressions changes as the program executes, and is not
determined by the lexical scope (as was the case with exception handling above).

The translation CPS[[e]] of an expression e will take two continuations as arguments: the continuation k
will be the normal continuation, and continuation y will be the yield continuation: the continuation to pass
yield results to.

The translation of abstractions and applications is similar to their translation in the language with ex-
ceptions, given above.

T [[x]]ky = k x y

T [[λx. e]]ky = k (λx, k′, y′. T [[e]]k′y′) y k′, y′ are not free variables of e
T [[e1 e2]]ky = T [[e1]] (λf, y′. T [[e2]] (λv, y′′. f v k y′′) y′) y f, y′ are not free variables of e2

T [[yield e]]ky = T [[e]] (λv, y′. y′ v k) y
T [[cobegin e1 || x. e2]]ky = T [[e1]] (λv, y′. k v y) (λx, y′′. T [[e2]] (λv, y′′′. k v y) y′′) y′′ is not a free variable of e2

The translation of yield e evaluates e, and the normal continuation given to T [[yield e]] takes the result v,
a yield continuation y′, and passes v to the yield continuation y′. The continuation y′ also expects a yield
continuation, and we give it the normal continuation k; that is, if the coroutine yields a value back to us, we
should continue with the computation k. The yield continuation given to T [[yield e]] is y; this is because if e
itself performs a yield, then the currently inactive coroutine should receive that value.

The translation of cobegin e1 || x. e2 evaluates e1 with a yield continuation that starts evaluation e2.
Note that if e1 yields a value to the coroutine e2, then it also gives a yield continuation, which will be given
the first value (if any) that e2 yields.

2 Scope

So far in the operational semantics for the lambda calculus, we have used substitution when applying func-
tions to expressions: replacing free occurrences of variables in the function body with the actual arguments.
An alternative semantics is to maintain an environment that maps variables to values. When we want the
value of a variable we look it up in the environment; when we apply a function, we extend the environment
with the new value for the variable.

We can define a translational semantics that makes the environment explicit. Note that we write “x”
for the name of the variable x; this could be a string representation of the variable, an integer (where each
variable has a distinct integer).

D[[x]]ρ = ρ “x”
D[[λx. e]]ρ = λy.D[[e]](extend ρ “x” y)
D[[e1 e2]]ρ = (D[[e1]]ρ) (D[[e2]]ρ)

extend = λρ. λs. λv. λx. if s = x then v else ρ x

Note that when we want the value of a variable, we look it up in the environment. For a function,
when the function is applied to an actual argument, we extend the environment, mapping the function’s
variable to the actual argument. Note that the environment that is extended is the environment in use when
the function was defined. This is called lexical scoping (and also static scoping and block-structured scoping: the
value of a free variable in a function body is determined by where the function was defined. That is, the
binding of variables is determined statically, based on the lexical structure of the program.

By making the environment explicit, we can consider another kind of scoping: dynamic scoping. Under
dynamic scoping, the value of a free variable in a function body is read from the environment is use when
the function is applied. The binding of variables is determined by the runtime behavior of the program.
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The following program demonstrates the difference between lexical and dynamic scoping.

let x = 10 in
let f = λy. x+ 1 in
let a = f 0 in
let x = 20 in
let b = f 0 in b

The function contains a free variable x. Under lexical scoping, the environment used to determine the
value of x is the environment in which the function was defined; thus, under lexical scoping, applying f
will always produce the same result, and both a and b will have the value 11. By contrast, under dynamic
scoping, the environment used to determine the value of xwill be the environment in use when f is applied.
Under dynamic scoping, a will equal 11, but b will equal 21.

We define a translation for dynamic scoping as follows. Note that the translation of functions now takes
two arguments: the actual argument, and the dynamic environment, the environment in use when the
function is applied. It is this dynamic environment that is extended with the new value for the function’s
variable.

D[[x]]ρ = ρ “x”
D[[λx. e]]ρlex = λy, ρdyn.D[[e]](extend ρdyn “x” y)
D[[e1 e2]]ρ = (D[[e1]]ρ) (D[[e2]]ρ) ρ
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